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SOME FUNDAMENTAL PROPERTIES OF BANACH SPACES [, (BC(N)) WITH
THE «—NORM || . [, sc(vy)

NILAY DEGIRMEN AND BIRSEN SAGIR

Abstract. In this paper, we define non-Newtonian bicomplex versions of some known topological
properties of sequence spaces and also, we introduce these new topological and geometric properties
of *—bicomplex sequence spaces I, (BC (N)) for 0<p < oo. Our obtained results extend some
existing facts in the literature.

1. INTRODUCTION AND PRELIMINARIES

Non-Newtonian calculus [7] is a popular and effective tool for its application in technology and
mathematics. Up to now, researchers used non-Newtonian calculus in many areas including engineer-
ing, economy, biology, approximation theory, probability theory, weighted calculus etc. and extended
some concepts in classical calculus to those in non-Newtonian calculus.

On the other hand, in search for development of special algebras, in 1892, Corrado Segre [20] defined
the concept of bicomplex numbers which are a generalization of complex numbers. In 1991, Price [15]
published a book on bicomplex numbers, multicomplex numbers, and their function theory. Since
this subject has been developed very fast in recent times due to huge applications in different fields
of mathematical sciences, it has attracted considerable interest from many authors. Alpay et al. [1],
one of them, laid the foundations for a rigorous theory of functional analysis with bicomplex scalars.
For other related studies on bicomplex analysis, we recommend [10,11,16].

Firstly, after introducing non-Newtonian bicomplex numbers as a generalization of both bicomplex
numbers and non-Newtonian complex numbers, Sager and Sagir established x—bicomplex sequence
spaces [, (BC (N)) for 0 < P < oo and also, studied non-Newtonian completeness property of the
spaces [17,18]. Also, in the literature, there are many results dealing with the geometric and topological
properties of various sequence spaces. Some of these works are noted in [2,4,5,8,12-14,19,21].

Motivated by the above studies, our purpose in this study is to investigate some fundamental
geometric and topological properties of *—bicomplex sequence spaces I, (BC (N)) for 0 < p < .
We also explain the properties not satisfied with some illustrative examples. We hope that some
properties of the spaces considered in this work will be hammering away in studying other aspects of
such spaces.

Now, we summarize a number of known results which will be needed in other sections.

Let i and j be independent imaginary units such that i = j2 = —1, ij = ji and let C (i) be the
set of complex numbers with the imaginary unit . The set of bicomplex numbers BC is defined by

BC={z=2+jz:21,22€ C(>4)}.

The set BC forms a Banach space with respect to the algebraic operations for all z,w € BC, A € R
and Euclidean norm defined as [15]

z2+w = (21 + jz2) + (w1 + jwz) = (21 +wi) + j (22 + w2) ,
Az =M (214 jz2) = Az1 + jAzo,

1l - BC = R,z = ||zl = /|21 + |z2/™.
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A complete ordered field is called arithmetic if its realm is a subset of R. A generator is a one-to-one
function whose domain R and whose range is a subset of R. Let « be a generator with range A. We
denote by R, the range of generator c. Also, the elements of R, (or R (N),) are called non-Newtonian
real numbers.

Let a and S be arbitrarily chosen generators which image is the set R to A and B, respectively, and
let * — ("star-"") calculus be also the ordered pair of arithmetics (o — arithmetic, 5 — arithmetic). The
following notations will be used. All definitions given for a—arithmetic are also valid for S—arithmetic.

a—arithmetic (8 — arithmetic
Realm A(=R, =R(N),) B(=Rs=R(N),)
Summation y+z=af{a () +a'(2)} +
Subtraction y—z=a{a(y) —al(2)} =
Multiplication yx z=a{a ™t (y) x a7 (2)} X
Division y/z =2Zo = O‘{%EZ;} (z # 0) /
Ordering y<z<=al(y) <al(z) <

There are the following three properties for the isomorphism from a—arithmetic to S—arithmetic
that is the unique function #(iota).

1. 12 is one-to-one.

2. 7 is on A and onto B.

3. For all u,v € A,

v(utv) = (u) Fe(v), o (u=v) = (u) Ze(v),
v(uxv) = (u) X (v), L(u]'u) = (u) /u(v), v#0,
u<v <= ¢ (u) <t (v),
t(u)=p {a_l (w)}.
Also, for every integer n, we set ¢ (n) = 7.
An «a— positive number is a number z with 0 < z and an a—negative number is a number with
x < 0. a—zero and a—one numbers are denoted by 0 =  (0) and 1 = (1), and the set of a— positive
numbers is denoted by R} (or R (N)7F). Also, a(—p) = a{a~' (p)} = ~p for all p € Z*. An open
interval on R (N),, for a,b € R(N), with a < b is represented by (a,b)y = {z € R(N), :a < z < b}.
The av—absolute value of z € A is defined by
. x, if 0<ux,
|2 |= ||, = <0, if 0=z,
0-— xz, if z< 0.
Let b € B C R. Then the number b X b is called the B—square of b and denoted by b2. Let b
be a nonnegative number in B. Then ﬁ{ B (b) } is called the S—square root of b and denoted by

Vb [2,7].
The definitions of a—convergence of a sequence of elements in A, a—convergent series, non-

Newtonian metric space, non-Newtonian normed space, non-Newtonian completeness, non-Newtonian
upper bound, non-Newtonian supremum are found in [2,3,6,7,9].

Note that we use the notations sup and  for non-Newtonian supremum and a—series, respectively
in this article. ) - -

Let a € (A,—i—, - %,/,< ) and b € (B7—|—,—7 X, /, < ) be arbitrarily chosen elements from the
corresponding arithmetics. Then the ordered pair (d, b) is called as a x—point. The set of all x—

points is called the set of *—complex numbers (non-Newtonian complex numbers) and denoted by C*
or C(N), that is,

C(N):{(a,'b):aeAgR,éeBgR}.
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The set C (V) forms a Banach space and a field with the algebraic operations @1, ®; and ®; defined
on C(N) and the s—norm || . ||, defined by

i 2 ii,= W(a;())]ﬁ T (b2 0) :ﬁ<\/a2+b2>,

where 2* = (a, b) € C(N) [21].

The following definitions and properties related to BC (V) and appearing in [17] will be needed in
the sequel.

Let a,c € (A,—;—,47>k,/7§ ) and b,d € (Bfiﬂﬁk,/,é ) Then (a,bm,d) is called as a *—
bicomplex point. The set of all x—bicomplex points is called the set of x—bicomplex numbers (non-
Newtonian bicomplex numbers) and denoted by BC* or BC (V) ; that is,

BC(N) = {(a,b,¢,d) s a,c€ ACR,},d € BCR|
- {(z*w*) L2 = (a,b),w" = (c,'d) ,a,éeAgR,B,deBgR}.

The algebraic operations addition @, multiplication ®s and scalar multiplication ®y defined on
BC (N) as follows:

®3 : BC (N) x BC (N) — BC
((156) = G @2G5 = (27, w)) @2
= ((21 ®1 23) ©1 (W] ®1 w3

®2: C(N) xBC(N) - BC(N),
(2%, ¢1) = 2" ©2 () = 2" O2 (27, wi) = (2" ®1 271, 2" @1 wy),

where (§ = (27, w7), ¢ = (z5,w3) € BC(N) and z* € C(N). According to these operations, it
can simply be shown that the set BC (IV) forms a vector space over the field C(N) and a ring. We

(21 ®1w3) 1 (23 @1 w7)),

~—_ —

can denote the non-Newtonian complex number 2* = (a, b) by (a,0) @1 i* @1 (0, b) =a & i* @1 b,
where * = (O7 1)( = (0, 1,0,0))7 (z*)2 = @11*( = ( - 170)) Also, we can denote the non-Newtonian
bicomplex number * = (z*, w*) by (z*,0%) @2 j* @2 (w*,0%) = 2* By j* R w* = (d, b) Do j* Ro (é, d),
where 2* = (a,b),w* = (¢,d),5* = (0,0,1,0) = (0%,1%), (j*)> = ©21* (= (€1 1*,0%) = £, (1*,0%) =
@21*), and also define z* and w* by Re (* and Im (*, respectively.

The x—distance dgc(vy between two arbitrarily elements (f = 27 @2 j* ®2 wi, (5 = 25 D2 j* Q2 w5
of the set BC (V) is defined by

dgc(w) :BC (N) x BC (N) — [0,00) C B,

(¢1563) = deqwy (C1563) = \/|| 210125 Iy + [l wi ©1ws |-
The *—distance dgc(y) is a non-Newtonian metric on BC (V).

For definitions of *—bicomplex sequence, x—limit of x—bicomplex sequence, *—bicomplex Cauchy
sequence, *—bicomplex series and convergence of x—bicomplex series, we refer to [17].

Then BC (N) is a Banach space with respect to the *—norm || . H2 defined by

i Vi i e i
for (* = 2* @9 j* ®2 w* € BC(N).
Lemma 1. Let (§,(; € BC(N) and z* € C(N). Then the following statements hold:
D) GG =l e+ 16,
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ii) || (o206 ||2S|| S ||2 + H G ||2
i) 2% @2 ¢t llo=l 2 I, X U G5 1, (17,

In [10], Sager and Sagir constructed the x—bicomplex sequence spaces o, (BC (N)) and I, (BC (NV))
of all bounded and absolutely p— summable x—bicomplex sequences over the field C (V) by using the

*— norm || . ||2 as follows:

w (BC(N)) :={¢ = () : ¢ € BC(N) for all n € N},

loe (B (N)) 1= {¢ = (G3) € w (BT (N)) :siip ] G < oo .

1, (BC () {c () € w(BC(N Z||<n||2<oo}

n=1

for 0 < p < oo, pER(N),
The algebraic operations addition @, scalar multiplication ® and multiplication ® defined on
w (BC (N)) as follows, respectively:

®:w(BC(N)) xw(BC(N)) = w@BC(N)),(s,t) >s@t= (s}, Dat),
©:C(N)xw(BC(N)) = w(BC(N)),(z%,s) =2 2z"0s=(z"025),),

where s = (s3),t = (t) € w (BC(N)) and z* € C(N). The set w (BC (N)) forms a vector space over
the non-Newtonian complex field C (N) with respect to the addition & and scalar multiplication ©.

Corollary 1. I (BC(N)) is a Banach space with the x—norm H . ]i27lw(BC(N)) defined by
s 2 @evy = Sieig [ s llgss = (s5,) € loo (BC(N))
[18].

Corollary 2. For1 < p < oo, the space I, (BC (N)) is a Banach space with the x—norm || . ”2,lp(]BC(N))
defined by

A (Z isx il ) 5= (s1) € I, (BC (V)
n=1
18].

Definition 1. Let X be a vector space over the field C (N). A map || || || X = [O7 oo')' =B CBis
said to be a p, x—norm for 0 < p < 1 if it satisfies the following properties:
()HMW—Oﬂmdeﬁx—O
(i) | - @ =] 1] 3 | f[for all = € X, " € C(N).

(iii) | [z @yl <[] Jal [ 1] |yl || for all 2,y € X.
Then X is said to be a p, *— normed space [18].

Corollary 3. For 0 < p < 1, the space I, BC(N)) is a p,*—Banach space with the p,*—norm
- M2, By defined by

I's o, Bevy) = Z [ s ll2s s =(s5) €1, BC(N))
n=1
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2. MAIN RESULTS

We begin this section by introducing non-Newtonian versions of the concepts of convex, strictly
convex and uniformly convex sets which will be needed in the sequel.

Definition 2. Let X be a vector space over the non-Newtonian real field R (V) and C be a subset
of X. fA®2® (1-\)®@y e Cforallz,y € Cand \ € (0, i)N, then C is said to be non-Newtonian

convex [8].

In the following Definition 3, Definition 4, Theorem 1, Theorem 2 and Theorem 3, |||, denotes
the non-Newtonian norm on the non-Newtonian Banach space X.

Definition 3. A non-Newtonian-Banach space X is said to be non-Newtonian strictly convex, if
A@zd (1-X) ®y||N <lforallz,ye Sx ={a€ X :|ally=1} withz#yand A€ (0,1) [8].
Definition 4. A non-Newtonian Banach space X is said to be non-Newtonian uniformly convex, if
for any & with 0 < ¢ < 2, the inequalities ||z|y < 1, |ly[[y < 1 and ||z ©y||y > € imply that there
exists a & = 4§ (¢) > 0 such that H%H <1-618.

N

Theorem 1. Let X be a non-Newtonian Banach space. Then the following statements are equivalent:
(i) X is non-Newtonian strictly convex.

(ii) Forallz,y e X, x £y and X € (O,i)N, |
with 1 < p < oo [8].

Are (1-X) @ylhy < Axlzlf + (1 =) < |y}

The following two theorems determine the relationship between the strictly convexity and uniformly
convexity.

Theorem 2. Let X be a non-Newtonian uniformly convex non-Newtonian Banach space. Then the
following statements hold:
(i) For anyr,e withr > & >0 and z,y € X, the inequalities |z||y <7, |lyllxy <7 and [z O y|y > €

imply that there exists a 6 =6 (%) > 0 such that %HN <rx (1 — (%a) )

(i) For anyr,e withr > e >0 and z,y € X, the inequalities | x| 5y <7, |ylly <7 and ||z Syl y > €
imply that there exists a 6 = 6 (%) > 0 such that H)\(X)m@ (1 — )\) ®yHN <rx (1 Z2x m'in{)vi —
A} x 6 () forall X € (0,1) .

Proof. (i) Let ||z||y < m|lylly < r and |z ©yly > e Then we have H%HN <1,

Uy <1 and
||% S) %H N > Lo > 0. So, by the definition of a non-Newtonian uniformly convex set, there exists a
§ =4 (£a) > 0 such that

T Y o
L LTV PTRTEN
2 N 2xrily r
and thus
r®d

2v 2ok (i-(5a)).

This completes the proof of (i).
(i) If A = %a, then we obtain (i). If A € (O,%a)N, we conclude that by (i) there exists a

§=46(%)> 0 such that
froms (12000, ~|roteons (122130,

<2x X

x@yH +(i;2xx)x”mm
2 N
§2>'<>\>'<r>'<(i;5(§a))+(i;2>'m)>'<r
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—rx (i-2x2%6(2a)).
r
On the other hand, if A € (%a, O)N, we conclude that by (i) there exists a § = ¢ (%) > 0 such that

HA@x@(i;A)®yHN=H(2>'</\;i)®az@(i;)\)®(x@y)HN

< (35 1) el 25 (12 0) % 25 HN
< (zm;i) XX X X (1;5(§a))
:m(i;zx(izx)xa(ga)).
This completes the proof of (ii). O

Theorem 3. Let X be a non-Newtonian Banach space. If X is non-Newtonian uniformly conver,
then X is non-Newtonian strictly convez.

Proof. Let X be a non-Newtonian uniformly convex non-Newtonian Banach space. Then for any ¢

with 0 < & < 2, the inequalities ||z||y < 1,|lylly < 1 and ||z ©y|, > £ imply that there exists a

§ = () > 0 such that H%H < 1= 4. Thus, by Theorem 2 (i), in case of 7 = 1, we can write
N

||)\®:1:EB (1-2) ®yHN <1-12x min{\,1— A} x 6 (¢) for all A € (0,1)N. So, since 2 x min{\,1 —

)\} x 6 () > 0, we get ||)\ ®x D (1 — )\) ® yHN < 1. This shows that X is non-Newtonian strictly
convex. 0

Now, let us examine some geometric properties of x—bicomplex sequence spaces I, (BC (N)) and

l, BC (N)) for 0<p<oo, peR (N)ﬁ . Firstly, we give two properties related to a non-Newtonian
supremum that will be used frequently in the rest of this section.

Proposition 1. Let A, B C R(N);, Define A+ B = {a—f—b ra€Abe B}, AB=AXB = {ai& b:
a€ Abe B}. If A and B are non-Newtonian bounded above, the followings are true:

(i) siip(A + B) = stpA + stipB.
(i) stip (AB) = stipA X supB.

Proof. The proof depends on the definitions and some properties of a non-Newtonian supremum given
in [6,9]. O

Lemma 2. Let (§,(; € BC(N). Then we have

GGl Flicioecilb=2% (¢l i)
Proof. The proof is a direct application of the definition of a non-Newtonian real valued norm
I - 0
Theorem 4. The sets BC (N) and w (BC (N)) are non-Newtonian conver.

Proof. The proof is clear from the definition of a non-Newtonian convex set. O
Theorem 5. The set BC (N) is non-Newtonian uniformly convex and strictly convez.

Proof. Let (f,¢5 € BC(N), e € (0,2] v, | ¢ 1,51, 11 G5 1,5 1 and e <[ ¢ ©2.G5 ||, - Then by using

Lemma 2, we have

G o Gi=2% (¢ Flaih) idegigize
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and so,
. L1
PEe G [T e i2 ]
[ =——= =BG 2
2 .2
"2
SR
<|5hx (4‘52)}
g
- 3.1p
L 2

SN 2158
If we take 0 () =1 — [1 - (gﬁ) } * | we say that BC (N) is non-Newtonian uniformly convex and
strictly convex by Theorem 3. 0

Lemma 3. Let p be a non-Newtonian real number with 1< p < o0, (§,¢ € BC(N), ¢ # ¢ and
Ae (0, 1)N Then we have

[A@2¢ @2 (1=A) @26 [b< Ax [ Gl HX =) X G I, -
Proof. The proof is a consequence of Theorem 1 and Theorem 5. 0

Lemma 4. Let p be a non-Newtonian real number with 2 < p < oo and (i,¢3 € BC(N). Then we
have

s w 1P 0 « P sp=1 w0 e P
iGegiiice.gihzd s(iaih+ici)
Proof. From Lemma 2.1 in [8], we know
(iGeaihriaceai)” (e, +ide¢l,)
for all ¢},¢; € BC(N) and 2 < p < oo. By Lemma 2,
(ol +igeci)” @Ex(iahvicl))
g o, . L2 . L3\ 1p
= (i el )®
Then by the non-Newtonian Holder inequality in [8] for % B+ %ﬁ B =1, we have

pid

T B T T SN T P =
el 4l (Talviai)” x(1+i)

,,ﬂg T .p %B
=57 " (i +ie )
and so,

I N T I e T 1.
2 (gl Fial)” 222 % (i £ i)

pii

e "*"p~"*"P%B
= 37 (il +iie )"

1 oy 1
. X . . DL e -.p PB . PTﬂ .. . . Y N -p pﬁ
This implies that (|| ¢f @2 G5 Iy + 1 G265 1l,)" €37 " (¢l ¥ ¢ llz)" - Therefore

. LD e P p=1 .. /e P oL -p T .
el +lices e % (il +16¢ ;) forall ¢5,G € BC(N) and 3 < p < 0.
The proof is completed. O
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Theorem 6. I, (BC (N)) for 0 < p < 0o and lo, (BC (N)) are non-Newtonian conves.

Proof. Let s = (s}),t = () € [, (BC(N)) and A € (0,1) .. Then Sl st ||Z< coand Y| ¢ ||§< 0.
n=1 n=1

Therefore we have

. . [ w P w0 1 p
I A@ s @ (12N @2ty o2 (132 syl 1 (1= 2) @21 1)

Ly

2 (35 min {3055 ol (2 0265
=" Scmiae ([} A @2 53 ] (1 53) @223y}
=35 (I 2oz s iy +11 (T2 N) @2t 1)
=2 (sl i #(1 =0 D1 43.11)
which implies that A® s & (1= \) © ¢ € I, (BC(N)).
Let s = (sf),t = (t}) € lso (BC(N)) and X € (0,1) . Then ilelg | st |l,< oo and ilelg |t |l,< oc.
Then by Proposition 1 (i) and (ii), we have

siip || A @2 57 @2 (15 A) @2t [|,< stip (|| A@z skl FI (TN @2t ||2)
neN neN

Zsiip (A5 sl F(0 20 % )
neN

=\ x sup || 85 ||, +(1 —A) xsup || £ |,
neN neN

which implies that A ® s ® (1 =) ©®t € lo (BC (N)). Consequently, I, (BC (N)) for 0 < p < oo and
loo (BC (N)) are non-Newtonian convex. O

Theorem 7. I, (BC (N)) for 1 < p < oo is non-Newtonian strictly convex.

Proof. Let s = (s,), t = (t;,) € Sy, ey, s #t and A € (0, i)N. Then by Lemma 3, we get

o

[Aes®(1=X) Oty @ean=2_ | A2 sh @2 (1=4) @215 [l

n=1

S (sl (=001t 1)
n=1

=AXY snlla F(E=A) 3 Y (e
n=1 n=1

T S e
=AX || s [l v FA =) x|t ll2,1, BC(vY)
:17
which implies that I, (BC (N)) for 1 < p < oo is non-Newtonian strictly convex. O
Example 1. [, (BC (NV)) is not non-Newtonian strictly convex.

Solution 1. Let
(sp) = (1,5%,0%,0%,...), () = (©21%,5%,0%,0%,...).

Then | s 5, mevy =t Il o= 1 and

[Aos@e(1-)) ot ||2,lx(wm):sﬁ§ | X @28, @2 (LX) @2t |l
ne



SOME FUNDAMENTAL PROPERTIES OF [, (BC (N)) 191

—siip || (2% A= 1) @217,5%,0%,0%,...) |,
neN

—sip{ P AT ,1}:1
sip {[25 A =1,

for all A € (O, l)N That is to say that [ (BC (N)) is not non-Newtonian strictly convex.

Example 2. [; (BC (N)) is not non-Newtonian strictly convex.
Solution 2. Let
(sp)=(3",0%,0%,...), (tr) = (0",©2i%,0%,0%,...).

Then || s ||27l1(]B3C(N)):|| t ||2,11(IBC(N)): 1 and

o0

[x@s® (15X) Oty mem)=2_ | AG2 55 @2 (15X) 2t |,

n=1
= [ AG2d* [l + || (1= X) Oz (€20 [,
=2+ (12X =1
for all A € (0, I)N That is to say that I3 (BC (N)) is not non-Newtonian strictly convex.

Theorem 8. [, (BC (N)) for 2 < p < oo is non-Newtonian uniformly convez.

Proof. Let s = (s},),t = (t;,) € L, BC(N)),e € (0,2] \, |l 5 [l @evy< 1l ¢ oy, ey < 1 and
e<|sot ll2,1, Bc(vy) - Then by Lemma 4, we have

oo o0
.. ..p T ..p e - DL e -p
I's@tlly, @y T1s0t ||2,lp(]EC(N)):Z |'sn @2t [l +Z | sn ©215 Il
n=1 n=1
o0
= .. DL e --D
=>" (s @ty llz i sn o2t 11y
n=1

oo
S T Tt e
<3 5 (sl i i)
n=1
up—l .. i .. -p .. o .. --p
5 (Sl A s )
n=1 n=1
plT L WD
=57 % I8l ey + 11 ¢ o oo
z 5
Thus we can write
isotis " sat] 257
s @y mevy)< 2,1, (BC(N)) S ’
and so,

.. Lﬁ
st 1 .- D B
| T ||2,lp(IB%C(N)): [f,ﬁx st ||2,lp(B<C(N)) ]

B

[-6]”

I P %ﬁ o B
If we take 6 () = 1 — [1 - (%ﬁ) } , we say that [, (BC (N)) for 2 < p < oo is non-Newtonian
uniformly convex. O
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Example 3. [ (BC (NN)) is not non-Newtonian uniformly convex.
Solution 3. Let
(sr)=(i",7%,4",0",0",...), (tr) = (3", 5%, 620%,0%,0%,...).
Then, || S Hz,zm(Bc(N)):“ t HZ,ZN(BC(N)): 1 and
I set liz,zw(m(z\r))ZSﬁP Il 55 2t Il
neN

=sUp || (0*,0*,é®2 i*,0%,0%,...) Hz
neN

:siip{ﬁ, 2} =2
neN

and € §|| sot H-Mw(BC(N)): 2. On the other hand,

TR R A LSy @Qtn
| —— ||2z (BC(N)) —SUP | == Hz
neN

2
=stip || (i*,5%,0%,0%,...) [,= 1.
neN

Thus there doesn’t exist & (¢) 3> 0 such that || %‘?t iiz’loo(BC(N))é 126, That is to say that o, (BC (N))
is not non-Newtonian uniformly convex.

Example 4. [; (BC (N)) is not non-Newtonian uniformly convex.
Solution 4. Let
(sp)=(3",0%,0%,...), (&) =(0%,©25",0%,0%,...).

Then || s [l sevy =l t 2,1, Be(vy=1 and

OO

I's© ¢t iz, mecvy= Z 53 @23 1=l " I, + 1l ©25" ll=2

n=1

and € §|| sot i|.27l1(BC(N)): 2. On the other hand,

~~s€Bt '8 EBgtn S -
| —— ||211 (BC(N)) ™ Z [ 5 ||2—|| ||2 + || 5 ||2: L.

Thus there doesn’t exist 6 (¢) > 0 such that H %ﬁ 'H.Q)ll(]E(C(N))é 12 6. That is to say that I; (BC (N))
is not non-Newtonian uniformly convex.

Now, we define the new topological concepts as follows:
Definition 5. Let X be a x—bicomplex sequence space with respect to the non-Newtonian real valued
norm || . ||, and

X = {(s;’;) € w(BC(N)) : there exists (¢)) € X such that || sy ||2§|| tr ||2 for all n € N} .

If )N( C X, then X is called a non-Newtonian bicomplex solid space.

Definition 6. Let X be a Banach x—bicomplex sequence space with respect to the non-Newtonian
real valued norm || ||2 If C*(") — ¢ asn — oo for all | € N with respect to the non-Newtonian
real valued norm || . ||2, whenever (™) — ¢ as n — oo with respect to the non-Newtonian real valued

norm || . ||2 +, then X is called a non-Newtonian bicomplex BK —space.
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Definition 7. Let X be a x—bicomplex sequence space with respect to the non-Newtonian real valued
norm || . [|, and 7 := {f|f : N — Nis one-to-one and onto} . If s, = (s;(n)) € X, whenever (s},) € X
and o € 7, then X is called a non-Newtonian bicomplex symmetric space.

The following theorems present the properties of being non-Newtonian bicomplex solid space, non-
Newtonian bicomplex BKspace, non-Newtonian bicomplex symmetric space of x—bicomplex sequence
spaces Lo (BC (N)) and [, (BC (N)) for 0 < p < o0, p € R(N), by using the non-Newtonian real

valued norm || . H2 .
Theorem 9. [, (BC (N)) is a non-Newtonian bicomplez solid space.
Proof. Let (s%) € I (BC(N)) be arbitrary. Then there exists () € I% (BC) such that || sk ||2§||

t, ||2 for all n € N. Therefore sieig H ty, .H.Qi oo , and so, sgg || sy .|i2i oo. This shows that (s}) €
n n

~

loo (BC (N)). Then we have the inclusion I (BC (N)) C lo (BC (NN)) which means that I, (BC (IV))
is a non-Newtonian bicomplex solid space. O

Theorem 10. [, (BC (N)) is a non-Newtonian bicomplex BK —space.

Proof. Let (¢™) € lo (BC (N)) such that (™ — ¢ as n — oo with respect to the non-Newtonian

real valued norm || . ||2 I (BC(N)) - Then for every e > 0, there exists ng € N such that || ¢ —
q

all n > ng. So, for any fixed | € N, we write || Cl*(n) ©9 (f H?i e for every € > 0 and for all n > ng

2.1 @e(v) < € for all n > ng. Thus we have that igg I Cl*(n) 62 ¢ ||,< € for every £ > 0 and for

which means that (Cl* (n)) converges to the non-Newtonian bicomplex number ¢/ with respect to the

non-Newtonian real valued norm || . ||, . Thus the coordinates are continuous on Il (BC (N)), as
required. O

Theorem 11. [, (BC (N)) is a non-Newtonian bicomplex symmetric space.

Proof. Let (s%) € loo (BC(N)) and o € 7. Then since o : N — N is an injective and surjective function,
we have { || Somy l2im € N} = { || s% |ly: n € N}. Thus the equality stip || Sy(n) ll2=sup || 57, [|5 holds.
neN neN

Since stp{ || £ ”23 n € N} < oo, we have stp || S (n) ”2% oo. This means that (s;(n)) €l (BC (V)
neN neN

and we get the required result. O

Theorem 12. I, (BC (N)) for 0 < p < oo is a non-Newtonian bicomplex solid space.

Proof. Let (s},) € I, (BC (N)) be arbitrary. Then there exists (¢%) € I, (BC (N)) such that || sk ||2§||

.. .. P D .. .. -D
tf ||, for all n € N and so, || s} [,<|| t& |5 for all n € N. Therefore the S—series Zl e 1,
n—=

o0
.. .. ..p

is convergent, the comparison test implies that > || sy ||, converges. This shows that (s) €
n=1

I, BC (N)). Then we have the inclusion I, (BC (N)) C I, (BC (IV)) which means that I, (BC (V)) for
0 < p < oo is a non-Newtonian bicomplex solid space. O

Theorem 13. [, (BC (N)) for 1 < p < 00 is a non-Newtonian bicomplex BK —space.
Proof. Let (C(")) € 1, (BC (N)) such that ¢(™ — ¢ as n — oo with respect to the non-Newtonian real

valued norm H . ii2,lp(BC(N)) . Then for every 0 < &, there e%ists ng € N such that H ¢m—¢ ”2,1,,(]3(0(1\7))%

Fo . p\ LB o
¢ for all n > ng. Thus we have (Z Il ¢ ™ g, G s ) < ¢ for every 0 < ¢ and for all n > nyg.
n=1
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.. (n -.p .. . *(n . .. A
So, for any fixed [ € N, we write || Cl( ) o, ¢ |l,< € P and hence || (l( ) o, ¢ o< € for every 0 < e
and for all n > ng which means that (Cl* (n)) converges to the non-Newtonian bicomplex number (;f

with respect to the non-Newtonian real valued norm || . H2 . Thus the coordinates are continuous on
I, (BC (N)) for 1 < p < oo, and we get the required result. O

Theorem 14. [, (BC (N)) for 0< p < 00 is a non-Newtonian bicomplex symmetric space.

Proof. Let (sf) € 1, (BC (IV)) and o € w. Then since 0 : N — N is an injective and surjective function,
.. .. .. .. .. ..p .. ..p
we have the equalities { || Sy lain € N} ={| s |l;:n €N} and { || Spny laim € N} ={| s[5

o0 oo

.. .. .‘p .. . ‘.p .. . ‘.p
n € N}. So, we can write Y || S (n) llo = > | s |l Thus, since > || s} ||, converges, we obtain
n=1 n=1 n=1
(o]

.. .. ..p
that > || s7,) [l converges. This means that (s:(n)) €l, (BC(N)), as required. O
n=1
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