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SHARP (Hp, Lp) AND (Hp,weak− Lp) TYPE INEQUALITIES OF WEIGHTED

MAXIMAL OPERATORS OF T MEANS WITH RESPECT TO VILENKIN

SYSTEMS

DAVIT BARAMIDZE

Abstract. We discuss (Hp, Lp) and (Hp,weak − Lp) type inequalities of weighted maximal opera-

tors of T means with respect to the Vilenkin systems with monotone coefficients [44] and prove that
these results are the best possible in a special sense. As applications, both some well-known and

new results are pointed out.

1. Introduction

It is well-known that Vilenkin systems do not form bases in the space L1. Moreover, there is
a function in the Hardy space Hp such that the partial sums of f are not bounded in Lp-norm,
for 0 < p ≤ 1. Approximation properties of Vilenkin–Fourier series with respect to one- and two-
dimensional cases can be found in the works of [8,9,26,31,37,40,41]. In the one-dimensional case, the
weak (1, 1)-type inequality for the maximal operator of Fejér means

σ∗f := sup
n∈N
|σnf |

can be found in [32] for Walsh series and in [23] for bounded Vilenkin series. [7] and [29] verified that
σ∗ is bounded from H1 to L1. [48] generalized this result and proved the boundedness of σ∗ from
the martingale space Hp to the space Lp, for p > 1/2. [30] gave a counterexample, which shows that
the boundedness does not hold for 0 < p < 1/2. A counterexample for p = 1/2 has been given by [10]
(see also [33]). Moreover, [49] proved that the maximal operator of the Fejér means σ∗ is bounded
from the Hardy space H1/2 to the weak − L1/2 space. In [34] and [35], the following result has been
proved.

Theorem T1. Let 0 < p ≤ 1/2. Then the weighted maximal operator of Fejér means σ̃∗p defined by

σ̃∗pf := sup
n∈N+

|σnf |
(n+ 1)

1/p−2
log2[1/2+p] (n+ 1)

is bounded from the martingale Hardy space Hp to the Lebesgue space Lp.

Moreover, the rate of the weights
{

1/ (n+ 1)
1/p−2

log2[p+1/2] (n+ 1)
}∞
n=1

in n-th Fejér mean is

given exactly.
In [39] (see also [2, 15]), it was proved that the maximal operator of Riesz means

R∗f := sup
n∈N
|Rnf |

is bounded from the Hardy space H1/2 to the weak − L1/2 space and is not bounded from Hp to the
space Lp, for 0 < p ≤ 1/2. It was also proved that the Riesz summability has better properties than
Fejér means. In particular, the following weighted maximal operators

log n|Rnf |
(n+ 1)

1/p−2
log2[1/2+p] (n+ 1)
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are bounded from Hp to the space Lp, for 0 < p ≤ 1/2 and the rate of weights is sharp.
Similar results with respect to Walsh-Kachmarz systems were obtained in [11] for p = 1/2 and in [36]

for 0 < p < 1/2. Approximation properties of Fejér means with respect to Vilenkin and Kaczmarz
systems can be found in [5, 12,25,27,28,38,43].

[18] investigates the approximation properties of some special Nörlund means of Walsh–Fourier
series of Lp function in a norm. In the two-dimensional case, approximation properties of Nörlund
means were considered by [19–22]. In [24] (see also [6,16,25]), it was proved that the maximal operators
of Nörlund means t∗ defined by

t∗f := sup
n∈N
|tnf | ,

either with non-decreasing coefficients, or non-increasing coefficients, satisfying the condition

1

Qn
= O

( 1

n

)
, as n→∞, (1)

are bounded from the Hardy space H1/2 to the weak − L1/2 space and are not bounded from the
Hardy space Hp to the space Lp, when 0 < p ≤ 1/2.

In [42], it was proved that the maximal operators T ∗ of T means defined by

T ∗f := sup
n∈N
|Tnf |

either with non-increasing coefficients, or non-decreasing sequence satisfying the condition

qn−1
Qn

= O
( 1

n

)
, as n→∞, (2)

are bounded from the Hardy space H1/2 to the weak−L1/2 space. Moreover, there exist a martingale
and such T means for which the boundedness from the Hardy space Hp to the space Lp does not hold
when 0 < p ≤ 1/2.

In [44] (see also [13, 14]), it was proved that if T is either with non-increasing coefficients, or non-

decreasing sequence satisfying condition (2), then the weighted maximal operator of T means T̃ ∗p
defined by

T̃ ∗p f := sup
n∈N+

|Tnf |
(n+ 1)

1/p−2
log2[1/2+p] (n+ 1)

(3)

is bounded from the martingale Hardy space Hp to the Lebesgue space Lp.
Some general means related to T means where investigated by [3] (see also [4]).
In this paper we discuss (Hp, Lp) and (Hp,weak− Lp) type inequalities of weighted maximal oper-

ators of T means with respect to the Vilenkin systems with monotone coefficients [44] and prove that
the rate of the weights in (3) is the best possible in a special sense. As applications, both some the
well-known and new results are pointed out.

This paper is organized as follows. Some definitions and notations are presented in Section 2. The
main results with their proofs and some of consequences can be found in Section 3.

2. Definitions and Notation

Denote by N+ the set of the positive integers, N := N+ ∪{0}. Let m := (m0,m1, . . .) be a sequence
of the positive integers not less than 2. Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the groups Zmi with the product of the

discrete topologies of Zmj
.

The direct product µ of the measures µk ({j}) := 1/mk (j ∈ Zmk
) is the Haar measure on Gm with

µ (Gm) = 1.
In this paper, we discuss the bounded Vilenkin groups, i.e., the case for supnmn <∞.
The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xj , . . . )
(
xj ∈ Zmj

)
.
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Set en := (0, . . . , 0, 1, 0, . . .) ∈ Gm, the n-th coordinate of which is 1 and the rest are zeros (n ∈ N) .
It is easy to give a basis for the neighborhoods of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1},
where x ∈ Gm, n ∈ N.

If we define the so-called generalized number system based on m in the form

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n =
∞∑
j=0

njMj , where nj ∈ Zmj (j ∈ N+), and only a

finite number of nj ‘s differ from zero.
We introduce on Gm an orthonormal system which is called the Vilenkin system. First, we define

the complex-valued function rk (x) : Gm → C, the generalized Rademacher functions, by

rk (x) := exp (2πixk/mk)
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Next, we define the Vilenkin system ψ := (ψn : n ∈ N) on Gm by

ψn(x) :=

∞∏
k=0

rnk

k (x) (n ∈ N) .

Specifically, we call this system as the Walsh–Paley system when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak−Lp (Gm) (0 < p <∞) are respectively

defined by

‖f‖pp :=

∫
Gm

|f |p dµ, ‖f‖pweak−Lp
:= sup

λ>0
λpµ (f > λ) < +∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [45]).
Now, we introduce the analogues of the usual definitions in Fourier-analysis. If f ∈ L1 (Gm) , we

can define Fourier coefficients, partial sums and Dirichlet kernels with respect to the Vilenkin system
in the usual manner:

f̂ (n) :=

∫
Gm

fψndµ, Snf :=

n−1∑
k=0

f̂ (k)ψk, Dn :=

n−1∑
k=0

ψk (n ∈ N+) .

Let {qk : k ≥ 0} be a sequence of non-negative numbers. The n-th T means Tn for a Fourier series
of f are defined by

Tnf :=
1

Qn

n−1∑
k=0

qkSkf, where Qn :=

n−1∑
k=0

qk. (4)

We always assume that {qk : k ≥ 0} is a sequence of non-negative numbers and q0 > 0. Then the
summability method (4) generated by {qk : k ≥ 0} is regular if and only if lim

n→∞
Qn =∞.

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The n-th Nörlund mean tn for a Fourier
series of f is defined by

tnf =
1

Qn

n∑
k=1

qn−kSkf, where Qn :=

n−1∑
k=0

qk. (5)

If qk ≡ 1 in (4) and (5), we define respectively the Fejér means σn and Kernels Kn as follows:

σnf :=
1

n

n∑
k=1

Skf , Kn :=
1

n

n∑
k=1

Dk.

The well-known example of the Nörlund summability is the so-called (C,α) means (Cesàro means)
for 0 < α < 1, which are defined by

σαnf :=
1

Aαn

n∑
k=1

Aα−1n−kSkf,
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where

Aα0 := 0, Aαn :=
(α+ 1) · · · (α+ n)

n!
.

We also consider the “inverse” (C,α) means, which is an example of T means:

Uαn f :=
1

Aαn

n−1∑
k=0

Aα−1k Skf, 0 < α < 1.

Let V αn denote the T mean, where
{
q0 = 0, qk = kα−1 : k ∈ N+

}
, that is,

V αn f :=
1

Qn

n−1∑
k=1

kα−1Skf, 0 < α < 1.

The n-th Riesz logarithmic mean Rn and the Nörlund logarithmic mean Ln are defined by

Rnf :=
1

ln

n−1∑
k=1

Skf

k
and Lnf :=

1

ln

n−1∑
k=1

Skf

n− k
,

respectively, where ln :=
n−1∑
k=1

1/k.

If {qk : k ∈ N} is a monotone and bounded sequence, then we get the class Bn of T means with
the non-decreasing coefficients

Bnf :=
1

Qn

n−1∑
k=1

qkSkf.

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by zn (n ∈ N) . Denote
by f =

(
f (n), n ∈ N

)
a martingale with respect to zn (n ∈ N) (for details see, e.g., [46]). The maximal

function of a martingale f is defined by f∗ := sup
n∈N

∣∣f (n)∣∣ . For 0 < p < ∞, the Hardy martingale

spaces Hp consist of all martingales f for which

‖f‖Hp
:= ‖f∗‖p <∞.

If f =
(
f (n), n ∈ N

)
is a martingale, then the Vilenkin–Fourier coefficients must be defined in a

slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k)ψidµ.

A bounded measurable function a is called a p-atom, if there exists an interval I such that∫
I

adµ = 0, ‖a‖∞ ≤ µ (I)
−1/p

, supp (a) ⊂ I.

We need the following auxiliary Lemmas.

Proposition 1 (see, e.g., [47]). A martingale f =
(
f (n), n ∈ N

)
is in Hp (0 < p ≤ 1) if and only if

there exist a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real numbers such that for
every n ∈ N,

∞∑
k=0

µkSMn
ak = f (n), a.e., where

∞∑
k=0

|µk|p <∞. (6)

Moreover,

‖f‖Hp
v inf

( ∞∑
k=0

|µk|p
)1/p

,

where the infimum is taken over all decompositions of f of the form (6).
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3. The Main Results and Applications

Our first main result reads as

Theorem 1. a) Let the sequence {qk : k ≥ 0} be nondecreasing, satisfying the condition

q0
QM2nk

+2
≥ c

M2nk

, for some constant c and n ∈ N, (7)

or let the sequence {qk : k ≥ 0} be nonincreasing, satisfying the condition

qM2nk
+1

QM2nk
+2
≥ c

M2nk

, for some constant c and n ∈ N. (8)

Then for any increasing function ϕ : N+ → [1, ∞) satisfying the conditions

lim
n→∞

ϕ(n) =∞

and

lim
n→∞

log2 (n+ 1)

ϕ (n+ 1)
= +∞, (9)

there exists a martingale f ∈ H1/2 such that∥∥∥∥sup
n∈N

|Tnf |
ϕ (n)

∥∥∥∥
1/2

=∞.

b) Let 0 < p < 1/2 and the sequence {qk : k ≥ 0} be nondecreasing, or let the sequence qk be
nonincreasing, satisfying condition (8). Then for any increasing function ϕ : N+ → [1, ∞) satisfying
the condition

lim
n→∞

(n+ 1)
1/p−2

ϕ (n+ 1)
= +∞, (10)

there exists a martingale f ∈ Hp such that∥∥∥∥sup
n∈N

|Tnf |
ϕ (n)

∥∥∥∥
weak−Lp

=∞.

Proof. According to condition (9) in case a), we conclude that there exists an increasing sequence
{nk : k ∈ N} of positive integers such that

lim
k→∞

log2 (M2nk+1)

ϕ (M2nk+1)
= +∞.

According to condition (10), we conclude that there exists an increasing sequence {nk : k ∈ N} of
positive integers such that (here we use the same indices nk, but they may be different)

lim
k→∞

(M2nk
+ 2)

1/p−2

ϕ (M2nk
+ 2)

= +∞, for 0 < p < 1/2.

Let

fnk
(x) := DM2nk+1 (x)−DM2nk

(x) .

It is evident that

f̂nk
(i) =

{
1, if i = M2nk

, . . . ,M2nk+1 − 1,

0, otherwise,

and

Sifnk
(x) =


Di (x)−DM2nk

(x) , i = M2nk
+ 1, . . . ,M2nk+1 − 1,

fnk
(x) , i ≥M2nk+1,

0, otherwise.

(11)

Since

f∗nk
(x) = sup

n∈N
|SMn

(fnk
;x)| = |fnk

(x)| ,
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we get

‖fnk
‖Hp

=
∥∥f∗nk

∥∥
p

=
∥∥∥DM2nk

∥∥∥
p

= M
1−1/p
2nk

. (12)

First, for case a) we consider p = 1/2. By using (11) and the equality (see [1])

Dn (x) = DM|n| (x) + r|n| (x)Dn−M|n| (x)

for 1 ≤ s ≤ nk, we get∣∣∣TM2nk
+M2s

fnk

∣∣∣
ϕ (M2nk

+M2s)
=

1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2nk

+M2s−1∑
j=0

qjSjfnk

∣∣∣∣∣∣
=

1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2nk

+M2s−1∑
j=M2nk

qjSjfnk

∣∣∣∣∣∣
=

1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2nk

+M2s−1∑
j=M2nk

qj
(
Dj −DM2nk

)∣∣∣∣∣∣
=

1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2nk

−1∑
j=0

qj+M2nk

(
Dj+M2nk

−DM2nk

)∣∣∣∣∣∣
=

1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2s−1∑
j=0

qj+M2mk
Dj

∣∣∣∣∣∣ .
Let x ∈ I2s \ I2s+1. Then∣∣∣TM2nk

+M2s
fnk

(x)
∣∣∣

ϕ (M2nk
+M2s)

=
1

ϕ (M2nk
+M2s)

1

QM2nk
+M2s

∣∣∣∣∣∣
M2nk

−1∑
j=0

qj+M2nk
j

∣∣∣∣∣∣ .
Let the sequence {qk : k ≥ 0} be nondecreasing. Then according to condition (7), we find that∣∣∣TM2nk

+M2s
fnk

(x)
∣∣∣

ϕ (M2nk
+M2s)

≥ 1

ϕ (M2nk
+M2s)

q0
QM2nk

+M2s

M2s−1∑
j=0

j

≥ 1

ϕ (M2nk+1)

q0
QM2nk

+M2s

M2s−1∑
j=0

j ≥ cM2
2s

M2nk
ϕ (M2nk+1)

.

Let the sequence {qk : k ≥ 0} be nonincreasing. Since ϕ : N+ → [1, ∞) is an increasing sequence, by
using condition (8), we get∣∣∣TM2nk

+M2s
fnk

(x)
∣∣∣

ϕ (M2nk
+M2s)

≥ 1

ϕ (M2nk
+M2s)

qM2nk
+M2s−1

QM2nk
+M2s

M2s−1∑
j=0

j ≥ cM2
2s

M2nk
ϕ (M2nk+1)

.
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Hence

∫
Gm

(
sup
n∈N

|Tnfnk
|

ϕ (n)

)1/2

dµ ≥
nk∑
s=1

∫
I2s\I2s+1

∣∣∣∣ TM2nk
+M2s

fnk

ϕ(M2nk
+M2s)

∣∣∣∣1/2 dµ
≥
nk∑
s=1

∫
I2s\I2s+1

(
cM2

2s

M2nk
ϕ (M2nk+1)

)1/2

dµ ≥ c

(M2nk
ϕ (M2nk+1))

1/2

nk∑
s=1

M2s|I2s \ I2s+1|

≥ c

(M2nk
ϕ (M2nk+1))

1/2

nk∑
s=1

1 ≥ cnk

(M2nk
ϕ (M2nk+1))

1/2
.

From (12), we get

( ∫
Gm

(
supn∈N

|Tnfnk
|

ϕ(n)

)1/2
dµ

)2

‖fnk
‖H1/2

≥ cn2kM2nk

M2nk
ϕ (M2nk+1)

≥ cn2k
ϕ (M2nk+1)

≥c(2nk + 1)
2

ϕ (M2nk+1)
≥ c log2 (M2nk+1)

ϕ (M2nk+1)
→∞, as k →∞.

This completes the proof of part a).
Next, we consider the case 0 < p < 1/2. In view of identities (11) of the Fourier coefficients, we

find that ∣∣∣TM2nk
+2fnk

∣∣∣
ϕ (M2nk

+ 2)
=

1

ϕ (M2nk
+ 2)

1

QM2nk
+2

∣∣∣∣∣∣
M2nk

+1∑
j=0

qjSjfnk

∣∣∣∣∣∣
=

1

ϕ (M2nk
+ 2)

1

QM2nk
+2

∣∣∣qM2nk
+1

(
DM2nk

+1 −DM2nk

)∣∣∣
=

1

ϕ (M2nk
+ 2)

1

QM2nk
+2

∣∣∣qM2nk
+1ψM2nk

∣∣∣
=

1

ϕ (M2nk
+ 2)

qM2nk
+1

QM2nk
+2
.

Let the sequence {qk : k ≥ 0} be nondecreasing. Then∣∣∣TM2nk
+2f (x)

∣∣∣
ϕ (M2nk

+ 2)
≥ 1

ϕ (M2nk
+ 2)

qM2nk
+1

qM2nk
+1 (M2nk

+ 2)
≥ c

M2nk
ϕ (M2nk

+ 2)
.

Let the sequence {qk : k ≥ 0} be nonincreasing. Then, according tocondition (8), we find that∣∣∣TM2nk
+2f (x)

∣∣∣
ϕ (M2nk

+ 2)
=

1

ϕ (M2nk
+ 2)

qM2nk
+1

QM2nk
+2
≥ c

M2nk
ϕ (M2nk

+ 2)
.

Hence

µ

{
x ∈ Gm :

∣∣TM2nk
+2f (x)

∣∣
ϕ (M2nk

+ 2)
≥ c

M2nk
ϕ (M2nk

+ 2)

}
= |Gm| = 1.
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Then from (12), we get

c

M2nk
ϕ(M2nk

+2)

{
µ

{
x ∈ Gm :

∣∣∣TM2nk
+2fnk

(x)
∣∣∣

ϕ(M2nk
+2)

≥ c

M2nk
ϕ(M2nk

+2)

}}1/p

‖fnk
‖Hp

≥ c

M2nk
ϕ (Mnk

+ 2)M
1−1/p
2nk

=
cM

1/p−2
2nk

ϕ (M2nk
+ 2)

≥c (M2nk
+ 2)

1/p−2

ϕ (M2nk
+ 2)

→∞, as k →∞.

The proof is complete. �

As an application, we get the well-known result for the weighted maximal operator of Fejér means
which was considered in [34,35]:

Corollary 1. Let ϕ : N+ → [1,∞) be any increasing function satisfying the conditions

lim
n→∞

ϕ(n) =∞

and

lim
n→∞

(n+ 1)
1/p−2

log2[1/2+p] (n+ 1)

ϕ(n)
= +∞. (13)

Then ∥∥∥supn∈N
|σnf |
ϕ(n)

∥∥∥
1/2

‖f‖H1/2

=∞

and ∥∥∥supn∈N
|σnf |
ϕ(n)

∥∥∥
weak−Lp

‖f‖Hp

=∞.

We also present some new results on T means with respect to Vilenkin systems which follow
Theorem 1.

Corollary 2. Theorem 1 holds true for Uαn f , V αn f and Bnf means with respect to Vilenkin systems.
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47. F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series. Anal. Math. 22 (1996), no. 3,

229–242.
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