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A BENDING PROBLEM OF AN INFINITE PLATE WEAKENED BY TWO

IDENTICAL HOLES

ZURAB ABASHIDZE

Abstract. In this paper, we consider the bending problem for an infinite plate weakened by two
square-shaped holes. The contours of the holes have the grooves at the vertices of the square along

the smooth contours and are the sought part of the plate boundary. Applying the theory of functions

of a complex variable and the conformal mapping theory, this problem is reduced to a boundary
problem of the analytic function theory. A plate deflection and an unknown part of the boundary

are found, assuming that the tangential normal moment on it is a constant value.

1. Introduction

Let us consider a homogeneous, isotropic, infinite plate weakened by two identical square-shaped
holes. The contours of the holes have the grooves at the vertices of the square along the smooth
contours and are the sought part of the plate boundary. The sides (straight lines) of the square are
known and we denote them by l1, while the unknown part of the boundary we denote by l2. The
entire boundary l1 ∪ l2 of the plate is denoted by l.

It is assumed that the middle plane of the plate lies in the complex plane z = x + iy, where it
occupies the domain S. Let S be a symmetric domain with respect to the coordinates of Ox− and
Oy−axes, and the lines of which the contour l1 consists, are parallel to the coordinates of Ox− and
Oy−axes.

The points of connection of the contours l1 and l2, counted in the positive direction, are denote by
A1, A2, . . . , Ak. Assume that A1 is the starting point of some linear part of l1. The arc abscissa of
the point t ∈ l, calculated from point A1, is denoted by s.

Assume that the normal bending moments acting at infinity are the known values and the torque
is equal to zero:

M∞x = M1, M∞y = M2, M∞xy = 0. (1.1)

On the contour l, we have the conditions

∂w(t)

∂n
= dk, dk = tgβk, t ∈ l1,

N(t) = 0, t ∈ l1.
(1.2)

Mn(t) = 0, Mns(t) = 0, t ∈ l2,
N(t) = 0, t ∈ l2,

(1.3)

where n is the outward normal; βk are the constants (rotation angles); N(t) is the cutting force; Mn(t)
is the normal bending moment; Mns(t) is the torque; t is a point of the contour; w(x; y) is a plate
deflection at the point (x, y).

2. Setting of the Problem and Reduction to Boundary Problem of the Theory of
Analytical Functions

Let us consider the following problem: Under conditions (1.1)–(1.3) find a plate deflection
and an unknown part of the boundary which is the contour l2, assuming that the tangential normal
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moment on it is a constant value

Ms(t) = k, t ∈ l2. (2.1)

According to the approximate theory of plate deflection, in the case under consideration, the
function w(x; y) satisfies the biharmonic equation

∆2w = 0, z ∈ S. (2.2)

As is known, the solution of a biharmonic equation has the form [1]:

w(x; y) = Re (zφ(z) + χ(z)), z ∈ S, (2.3)

where φ(z) and χ(x) are holomorphic functions in the domain S.
By (2.3) we obtain the equality

∂w

∂n
= Re

(
i
∂t

∂s

(
φ(t) + tφ′(t) + ψ(t)

))
, (2.4)

where ψ(z) = χ′(z).
By virtue of condition (1.2), from equality (2.4), we obtain

Re
(
e−iα(t)

(
φ(t) + tφ′(t) + ψ(t)

))
= d(t), t ∈ l1, (2.5)

where α(t) is the angle between the Ox-axis and the outward normal to the contour l1 at the point t;
d(t) = dk when t ∈ AkAk+1, k = 1; 3; 5; 7.

Taking into account condition (1.2) and using the formula [2, 3]

(1− α)d
(
κφ(t)− tφ′(t)− ψ(t)

)
=

{
Mn + i

S∫
S1

Nds

}
dz, t ∈ l1, (∗)

we have

Re
(
e−iα(t)

(
κφ(t)− tφ′(t)− ψ(t)

))
= C(t), t ∈ l1, (2.6)

where C(t) is the value of the piecewise-constant function at the point t; C(t) = Ck, when t ∈ AkAk+1,
k = 1; 3; 5; 7;

Ck =

k∑
j=1

′
sin(αk − αj)Mj ,

where the prime at the sum sign means that the operation of summation involves only those values
of j, for which the line AjAj+1 is included in the contour l1;

Mj =

Sj+1∫
Sj

Mnds

is the principal bending moment which acts on the contour AjAj+1 (j = 1; 3; 5; 7); κ = σ+3
σ−1 ; σ is

Poisson’s ratio. Summing equalities (2.5) and (2.6) and differentiating with respect to the arc abscissa
s, we obtain the condition

Imφ′(t) = 0, t ∈ l1. (2.7)

For the bending moment components, we have the equality [4]

Mn +Ms = Mx +My = −2D(1 + σ)
(
φ′(t) + φ′(t)

)
, (2.8)

where Mx and My are the bending moments; D = Eh3

12(1−σ2) is the plate cylindrical rigidity; E is

Young’s modulus.
Using formula (2.8) and taking into account conditions (1.3) and (2.1), on the contour 12, we obtain

the following condition:

Reφ′(t) =
k

−4D(1 + σ)
, t ∈ l2.
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By the same formula (2.8), with conditions (1.1) taken into account, at the point at infinity, we
obtain the condition

Reφ′(t) =
M1 +M2

−4D(1 + σ)
= const .

Thus for the function φ′(t), holomorphic in the domain S and bounded at the point at infinity, we
obtain the following boundary conditions:

Imφ′(t) = 0, t ∈ l1

Reφ′(t) =
k

−4D(1 + σ)
, t ∈ l2.

A solution of the obtained mixed problem have the form

φ(z) = P · z, (2.9)

where P = − k
4D(1+σ) .

It remains to define the contour l2 and the function ψ(z).
For the cutting force, we have the formula [4, 5]

N(t) = −D(∆w)x, (2.10)

where the point t lies on the Ox-axis.
Due to the symmetry of the plate with respect to the Oy-axis, we can take the condition

w(x; y) = w(−x; y). (2.11)

By virtue of (2.10) and (2.11), we obtain the equality

N(0; y) = 0. (2.12)

Thus the cutting force on the Oy-axis is equal to zero.
From (2.11), we obtain

wx(x; y) = −wx(−x; y). (2.13)

As a result, we obtain wx(0; y) = 0.
Thus in the middle plane, on the straight line Re z = 0, the normal to the middle plane does not

rotate with respect to the Ox-axis.
By the symmetry of the plate with respect to the Ox-axis, we have the relation

w(x; y) = w(x;−y) and therefore wy(x; 0) = 0.

Thus in the middle plane, on the Ox-axis, the normal to the mean surface does not rotate with
respect to the Oy-axis:

w(x; y) = w(−x; y) = w(−x;−y).

The obtained equality can be written also in the form w(z) = w(−z), where z is a point on the mean
plane.

Thus equality is fulfilled w(zeiβ) = e−2iβw(z), β is the cyclic symmetry angle and in our case,
β = π.

The vectors of stresses acting at the symmetric points (x; y) and (−x; y) are symmetric, which
implies that

σx(x; y) = −σx(−x; y).

When the points (x; y) and (−x; y), symmetric with respect to the Oy-axis, tend to one and the
same point (0; y) on the Oy-axis, we have

σx(0; y) = −σx(0; y) = 0.

Therefore for the bending moment on the Oy-axis, we have

Mx =

h
2∫

−h2

σxzdz = 0.
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Thus, the bending moments and torques on the Oy-axis are equal to zero and on this Oy-axis the
rotation of the normal with respect to the Ox-axis is wx(0; y) = 0. Hence it suffices to consider a
half-plane Re z > 0 which we denote by S1. Due to the cyclic symmetry of the problem, we have

Ψ(zeiπ) = e−2iπΨ(z), and, which is the same Ψ(z) = Ψ(−z). (2.14)

By equality (2.9) and condition (1.3), from formula (∗), we obtain the relation

e2iα(t)Ψ(t) = P (1− κ), t ∈ l′2, (2.15)

where Ψ(z) = ψ′(z), while l′2 is that part of the contour l2 which lies in the domain S1.
Equality (2.5) with (2.9) taken into account is written in the form

Re
{
e−iα(t)

(
2Pt+ ψ(t)

)}
= d(t), t ∈ l′1, (2.16)

where l′1 is the part of the contour l1 which lies in the domain S1.
By the differentiation of equation (2.16) with respect to the arc abscissa s, for the function Ψ(z)

on the contour l′1, we obtain the boundary condition

Im e2iα(t)Ψ(t) = 0, t ∈ l′1. (2.17)

The angular points of the lines l′1 ∪ l′2 are denoted by Ak, k = 1; 2; . . . ; 8.
For a point t of the contour l′1, the equality

t−Ak = −iρ · eiαk , ρ = |t−Ak|

holds. From this equality, for the contour l′1, we easily obtain the equation

Re {t · e−iα(t)} = Re {A(t) · e−iα(t)}, (2.18)

where α(t) is a piecewise-constant function on the contour l′1; α(t) = αk when t ∈ AkAk+1 (k = 2n−1
or k is an odd number), A(t) = Ak when t ∈ AkAk+1 (here, k is an odd number).

Thus, by considering equality (2.18) together with equalities (2.15) and (2.17), for the function
Ψ(z) [6], we obtain the boundary conditions

e2iα(t)Ψ(t) = b, t ∈ l′2, (2.19)

Im e2iα(t)Ψ(t) = 0, t ∈ l′1, (2.20)

Re {t · e−iα(t)} = Re {A(t) · e−iα(t)}, t ∈ l′1. (2.21)

For the constant b contained in (2.19), we have b = P · (1− κ).

3. Definition of the l2 Contour and the Function ψ(z)

Denote by S′1 the external part of the unit circle (with center at the origin) of the plane ζ, cut
along the real axis from the point ζ = m (m > 1) up to infinity.

Assume that the domain S1 of the plane z is conformally mapped onto the domain S′1 of the plane

ζ by means of the function z = −i
√
ω(ζ), where ω(ζ) is an analytic function in a domain |ζ| > 1,

which vanishes at the ζ = m and near the point at infinity, has the form

ω(ζ) = R · ζ +O(ζ−1), R > 0. (3.1)

We mean that points Ak are displayed in points ak, k = 1; 2; . . . ; 8, the images of contours l′1 and
l′2 are indicated by L1 and L2, respectively.

By virtue of equality (2.14), the values of the function Ψ0(ζ) = Ψ(−i
√
ω(ζ)) on the cut of the

domain S′1 from above and from below are equal to each other and thus the function Ψ0(ζ) is analytic
outside the unit circle in a domain |ζ| > 1. Equalities (2.19)–(2.21) will take the form

e2iα0(σ)Ψ0(σ) = b, σ ∈ L2, (3.2)

Im e2iα0(σ)Ψ0(σ) = 0, σ ∈ L1, (3.3)

Re {e−iα0(σ)(−i
√
ω(σ))} = Re {A0(σ) · e−iα0(σ)}, σ ∈ L1, (3.4)
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where α0(σ) = α(−i
√
ω(σ)) is the known piecewise-constant function on the contour L1 and is the

unknown function on L2, since the contour itself is unknown, A0(σ) = Ak, σ ∈ akak+1, k = 1; 3; 5; 7.
To the expression e2iα0(σ), we have the equality

e2iα0(σ) = −σ
2ω′(σ)√
ω(σ)

·
√
ω(σ)

ω′(σ)
, |σ| = 1. (3.5)

If we use relation (3.5) in equality (3.2), then after differentiating equality (3.4) with respect to the
variable ζ, we obtain the following boundary conditions:

−σ2iω′(σ)

2
√
ω(σ)

·Ψ0(σ) = b · iω
′(σ)

2
√
ω(σ)

, σ ∈ L2, (3.6)

Im
{
σ · −iω

′(σ)

2
√
ω(σ)

· e−iα0(σ)
}

= 0, σ ∈ L1, (3.7)

Im
{
e2iα0(σ)Ψ0(σ)

}
= 0, σ ∈ L1. (3.8)

Equality (3.6) can be written in the form

−σ2iω′(σ)

2
·
√
σ −m
ω(σ)

·Ψ0(σ) ·
√
σ −m =

biω′(σ)

2
·
√
σ −m
ω(σ)

·
√
σ −m. (3.9)

Consider the function defined by the rule

F (ζ) =


−ζ2iω′(ζ)

2 ·
√

ζ−m
ω(ζ) ·Ψ0(ζ) ·

√
1
ζ
−m, |ζ| > 1,

biω′
(

1
ζ

)
2 ·

√
1
ζ
−m

ω
(

1
ζ

) · √ζ −m, |ζ| < 1.
(3.10)

Here, ζ = m is a unique point in the external domain of a unit circle |ζ| > 1, where the analytic

function ω(ζ) has a first order zero value and therefore
√

ζ−m
ω(ζ) will be an analytic function in this

domain. Therefore, the function F (ζ) defined by equality (3.10) will be analytic inside and outside
the unit circle |ζ| = 1 and, by virtue of equation (3.9), will satisfy, on a part of the circle |ζ| = 1, the
boundary condition

F+(σ) = F−(σ), σ ∈ L2. (3.11)

If we take into consideration equalities (3.7), (3.8) and (3.10), then for the analytic function F (ζ)
in the plane cut along the line L1, we obtain the boundary conditions

Im
F+(σ)

σ
eiα = 0, σ ∈ L1, (3.12)

Im
F−(σ)

σ
eiα = 0, σ ∈ L1. (3.13)

In the case under consideration, the term e−2iα on the contour L1 gets the values equal to 1 or -1.
Thus, if we multiplying equality (3.13) by e−2iα, then for the analytic function F (ζ) in the complex
plane ζ, cut along the line L1, we obtain the following boundary conditions:

Im
F+(σ)

σ
eiα = 0, σ ∈ L1, (3.14)

Im
F−(σ)

σ
e−iα = 0, σ ∈ L1. (3.15)

The obtained equalities can be rewritten as follows:

F+(σ)

σ
· eiα = σ · F+(σ) · e−iα, σ ∈ L1, (3.16)

F−(σ)

σ
· e−iα = σ · F−(σ) · eiα, σ ∈ L1. (3.17)
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On the contour |ζ| = 1, the positive direction is chosen so that when moving along this direction,
the domain |ζ| < 1 remains on the left side.

Let us consider the function F∗(ζ) given as follows

F∗(ζ) = F
(1

ζ

)
=


iω′
(

1
ζ

)
2ζ2 ·

√
1
ζ
−m

ω
(

1
ζ

) ·Ψ0

(
1
ζ

)
·
√
ζ −m, |ζ| < 1,

−biω′(ζ)
2 ·

√
ζ−m
ω(ζ) ·

√
1
ζ
−m, |ζ| > 1,

(3.18)

and also consider the functions W (ζ) and W∗(ζ) defined by the equalities

W (ζ) =
1

ζ
F (ζ), (3.19)

W∗(ζ) =W
(1

ζ

)
. (3.20)

Further, we introduce the function Ω(ζ),

Ω(ζ) = W (ζ) +W∗(ζ). (3.21)

The boundary values of the function Ω(ζ) are written in the form

Ω+(σ) = W+(σ) +W+
∗ (σ) =

1

σ
F+(σ) + σF−(σ), (3.22)

Ω−(σ) = W−(σ) +W−∗ (σ) =
1

σ
F−(σ) + σF+(σ). (3.23)

Using equalities (3.11), (3.22) and (3.23), we have

Ω+(σ) = Ω−(σ), σ ∈ L2. (3.24)

For the boundary values of the function Ω(ζ) on the internal and the external sides of the contour
L1, by virtue of conditions (3.16), (3.17) and equalities (3.22), (3.23), we obtain the equality

Ω+(σ) = e−2iαΩ−(σ), σ ∈ L1. (3.25)

Let us introduce the function T (ζ) defined by the equality

T (ζ) = W (ζ)−W∗(ζ). (3.26)

The boundary values of the function T (ζ) are written in the form

T+(σ) = W+(σ)−W+
∗ (σ) =

1

σ
F+(σ)− σF−(σ), (3.27)

T−(σ) = W−(σ)−W−∗ (σ) =
1

σ
F−(σ)− σF+(σ). (3.28)

In view of equalities (3.11), (3.27) and (3.28), for the boundary values of the function T (ζ), we
have

T+(σ) = T−(σ), σ ∈ L2. (3.29)

For the boundary values of the function T (ζ) on the internal and the external sides of the contour
L1, by virtue of conditions (3.16), (3.17) and equalities (3.27), (3.28), we obtain the equality

T+(σ) = −e−2iα · T−(σ), σ ∈ L1. (3.30)

The multiplier e−2iα on the contour L1 gets the values

e−2iα =

{
1, σ ∈ a1a2 ∪ a5a6,
−1, σ ∈ a3a4 ∪ a7a8.

(3.31)
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With (3.31) taken into account, the boundary equalities (3.25) and (3.30) can be rewritten as
follows: {

Ω+(σ) = −Ω−(σ), σ ∈ a3a4 ∪ a7a8,
Ω+(σ) = Ω−(σ), σ ∈ a1a2 ∪ a5a6.

(3.32){
T+(σ) = −T−(σ), σ ∈ a1a2 ∪ a5a6,
T+(σ) = T−(σ), σ ∈ a3a4 ∪ a7a8.

(3.33)

Equalities (3.32), (3.33) imply that for the function Ω(ζ), the part of the contour L1(a1a2 ∪ a5a6)
and the curve L2 is not the jump line. For the function T (ζ), the part of the contour L1(a3a4 ∪ a7a8)
and the curve L2 is not the jump line.

The problem is thus reduced to a problem of finding analytic functions Ω(ζ) and T (ζ) in the
complex plane ζ, cut along a part of the contour L1 (the plane is cut along the lines a3a4 ∪ a7a8 for
the function Ω(ζ), and along the lines a1a2 ∪ a5a6 for the function T (ζ)) using the conditions

Ω+(σ) = −Ω−(σ), σ ∈ a3a4 ∪ a7a8, (3.34)

T+(σ) = −T−(σ), σ ∈ a1a2 ∪ a5a6. (3.35)

By virtue of equalities (3.10), (3.18), (3.19), (3.20), (3.21) and (3.26), we may conclude that the
sought functions Ω(ζ) and T (ζ) must satisfy the following additional conditions:

Ω(ζ) = Ω
(1

ζ

)
, (3.36)

T (ζ) = −T
(1

ζ

)
. (3.37)

Problems (3.34), (3.35) are the particular cases of a linear conjugation problem, where the boundary
consists of separately lying smooth contours. In particular, the coefficient of the problem is G(σ) = −1.

We will seek unbounded solutions near the points ak (unlimited less than the first order) or, which
is the same, solutions of the class h0 [2].

A general solution of problem (3.34) has the form

Ω(ζ) = χ1(ζ) · P1(ζ), (3.38)

where P1(ζ) is a polynomial, the function χ1(ζ) is a canonical solution of the same problem that in
the general case has the form

χ(ζ) = eγ(ζ)
n∏
k=1

(ζ − ak)λk . (3.39)

In our case, this formula takes the form

χ1(ζ) =eγ(ζ)(ζ − a3)λ3 · (ζ − a4)λ4 · (ζ − a7)λ7 · (ζ − a8)λ8 ,

γ(ζ) =
1

2πi

∫
a3a4

πidσ

σ − ζ
+

1

2πi

∫
a7a8

πidσ

σ − ζ
=

1

2
ln
ζ − a4
ζ − a3

+
1

2
ln
ζ − a8
ζ − a7

,

eγ(ζ) =
(ζ − a4
ζ − a3

) 1
2 ·
(ζ − a8
ζ − a7

) 1
2

.

Here, under the expressions
(
ζ−a4
ζ−a3

) 1
2

and
(
ζ−a8
ζ−a7

) 1
2

we mean the holomorphic branches in the plane

cut along the arcs a3a4 and a7a8 which at the point at infinity are equal to unity,

λ3 = λ7 = 0, λ4 = λ8 = −1.

For the index of the problem, we obtain the equality

δ1 = −(λ4 + λ8) = 2. (3.40)
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For a canonical solution of the class h0, we eventually obtain the expression

χ
1
(ζ) =

C∗1√
R1(ζ)

, (3.41)

where C∗1 is any fixed constant, different from zero,

R1(ζ) = (ζ − a3) · (ζ − a4) · (ζ − a7) · (ζ − a8). (3.42)

Under 1√
R1(ζ)

we mean the holomorphic branch in the plane, cut along the arcs a3a4 and a7a8.

The decomposition of this function into decreasing degrees of a variable ζ, near an infinitely distant
point, has the form

1√
R1(ζ)

= ζ−2 +B′1ζ
−3 +B′2ζ

−4 + · · · . (3.43)

From equalities (3.10), (3.18), (3.19) and (3.21) we see that the function Ω(ζ) at the points ζ = 0
and ζ = ∞ has a first order pole. Since the order of the canonical function χ1(ζ) is equal to −δ1 at
the point at infinity, applying the above argumentation and equality (3.40), for the function Ω(ζ), we
obtain

Ω(ζ) = χ
1
(ζ) ·

(c′0
ζ

+ c′1 + c′2ζ + c′3ζ
2 + c′4ζ

3
)
. (3.44)

In view of equality (3.36), we may conclude that the constants c′0, c′1, c′2, c′3, c′4 satisfy the conditions

c′0 = c′4, c′1 = c′3, c′2 = c′2. (3.45)

By an analogous reasoning, for problem (3.35), we obtain

χ
2
(ζ) =

C∗2√
R2(ζ)

, (3.46)

where C∗2 is any fixed constant different from zero,

R2(ζ) = (ζ − a1) · (ζ − a2) · (ζ − a5) · (ζ − a6). (3.47)

In this case, too, under 1√
R2(ζ)

we mean that holomorphic branch on the plane, cut along the arcs

a1a2 and a5a6, the expansion of which near the point at infinity has the form

1√
R2(ζ)

= ζ−2 +B′′1 ζ
−3 +B′′2 ζ

−4 + · · · , (3.48)

δ2 = 2. (3.49)

For the sought function T (ζ), we finally obtain

T (ζ) = χ2(ζ) ·
(c′′0
ζ

+ c′′1 + c′′2ζ + c′′3ζ
2 + c′′4ζ

3
)
, (3.50)

where the constants c′′0 , c
′′
1 , . . . , c

′′
4 satisfy the conditions

c′′0 = c′′4 , c′′1 = c′′3 , c′′2 = c′′2 . (3.51)

The constants c′0, c′1, c′2, c′3, c′4 and c′′0 , c′′1 , c′′2 , c′′3 , c′′4 , in (3.44) and (3.50) for the functions Ω(ζ)
and T (ζ) can be found if we use the known lengths of the linear parts of the plate boundary and fix
some angular point.

After that, knowing the functions Ω(ζ) and T (ζ), by virtue of equalities (3.10), (3.19), (3.21) and
(3.26), we define the function F (ζ). Knowing the function F (ζ) and using equalities (3.10) and (3.18)
we find the functions f ′(ζ) (thereby an unknown part of the boundary) and Ψ0(ζ) (z = f(ζ) =

−i
√
ω(ζ)).

So, we have defined Ψ0(ζ) and at the same time the function Ψ(z) which together with the function
Φ(z), by virtue of equality (2.3) describe a plate deflection.
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