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NORMAL STRUCTURE IN MODULAR SPACES

MOZHGAN TALIMIAN AND MAHDI AZHINI∗

Abstract. In this paper, we extend some concepts from geometry of Banach spaces to modular

spaces. We prove that the compact convex subsets of any ρ−complete modular space, where ρ is
convex, continuous and satisfies the42−condition, and the closed convex subsets of any ρ−complete

modular space, where ρ is convex and satisfies the (UC1), have normal structure. Specially, we prove

that with an essential condition, Chebysheve centers exist.

1. Introduction

In the early of 1930, Orlicz and Birnbaum attempted to generalize the Lebesgue function space Lp.
They studied the function spaces

LΦ =

{
f : R −→ R : ∃λ > 0 such that

∫
R

Φ
(
λ|f(x)|

)
dx <∞

}
,

where Φ acts similarly to a power function Φ(t) = tp. After that, the convexity assumption on Φ was
omitted. Many applications to differential and integral equations with kernels of nonpower types were
good causes for the development of the theory of Orlicz spaces (see, e.g., [11]).

We observe two principal directions of further development. The first one is a theory of Banach
function spaces initiated in 1955 by Luxemburg and then developped in a series of joint papers with
Zaanen (see, e.g., [12]). The other way, also inspired by the successful theory of Orlicz spaces, is based
on replacing the particular integral form of the nonlinear functional, which controls the growth of
members of the space, by an abstractly given functional with some good properties. This idea was the
basis of the theory of modular spaces initiated by Nakano [15] in 1950, in connection with the theory
of order spaces and redefined and developed by Orlicz and Musielak in 1959 ( [14]). Even if a metric
is not defined, many results in metric fixed point theory can be reformulated in modular spaces, we
refer, for instance, to [2, 10].

To manage the pathological behavior of modular in modular spaces, some conditions such as the
42−condition and the Fatou property are usually presumed (see, e.g., [2,6,8,9,14,16]). For instance,
in [2], Banach’s fixed point theorem is given in modular spaces with their modular satisfying both the
42−condition and the Fatou property.

On the other hand, normal structure is one of the basic concepts in the metric fixed point theory.
It was introduced by Brodskii and Milman in [3]. In 1980, Bynum [4] introduced the normal structure
coefficient N(X) which was applied by Casini and Maluta [5] to obtain a fixed point theorem for a
uniformly Lipschitzian mapping. The important application of normal structure is in the fixed point
theory and other fields related to the existence of a solution of differential equations and integral
equations (see, e.g., [1]).

In this paper, we present and discuss some geometric properties of modular spaces. Namely, we
prove that compact convex subsets of any ρ−complete modular space where ρ is convex, continuous
and satisfies the 42−condition and closed convex subsets of any ρ−complete modular space where
ρ is convex and satisfies the (UC1), have normal structure and we put an essential condition for the
existence of Chebysheve centers.

Also, we give some important properties of the normal structure coeffcients.
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2. Preliminaries

We begin with recalling some basic facts about modular spaces.

Definition 2.1. Let X be a vector space over K (K = C or = R). A functional ρ : X −→ [0,+∞) is
called a modular on X if for arbitrary elements x and y of X, the following is satisfied:

(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x) for every α ∈ K with |α| = 1,
(3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for every α, β ≥ 0 with α+ β = 1.
It is easy to see that we have ρ(α1x1 + · · · + αnxn) ≤ ρ(x1) + · · · + ρ(xn) for every αi ≥ 0 with

n∑
i=1

αi = 1.

If we replace (3) by
(3)′ ρ(αx+ βy) ≤ αsρ(x) + βsρ(y) for every α, β ≥ 0, αs + βs = 1 with an s ∈ (0, 1], the modular

ρ is called s− convex. 1− convex modular is called convex modular. For a modular ρ on X, one can
associate a modular space Xρ defined as

Xρ =
{
x ∈ X; lim

λ→0
ρ(λx) = 0

}
.

Xρ is a linear subspace of X. Using the modular ρ, one can define an F−norm [13] on Xρ by

|x|ρ = inf
{
t > 0; ρ

(x
t

)
≤ t
}
.

If ρ is convex, then

‖x‖ρ = inf
{
t > 0; ρ

(x
t

)
≤ 1
}

is a norm on Xρ, frequently called the Luxemburg norm [13]. One can also check that |fn− f |ρ −→ 0
is equivalent to ρ

(
α(fn − f)

)
−→ 0 for all α > 0.

Definition 2.2. Let X be a vector space and ρ be a convex modular defined on X.

(a) We say that a sequence (xn)n∈N in Xρ is ρ−convergent to x and write xn
ρ−−→ x if and only

if ρ(xn − x)→ 0 as n→∞.
(b) A sequence (xn)n∈N in Xρ is called ρ−Cauchy whenever ρ(xn − xm)→ 0 as m,n→∞.
(c) X is called ρ−complete if any ρ−Cauchy sequence is ρ−convergent.
(d) A subset B ⊂ Xρ is called ρ−closed if for any sequence (xn) ⊂ B, ρ−convergent to x ∈ Xρ,

we have x ∈ B.
(e) A subset B ⊂ Xρ is called ρ−bounded if its ρ−diameter defined as diam(B) = sup

{
ρ(x −

y) : x, y ∈ B
}

is finite .
(f) ρ is said to satisfy the 42−condition if ρ(2xn)→ 0 whenever ρ(xn)→ 0 as n→∞.
(h) ρ is said to satisfy the Fatou property if

ρ(x− y) ≤ lim inf
n→∞

ρ(xn − yn)

whenever

xn
ρ−−→ x and yn

ρ−−→ y as n→∞.

Examples

Example 2.1 ([10]). Let X = Lp
(
[a, b]

)
and ρ(x) =

b∫
a

∣∣x(t)
∣∣pdt for p > 0, then

(1) ρ is p−convex modular for p < 1.
(2) ρ is convex modular for p ≥ 1.
(3) ρ satisfies the 42−condition.

Example 2.2. Let X = R. Then ρ(x) = x2 is a modular on R and satisfies the 42−condition and
the Fatou property. It is clear that (R, ρ) is ρ − complete because R with usual norm defined by an
absolute value is a Banach space.
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Remark 2.1. Note that the family B =
{
Bρ(0, r), r > 0

}
, where Bρ(0, r) =

{
x ∈ Xρ; ρ(x) < r

}
is

a filter base and any element of B is balanced and absorbing. Furthermore, if ρ is convex, then any
element of B is convex (see [7]).

Definition 2.3 ([7]). We say that ρ satisfies the property T0 if for all ε > 0, there exist L > 0 and
δ > 0 such that |ρ(x)− ρ(y)| < ε for every x, y satisfying ρ(x) < L and ρ(x− y) < δ.

Remark 2.2. Note that if the modular ρ satisfies the property T0, then Xρ is a separated topological
vector space. Also, ρ satisfies the 42−condition if and only if ρ satisfies the property T0 (see [7]).

The following is another important concept of uniform convexity in normed spaces that generates
several different types of uniform convexity in modular spaces which played a major role in the study
of normal structure in modular spaces.

Definition 2.4 ([10]). Let Xρ be a ρ−modular space. We define the following uniform convexity
type properties of the modular ρ:

a) Let r > 0, ε > 0. Define

D1(r, ε) =
{

(x, y) : x, y ∈ Xρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ(x− y) ≥ εr
}
.

Let δ1(r, ε) = inf
{

1 − 1
rρ
(
x+y

2

)
: (x, y) ∈ D1(r, ε)

}
, if D1(r, ε) 6= ∅, and δ1(r, ε) = 1 if

D1(r, ε) = ∅. We say that ρ satisfies (UC1) if for every r > 0, ε > 0, we have δ1(r, ε) > 0.
Note that for every r > 0, D1(r, ε) 6= ∅, for ε > 0 small enough.

b) We say that ρ satisfies (UUC1) if for every s ≥ 0, ε > 0, there exists η1(s, ε) > 0 depending
on s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.

c) Let r > 0, ε > 0. Define

D2(r, ε) =
{

(x, y) : x, y ∈ Lρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ
(x− y

2

)
≥ εr

}
.

Let δ2(r, ε) = inf
{

1 − 1
rρ
(
x+y

2

)
: (x, y) ∈ D2(r, ε)

}
, if D2(r, ε) 6= ∅, and δ2(r, ε) = 1 if

D(r, ε) = 1. We say that ρ satisfies (UC2) if for every r > 0, ε > 0, we have δ2(r, ε) > 0. Note
that for every r > 0, D2(r, ε) 6= ∅, for ε > 0 small enough.

d) We say that ρ satisfies (UUC2) if for every s ≥ 0, ε > 0 there exists η2(s, ε) > 0 depending
on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 for r > s.

Remark 2.3. Note that the following relationships between the above defined notions exist:
a) (UUCi) implies (UCi) for i = 1, 2;
b) δ1(r, ε) ≤ δ2(r, ε);
c) (UC1) implies (UC2);
d) (UUC1) implies (UUC2) (see [10]).

3. Main Results

Definition 3.1. Let C be a nonempty ρ−bounded subset of a ρ−complete modular space Xρ. Then
a point x0 ∈ C is said to be:

i) a diametral point of C if

sup
{
ρ(x0 − x) : x ∈ C

}
= diamC;

ii) a nondiametral point of C if

sup
{
ρ(x0 − x) : x ∈ C

}
< diamC.

A nonempty convex subset C of a ρ−complete modular space Xρ is said to have normal structure
if each convex ρ−bounded subset D of C with at least two points contains a nondiametral point, i.e.,
there exists x0 ∈ D such that

sup
{
ρ(x0 − x) : x ∈ D

}
< diamD.
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The ρ−complete modular space Xρ is said to have normal structure if every ρ−closed convex
ρ−bounded subset C of Xρ with diamC > 0 has normal structure.

The following theorems state that compact convex subsets of any ρ−complete modular space where
ρ is convex, continuous and satisfies the 42−condition and closed convex subsets of any ρ−complete
modular space where ρ is convex and satisfies the (UC1), have this geometric property.

Theorem 3.1. Let Xρ be a ρ−complete modular space where ρ is convex, continuous and satisfies
the 42−condition. Then every compact convex subset C of Xρ has normal structure.

Proof. Suppose, for contradiction, that C does not have normal structure. Then there exists a convex
ρ−bounded subset of C as D with at least two points such that all points of D are diametral. Now
we construct a sequence {xi}∞i=1 in D such that

ρ(xi − xj) = diamD for all i, j ∈ N, i 6= j.

For this, let x1 be an arbitrary point in D. Since all points of D are diametral, therefore diamD =
sup
x∈D

ρ(x1−x). Then there exists a point x2 ∈ D such that diamD = ρ(x1−x2). As D is convex, then

x1+x2

2 ∈ D. Next, we choose a point x3 ∈ D such that diamD = ρ
(
x3 − x1+x2

2

)
. Proceeding in the

same manner, we obtain a sequence {xn} in D such that diamD = ρ
(
xn+1 −

n∑
i=1

xi

n

)
, n ≥ 2. As ρ is

convex, so,

diamD =ρ
(
xn+1 −

x1 + x2 + · · ·+ xn
n

)
=ρ
( (xn+1 − x1) + (xn+1 − x2) + · · ·+ (xn+1 − xn)

n

)
≤ 1

n

( n∑
i=1

ρ(xn+1 − xi)
)

≤ 1

n

n∑
i=1

diamD

= diamD,

and then diam(D) = ρ(xn+1 − xi), 1 ≤ i ≤ n.
Since {xn} ⊂ D ⊂ C and C is compact subset of Xρ, there exists a subsequence

{
xnk

= x′k
}

and
an a ∈ C such that ρ(xnk

− x)→ 0. Therefore

diamD =ρ(x′k+1 − x′i) = ρ(x′k+1 − a+ a− x′i)

=ρ
(1

2

(
2(x′k+1 − a)

)
+

1

2

(
2(a− x′i)

))
≤ρ
(
2(x′k+1 − a)

)
+ ρ
(
2(a− x′i)

)
.

Since ρ satisfies the 42−condition, therefore ρ
(
2(x′k+1 − a)

) k→∞−−−−−→ 0. Thus diamD ≤ 0. This
implies that the sequence {xn} has no convergent subsequences. This contradicts the compactness
of C. �

Theorem 3.2. Let Xρ be a ρ−complete modular space where ρ is convex and satisfies (UC1). Then
every convex ρ−closed, ρ−bounded subset Cof Xρ has normal structure.

Proof. Let D be a ρ−bounded convex subset of C with diamD = d > 0. Let x1 be an arbitrary point
in D. Choose a point x2 ∈ D such that ρ(x1 − x2) ≥ d − d

2 = d
2 . Because D is convex, x1+x2

2 ∈ D.

Set x0 = x1+x2

2 . Since ρ satisfies (UC1), there is δ1(r, ε) > 0 for every r > 0, ε > 0. Therefore, if
ρ(x) ≤ r, ρ(y) ≤ r, ρ(x− y) ≥ εr, then

ρ
(x+ y

2

)
≤ r(1− δ1(r, ε)

)
. (1)
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Put r = d, ε = 1
2 . Since x1, x2 ∈ D, ρ(x1) ≤ d = r, ρ(x2) ≤ d = r and ρ(x1 − x2) ≥ d

2 =

d × 1
2 = rε, hence from (1), there exists δ1(r, ε) = δ1(d, 1

2 ) > 0 such that ρ
(
x1+x2

2

)
≤ r

(
1 − δ1(r, ε)

)
= d
(
1− δ1

(
d, 1

2

))
. Hence for x ∈ D, we have

ρ(x− x0) =ρ
(
x− x1 + x2

2

)
=ρ
( (x− x1) + (x− x2

2

)
≤d
(

1− δ1
(
d,

1

2

))
< d,

(
δ1
(
d,

1

2

)
> 0
)
.

Consequently,
sup

{
ρ(x− x0) : x ∈ D

}
< d = diamD.

�

Theorem 3.3. Let Xρ be a ρ−complete modular space where ρ is convex and satisfies (UC1). Then
Xρ has normal structure.

Proof. This follows from Theorem 3.2. �

The following notion plays an important role in the study of normal structure.

Definition 3.2. A ρ−bounded (xn) in ρ−complete modular space is said to be a diametral sequence
if

lim
n→∞

ρ
(
xn+1, co({x1, x2, . . . , xn})

)
= diam({xn}),

where ρ(x,A) = inf
y∈A

ρ(x− y).

The following result gives an important fact relating to normal structure and nondiametral sequence.

Proposition 3.1. A convex ρ−bounded subset C of a ρ−complete modular space Xρ has normal
structure if and only if it does not contain a diametral sequence.

Proof. Suppose that C contains a diametral sequence {xn}. Then the set C
′

= co({xn}) is a convex

subset of C and each point of C
′

is a diametral point. Thus C fails to have normal structure. Let
x0 be an arbitrary point in C

′
. Therefore there exists N0 such that for every n ≥ N0, we have

x0 ∈ co(x1, x2, . . . , xn). Hence

diam(xn) = diamC
′

= sup
u,v∈C′

ρ(u− v) ≥ sup
u∈C′

ρ(u− x0)

≥ρ(xn+1 − x0)

≥ρ
(
xn+1, co(x1, x2, . . . , xn)

)
.

Since the sequence {xn} is diametral sequence, we have

diam(xn) = diamC
′

= sup
u∈co

ρ(u− x0) = lim
n→∞

ρ(xn+1 − x0)

= lim
n→∞

ρ
(
xn+1, co(x1, x2, . . . , xn)

)
.

Hence for every x0 ∈ C, we have
sup
u∈co

ρ(u− x0) = diam co.

Conversely, suppose that C contains a convex ρ−bounded subset D with d = diam(D) > 0 and each
point of D is a diametral point. By induction, we construct a sequence {xn} in D such that

y0 = x1, yn−1 =

n∑
i=1

xi
n
.

Because yn−1 is a diametral point in D, then for 0 < ε < d, there exists an xn+1 ∈ D such that

ρ(xn+1 − yn−1) > d− ε

n2
.
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Suppose x ∈ co
(
{x1, x2, . . . , xn}

)
, say x =

n∑
i=1

λixi, where λi ≥ 0 and
n∑
i=1

λi = 1.

Set 0 < λ := max
{
λ1, λ2, . . . , λn}. Then

1

n

(
1− λi

λ

)
≥ 0 and

1

nλ
+

1

n

n∑
i=1

(
1− λi

λ

)
= 1.

Hence

1

nλ
x+

1

n

n∑
i=1

(
1− λi

λ

)
xi =

1

nλ
x+

1

n

n∑
i=1

xi −
1

nλ

n∑
i=1

λixi = yn−1.

Observe that

d− ε

n2
<ρ(xn+1 − yn−1)

=ρ
( 1

nλ
(xn+1 − x) +

1

n

n∑
i=1

(
1− λi

λ

)
(xn+1 − xi)

)
≤ 1

nλ
ρ(xn+1 − x) +

1

n

n∑
i=1

(
1− λi

λ

)
ρ(xn+1 − xi)

≤ 1

nλ
ρ(xn+1 − x) +

1

n

n∑
i=1

(
1− λi

λ

)
d

=
1

nλ
ρ(xn+1 − x) +

(
1− 1

nλ

)
d.

Hence

ρ(xn+1 − x) ≥
(
d− ε

n2
−
(
1− 1

nλ

)
d
)
nλ

=nλ
( d

nλ
− ε

n2

)
=d− ελ

n
≥ d− ε

n
, (2)

therefore

d ≥ ρ(xn+1 − x) ≥ d− ε

n
( xn+1, x ∈ D).

This implies

lim
n→∞

ρ(xn+1 − x) = d for every x ∈ co
(
{x1, x2, . . . , xn}

)
.

Now, we show that

lim
n→∞

ρ
(
xn+1, co(x1, x2, . . . , xn)

)
= d = diamD = d(xn) = diam

(
{xn}

)
.

Since ρ(xn − xm) ≤ d = diamD for every xn, xm ∈ {xn} ⊂ D and x ∈ co
(
{x1, x2, . . . , xn}

)
is an

arbitrary point in (2), we put x = x1. Therefore

ρ(x2 − x1) ≥ d− ε

1
= d− ε, ( x = x1 ∈ co(x1) = {x1}).

Thus

d− ε ≤ ρ(x2 − x1) ≤ sup ρ(xn − xm) ≤ d, for any ε > 0.

So,

d(xn) = sup ρ(xn−xm) = d. �

Lemma 3.1. Let Xρ be a ρ−complete modular space where ρ is convex and A ⊂ Xρ. Then diam co(A) =
diamA.
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Proof. Set diamA = δ. We show that for every a, b ∈ co(A), ρ(a− b) < δ.

Let z be an arbitrary point in A. Then A ⊂ S(z, δ) =
{
x : ρ(x− z) ≤ δ

}
= S1(z). We show that

S1(z) is convex. For the given x1, x2 ∈ S1(z), λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have

ρ(λ1x1 + λ2x2 − z) =ρ(λ1x1 + λ2x2 − λ1z − λ2z)

=ρ
(
λ1(x1 − z) + λ2(x2 − z)

)
≤λ1ρ(x1 − z) + λ2ρ(x2 − z)
≤λ1δ + λ2δ = δ.

Therefore
co(A) ⊂ S1(z).

Since a ∈ co(A) ⊂ S1(z), we have ρ(a− z) = ρ(z − a) ≤ δ. Then z ∈ S(a, δ). Therefore

A ⊂ S(a, δ) = S1(a).

Since S1(a) is convex, we have co(A) ⊂ S1(A). Also, since a, b ∈ co(A) are arbitrary points, there-
fore diam co(A) ≤ δ = diam(A). Conversely, since A ⊂ co(A), we have diamA ≤ diam co(A). In
conclusion, diamA = diam co(A). �

Many spaces satisfy a property, stronger than a normal structure.

Definition 3.3. A nonempty convex subset C of a ρ−complete modular space is said to have uniformly
normal structure if there exists a constant α ∈ (0, 1), independent of C, such that each ρ−closed convex
ρ−bounded subset D of C with diam(D) > 0 contains a point x0 ∈ C such that

sup
{
ρ(x0 − x) : x ∈ D

}
≤ α diamD.

Theorem 3.4. Let Xρ be a ρ−complete modular space where ρ is convex and satisfies (UC1). Then
Xρ has uniformly normal structure.

Proof. For a ρ− closed convex ρ−bounded subset C of Xρ with d = diamC > 0, from Theorem 3.2,
there exists a point x0 ∈ C such that ρ(x− x0) ≤ d

(
1− δ1

(
d, 1

2

))
. This implies that

sup
{
ρ(x− x0); x ∈ C

}
≤ α diamC,

where α =
(
1− δ1

(
d, 1

2

))
< 1. Therefore Xρ has uniformly normal structure. �

Definition 3.4. Let C be a nonempty ρ−bounded subset of a ρ−complete modular space Xρ. We
adopt the following notations:

rx(C) = sup
{
ρ(x− y) : y ∈ C

}
, x ∈ C;

r(C) = inf
{
rx(C) : x ∈ C

}
= inf

{
sup
y∈C

ρ(x− y) : x ∈ C
}

;

Z(C) =
{
x ∈ C : rx(C) = r(C)

}
;

rX(C) = inf
{
rx(C) : x ∈ X

}
.

The number r(C) is called the Chebyshev radius of C and the set Z(C) is called the Chebyshev center
of C. Note that for any x ∈ C,

r(C) ≤ rx(C) ≤ diam(C).

The following result gives an essential condition for the existence of Chebyshev centers .

Proposition 3.2. Let Xρ be a ρ−complete modular space, where ρ is convex and satisfies (UUC2),
42−condition and Fatou property, and let C be a convex and ρ−closed subset of Xρ. Then Z(C) is
a nonempty ρ−closed convex subset of C.

Proof. For x ∈ C, we set

Cn(x) :=
{
y ∈ C, ρ(x− y) ≤ r(C) +

1

n

}
, n ∈ N.

Then Cn(x) is a nonempty ρ−closed convex subset of C.
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For any n ≥ 1, r(C) + 1
n is not infimum. Then there exists yn ∈ C such that ryn(C) ≤ r(C) + 1

n .
Therefore, for every z ∈ C,

ρ(yn − z) ≤ ryn(C) ≤ r(C) +
1

n
, ∀n ≥ 1. (3)

Then for z = x, we have ρ(yn − x) ≤ r(C) + 1
n . So, yn ∈ Cn(x). Thus Cn(x) 6= ∅, for any n ≥ 1.

Let y ∈ Cn(x). Therefore there exists (ym) ⊂ Cn(x) such that ym → y. Then for any m, we have

ρ(x− ym) ≤ r(C) +
1

n
. (4)

Now, since ρ satisfies the Fatou property, from (4), we have

ρ(x− y) ≤ lim inf
m→∞

ρ(x− ym) ≤ r(C) +
1

n
.

Then y ∈ Cn(x). Thus Cn(x) is ρ−closed.
For y1, y2 ∈ Cn(x) and α, β ≥ 0 such that α+ β = 1, we have

ρ
(
x− (αy1 + βy2)

)
=ρ(αx+ βx− αy1 − βy2)

=ρ
(
α(x− y1) + β(x− y2)

)
≤αρ(x− y1) + βρ(x− y2)

≤α
(
r(C) +

1

n

)
+ β

(
r(C) +

1

n

)
=r(C) +

1

n
.

Hence Cn(x) is convex.
For n ≥ 1, put Cn =

⋂
x∈C

Cn(x). Now, we show that Cn is a nonempty, ρ−closed, convex subset of

Xρ and Cn+1 ⊂ Cn.
From (3), there exists yn ∈ C such that for every x ∈ C, we have ρ(x− yn) ≤ r(C) + 1

n . Therefore
yn ∈ Cn(x) for every x ∈ C. Then yn ∈ Cn =

⋂
x∈C

Cn(x). Thus Cn is nonempty.

Let y ∈ Cn. Therefore there exists (ym) ⊂ Cn such that ym
ρ−−→ y. Then for every x ∈ C, we have

(ym) ⊂ Cn(x), and hence ρ(x− ym) ≤ r(C) + 1
n .

Now, since ρ satisfies Fatou property, we have

ρ(x− y) ≤ lim inf
m→∞

ρ(x− ym) ≤ r(C) +
1

n

for every x ∈ C. Therefore for every x ∈ C, we have y ∈ Cn(x). Then y ∈
⋂
x∈C

Cn(x) = Cn.

Also, we prove that Cn+1 ⊂ Cn.
Let y ∈ Cn+1 =

⋂
x∈C

Cn+1(x). Then for every x ∈ C, we have y ∈ Cn+1(x). Thus

ρ(x− y) ≤ r(c) +
1

n+ 1
≤ r(c) +

1

n
.

Hence for every x ∈ C, y ∈ Cn(x). Then y ∈ Cn =
⋂
x∈C

Cn(x).

Now, since ρ satisfies (UUC2), therefore Xρ has property (R) ( [10, Theorem 4.2]). Thus
⋂
Cn 6= ∅.

We claim that Z(C) =
⋂
n∈N

Cn, and so, Z(C) 6= ∅.

Let x ∈ Z(C).
By definition of the Z(C) , we have rx(C) = r(C). Therefore for every y ∈ C and n ≥ 1 ,

ρ(x− y) ≤ rx(C) = sup
y∈C

ρ(x− y) ≤ rx(C) +
1

n
= r(C) +

1

n
.

Then we have x ∈ Cn(y). Therefore x ∈
⋂
y∈C

Cn(y) = Cn.
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Because n is arbitrary, we have x ∈
⋂
n∈N

Cn.

Conversely, suppose that x ∈
⋂
n∈N

Cn. We claim that x ∈ Z(C), therefore it suffices to show that

rx(C) = r(C).
By definition, we have

inf
x∈C

rx(C) = r(C) ≤ rx(C). (5)

Therefore it suffices to show that rx(C) ≤ r(C).
Since x ∈

⋂
n∈N Cn, for any n ∈ N, we have x ∈ Cn =

⋂
y∈C

Cn(y) and so, x ∈ Cn(y) for any n ∈ N

and y ∈ C.
Therefore by definition, we have ρ(x − y) ≤ r(C) + 1

n for any y ∈ C and n ∈ N. Then rx(C) ≤
r(C) + 1

n for any n ∈ N. Thus

rx(C) ≤ r(C). (6)

From (5) and (6), we conclude that rx(C) = r(C). Then x ∈ Z(C). �

Proposition 3.3. Let Xρ be a ρ−complete modular space where ρ is convex and satisfies (UUC2),
42−condition and Fatou property, and let C be a convex and ρ−closed subset of Xρ with diamC > 0.
Suppose that C has normal structure. Then diamZ(C) < diamC.

Proof. Note that Z(C) 6= ∅ by Proposition 3.2. Since C has normal structure, there exists at least
one nondiametral point x0 ∈ C, i.e.,

rx0
(C) = sup

{
ρ(x0 − x), x ∈ C

}
< diamC.

Let u and v be any two points of Z(C). Then ru(C) = rv(C) = r(C). Because

ρ(u− v) ≤ sup
{
ρ(u− x), x ∈ Z(C)

}
≤ sup

{
ρ(u− x), x ∈ C

}
= r(C) = inf

x∈C
rx(C)

≤rx0
(C) < diamC,

it follows that

diamZ(C) < diamC. �

4. Normal Structure Coefficient

Definition 4.1. Let X be a ρ−complete modular space. Then

N(X) = inf
{diamC

r(C)

}
is said to be a normal structure coefficient, where the infimum is taken over all ρ−closed convex
ρ−bounded subsets C of X with diamC > 0.

Lemma 4.1. Let X be a ρ−complete modular space. Then X has uniformly normal structure if and
only if N(X) > 1.

Proof. Let X have a uniformly normal structure. Then there exists a constant α ∈ (0, 1), independent
of X, such that each ρ−closed convex ρ−bounded subset D of X with diamD > 0 contains a point
x0 ∈ X such that

sup
{
ρ(x0 − x);x ∈ D

}
= rx0

(D) ≤ α diamD.

Then r(D) ≤ α diamD. Therefore 1
α ≤

diamD
r(D) . Hence

1

α
≤ inf

{diamD

r(D)

}
= N(X).

Then N(X) > 1.
Inversely, let N(X) > 1. Therefore we have 1 < N(X) ≤ diamD

r(D) . Then r(D) ≤ 1
N(X) diamD.
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Now, we set α = 1
N(X) and note that we have N(X) > 1. Therefore α = 1

N(X) ∈ (0, 1). Then there

exists x0 ∈ D such that rx0
(D) ≤ α diamD. �

We now give an important property of the normal structure coefficient.

Theorem 4.1. Let Xρ be a ρ−complete modular space, where ρ is convex and satisfies (UC1). Then
for every ρ−closed convex ρ−bounded subset C of Xρ,

N(X) ≥ 1

1− α
,

where α = inf
C
δ1(dC , 1).

Proof. Let C be a ρ−closed convex ρ−bounded subset ofXρ with dC = diamC > 0 and let 0 < ε < dC .
Choose x and y in C such that ρ(x− y) ≥ dC − ε.

Since C is convex, we have v = x+y
2 ∈ C. Therefore rv(C) = sup

x∈C
ρ(v−x). Then there exists u ∈ C

such that

ρ(u− v) ≥ rv(C)− ε. (7)

We have ρ(u − x) ≤ dC , ρ(u − v) ≤ dC and ρ
(
(u − x) − (u − y)

)
= ρ(x − y) ≥ dC − ε. Now, set

ε′ = dC−ε
dC

and r = dC . Then

ρ
(
(u− x)− (u− y)

)
= ρ(y − x) ≥ dC − ε =

dC − ε
dC

× dC = ε′ · r.

Since ρ satisfies (UC1), we have

δ1(r, ε′) =δ1

(
dC ,

dC − ε
dC

)
≤1− 1

dC
ρ
( (u− x) + (u− y)

2

)
=1− 1

dC
ρ
(
u− x+ y

2

)
=1− 1

dC
ρ(u− v).

Hence

ρ(u− v) ≤ dC
(

1− δ1
(
dC ,

dC − ε
dC

))
. (8)

From (7) and (8), we have rv(C)− ε ≤ ρ(u− v) ≤ dC
(
1− δ1

(
dC ,

dC−ε
dC

))
and by definition of rv(C),

r(C) ≤ rv(C) ≤ ρ(u− v) + ε. Thus

r(C) ≤
(

1− δ1
(
dC ,

dC − ε
dC

))
dC + ε.

Hence by the continuity of δ1, we have

r(C) ≤ dC
(
1− δ1(dC , 1)

)
.

Then diamC
r(C) ≥

1
1−δ1(dC ,1) . Hence

N(X) ≥ inf
C

1

1− δ1(dC , 1)

=
1

sup
C

(
1− δ1(dC , 1)

)
=

1

1− inf
C
δ1(dC , 1)

=
1

1− α
.



NORMAL STRUCTURE IN MODULAR SPACES 265

Therefore we get the desired result. �

The following theorem states that the property “uniformly normal structure” is stable under mod-
ular perturbations.

Theorem 4.2. Let X be a complete modular space and let X1 = (X, ρ1) and X2 = (X, ρ2), where ρ1

and ρ2 are two equivalent modulars on X satisfying

αρ1(x) ≤ ρ2(x) ≤ βρ1(x), x ∈ X

for α, β > 0. If k = β
α , then

k−1N(X1) ≤ N(X2) ≤ kN(X1).

Proof. Note that for a nonempty ρ−bounded convex ρ−closed subset C of X,

α sup
{
ρ1(x− y), x, y ∈ C

}
≤ sup

{
ρ2(x− y), x, y ∈ C

}
≤β sup

{
ρ1(x− y), x, y ∈ C

}
.

Therefore

α diamρ1(C) ≤ diamρ2(C) ≤ β diamρ1(C). (9)

Let x be an arbitrary point in C. Then for every y ∈ C, we have

αρ1(x− y) ≤ ρ2(x− y) ≤ βρ1(x− y).

Therefore
αrρ1x (C) ≤ rρ2x (C) ≤ βrρ1x (C).

Hence
αrρ1(C) ≤ rρ2(C) ≤ βrρ1(C).

Then
1

βrρ1(C)
≤ 1

rρ2(C)
≤ 1

αrρ1(C)
. (10)

From (9) and (10), we have

α diamρ1(C)

βrρ1(C)
≤ diamρ2(C)

βrρ1(C)
≤ diamρ2(C)

rρ2(C)
≤ diamρ2(C)

αrρ1(C)
≤ β diamρ1(C)

αrρ1(C)
.

Hence
α

β

diamρ1(C)

rρ1(C)
≤ diamρ2(C)

rρ2(C)
≤ β

α

diamρ1(C)

rρ1(C)
.

Therefore

k−1 diamρ1(C)

rρ1(C)
≤ diamρ2(C)

rρ2(C)
≤ kdiamρ1(C)

rρ1(C)
.

Then

k−1N(X1) ≤ N(X2) ≤ kN(X1). �
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