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DISCRETE INTERACTION OF AN ELASTIC WEDGE-SHAPED PLATE WITH

AN ELASTIC STRINGER

NUGZAR SHAVLAKADZE

Abstract. An elastic isotropic plate in the form of an angle or a half-plane is considered. One side
of the angle is free from external stresses and the other side is discretely reinforced with a straight

stringer by rivets which are spaced at a constant intervals. Concentrated force is applied to the end

of the stringer along its axis. Using the methods of the theory of analytic functions and integral
transformations, the problem reduces to an infinite system of linear algebraic equations. The quasi-

regularity of this system in a space of quadratically summable sequences is proved. In the case of a

half-plane, we get a system of equations with difference indices (of convolution type) which by using
the discrete Fourier transformation reduces to the Riemann problem for a circle in a class of Wiener

functions.

Introduction

The contact problems for various areas reinforced with elastic thin-walled elements of variable
stiffness are investigated and asymptotic elements of contact stresses at the ends of the contact line
are obtained depending on the law of variation of geometric and physical parameters of these elements.
These problems were preceded by the studies of such authors as E. Melan, E. Reisner, V.T. Koiter,
E.L. Buell, E.V. Benskoter, R. Myki, E. Stenberg, etc. Continuous and discrete interaction, as well
as adhesive contact of thin-walled elements (stringers and inclusions) with massive deformable bodies
are allowed.

In this paper, the elastic isotropic plate in the form of an angle or a half-plane is considered, when
one side of the angle is free from external stresses and the other side is reinforced with a straight
stringer in the condition of a discrete interaction.

I. An elastic isotropic plate on the plane z = x+ iy occupies the angle −α < arg z < 0, 0 < α < 2π.
One side of the angle z = −α is free from externel stresses and the other side, arg z = 0, is reinforced
with a straight stringer of constant cross-section F0, with the Young modulus E0 and thickness h0.
Interaction between the stringer and the wedge is realised discretely, through the rivets which are
spaced by the law xk = k, k = 1, 2, . . . . The end of the stringer at the point x = 0 is under the action
of concentrated force of intensity P , directed along the Ox-axis.

We admit the following assumptions: 1) there is no friction force between the plate and stringer;
2) the effect of essentric (with respect to the midplane of the plate) attachment of the stringer is
neglected; 3) a plane strassed state is realized in the plate, and the rivets in the plate are simulated by
circular rigid inclusions; 4) the stringer works only in a tension-compression regime and its weakening
due to the applied rivets is not taken into account, that is, we assume that the stringer bending
stiffness is negligibly small [5].

Separate mentally the stringer from the plate and apply unknown interaction forces Xk and −Xk

to the centers of rivets xk of the plate and stringer, respectively. Let Nj be the stress in the bar acting
on the segment between the rivets j and j + 1, j = 1, 2, 3, . . . .

From the equilibrium of that part of the stringer which lies in the vicinity of rivets it follows that

Xk = Nk −Nk−1, k = 1, 2, 3, . . . . (1)
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This, in particular, implies that

Nk =

k∑
j=1

Xj −
P

h0
, N0 = − P

h0

The problem consists in finding the unknown concentrated forces Xk (k = 1, 2, . . .) and an elastic
equilibrium in the plate.

Using Kolosov-Muskhelishvili’s formulas, the above stated problem reduces to finding the two
functions Φ(z) and Ψ(z) of complex variables, the so-called complex potentials, holomorphic in the
angle −α < arg < 0, by the following boundary conditions [3]:

Φ(t) + Φ(t) + tΦ′(t) + Ψ(t) = −i
∞∑
k=1

Xkδ(t− k), t > 0, (2)

Φ(t) + Φ(t) + e2iα
[
tΦ′(t) + Ψ(t)

]
= 0, arg t = −α. (3)

where δ(x) is the Dirichlet function.
The conditions of compatibility of mutual shifts of adjacent rivets in the plate and stringer are

written now as follows:

Re [w(xj+1)− w(xj)] =
Nj
E0F0

, j = 1, 2 . . . ,

2µhw(z) = κϕ(z)− zϕ′(z)− ψ(z),

(4)

where w(z) = u(z) + iv(z) is a complex displacement vector, h is the plate thickness, µ is the Lamé
constant of the plate material, ϕ(z) and ψ(z) are complex potentials

ϕ′(z) = Φ(z), ψ′(z) = Ψ(z).

The formulas

2µh (u′(t) + iv′(t)) = κΦ(t)−
[
Φ(t) + tΦ′(t) + Ψ(t)

]
,

Yy − iXy = Φ(t) +
[
Φ(t) + tΦ′(t) + Ψ(t)

]
result in

2µh(u′ + iv′) + Yy − iXy = (κ + 1)Φ(t).

In our statement of the problem, on the boundary of a half-plane we have Yy = 0, therefore we
have

u′(t) =
κ + 1

4µh

[
Φ(t) + Φ(t)

]
.

Then condition (4) takes the form

κ + 1

4µh

k+1∫
k

[
Φ(t) + Φ(t)

]
dt =

Nk
E0F0

, k = 1, 2, . . . . (5)

Introduce the notation

Ψ1(z) = Φ(z) + zΦ′(z) + Ψ(z), −α < arg z < 0,

then formulas (2) and (3) can be rewritten as follows:

Φ(t) + Ψ1(t) = −i
∞∑
j=1

Xjδ(t− j), t > 0, (6)

Φ(t) +
(
1 + e2iα

) (
tΦ(t)

)′
− e2iαΨ1(t) = 0, arg t = −α. (7)

The functions Φ(z) and Ψ1(z) are required to have for large |z| the form

Φ(z) = O
(1

z

)
, Ψ1(z) = O

(1

z

)
,
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and in the neighbourhood of angle vertices to satisfy the conditions

zΦ(z)→ 0, zΨ1(z)→ 0, z → 0.

Analytic functions Φ(z) and Ψ1(z) in the domain −α < arg z < 0 will be sought in the form

Φ(z) =
1√
2πz

∞∫
−∞

A1(t)

t
e−it ln zdt− c1

z
, −α < arg z < 0, (8)

Ψ1(z) =
1√
2πz

∞∫
−∞

A2(t)

t
e−it ln zdt− c2

z
, −α < arg z < 0, (9)

where

ck =lim
z→0

1√
2π

∞∫
−∞

Ak(t)

t
e−it ln zdt

= lim
z→0

1√
2π

∞∫
−∞

Ak(t)−Ak(0)

t
e−it ln zdt+

Ak(0)√
2π

lim
z→0

∞∫
−∞

e−it ln z

t
dt = i

√
π

2
Ak(0). (10)

(By virtue of the Riemann–Lebesgue theorem, the first integral, being the Fourier transform of the
integrable function, tends to zero, and the second limit is calculated by means of the following integral:
∞∫
−∞

eixtdx
x = πi sgn t).

In formulas (8) and (9), the integrals at the point t = 0 are understood in the sense of the Cauchy
principal value [3].

Analogously to our previous discussion, it is proved that

lim
z→∞

zΦ(z) = −2c1, lim
z→∞

zΨ1(z) = −2c2.

We require that tΦ(t) + tΨ1(t)→ 0 as t→∞, consequently, c1 + c2 = 0, i.e., A1(0) = A2(0).
If we insert the values of (8), (9) into formulas (6) and (7) and perform the Fourier transformation

[1], we obtain

A1(t)−A2(−t) = −itT (t),

e−αtA1(t)− i
(
1− e2iα

)
teαtA1(−t)− eαtA2(−t) = 0,

(11)

where

T (t) =
1√
2π

∞∑
j=1

∞∫
−∞

esXjδ(e
s − j)eistdt =

1√
2π

∞∑
j=1

Xje
it ln j . (12)

Taking into account the fact that T (t) = T (−t), the solution of system (11) takes the form

A1(t) =− e2αt − 1− 2teiα sinα

4(sh2αt− t2sin2α)
itT (t), (13)

A2(t) =A1(−t) + itT (t). (14)

Substituting the (8), (9) formulas into condition (5), we obtain

κ + 1

4µh

k+1∫
k

[
1√
2πx

∞∫
−∞

A1(t)e−it ln x +A1(t)eit ln x

t
dt

]
dx− (κ + 1) ln(1 + k−1)

4µh
(c1 + c1) =

Nk
E0F0

.
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In view of (1) and (13), we have

κ + 1

4µh

∞∫
−∞

sh2ασ − σ sin 2α

sh2ασ − σ2sin2α

T (σ)

σ
(e−iσ ln(k+1) − e−iσ ln k)dσ − (κ + 1) ln(1 + k−1)

2µh
Re c1

=
1

E0F0

( k∑
j=1

Xj −
P

h0

)
, (15)

c1 = i

√
π

2
A1(0) =

1

2

√
π

2

α− eiα sinα

α2 − sin2α
T (0).

From (12) follows T (0) = 1√
2π

∞∑
j=1

Xj = 1√
2π

P
h0

and, thus Re c1 = 2α−sin 2α
2(α2−sin2α)

P
4h0

.

Introducing the notations

Gk(t) =
sh2αt− t sin 2α

sh2αt− t2sin2α

e−it ln(k+1) − e−it ln k

t
≡ G(t)

[
e−it ln(k+1) − e−it ln k

]
, ω0 =

(κ + 1)E0F0

4µh
,

ϕk =
(κ + 1)E0F0

2µh
ln
(
1 + k−1

)
Re c1,

equation (15) takes the form

ω0

∞∫
−∞

Gk(t)T (t)dt =

( k∑
j=1

Xj −
P

h0

)
+ ϕk, k = 1, 2, . . . . (16)

Taking now into account the relations (1), (12) and substituting the last expression into (16), after
certain calculations

∞∫
−∞

Gk(t)

( ∞∑
j=1

Xje
it ln j

)
dt =

∞∫
−∞

Gk(t)

( ∞∑
j=1

(Nj −Nj−1)eit ln j
)
dt

=

∞∫
−∞

Gk(t)

∞∑
j=1

Nj

(
eit ln j − eit ln(j+i)

)
dt

−N0

∞∫
−∞

Gk(t)dt =

∞∫
−∞

G(t)
(
e−it ln(k+1) − e−it ln k

) ∞∑
j=1

Nj

(
eit ln j − eit ln(j+i)

)
dt−N0

∞∫
−∞

Gk(t)dt

=

∞∫
−∞

G(t)

( ∞∑
j=1

Rk j(t)Nj

)
dt−N0

∞∫
−∞

Gk(t)dt,

we arrive at
∞∫
−∞

G(t)

( ∞∑
j=1

Rk j(t)Nj

)
dt = ω0N0

∞∫
−∞

Gk(t)dt+Nk + ϕk, k = 1, 2, . . . , (17)

where

Rkj(t) =
ω0√
2π

( j
k

)it [
(1 + k−1)

−it − 1
] [

1− (1 + j−1)
it
]
. (18)

In the left-hand side of (18), the order of integration and summation can be changed, since the

series
∞∑
j=1

Rkjbj converges uniformly and its sum yields a continuous function on (−∞,∞), hence

∞∫
−∞

G(t)

( ∞∑
j=1

Rk j(t)Nj

)
dt =

∞∑
j=1

ΓkjNj ,
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where

Γkj =

∞∫
−∞

G(t)Rk,j(t)dt.

Then expression (17) takes the form

∞∑
j=1

ΓkjNj = Nk + ϕ̃k, k = 1, 2, 3, . . . , (19)

where

ϕ̃k = ϕk + ω0N0

∞∫
−∞

Gk(t)dt. (20)

In formula (20), the integral at the point t = 0 is understood in the sense of the Cauchy principal
value. Thus we have obtained the infinite system of linear algebraic equations of type (19), where
Γ = {Γk}∞1 , ϕ̃ = {ϕ̃k}∞1 are the given and N = {Nk}∞1 is an unknown vector from the space of
quadratically summable sequences l2.

We now investigate system (19) for its regularity. It follows from expressions (18) and (20) that

Rk j(t) =

{
O(k−1), k →∞,
O(j−1), j →∞,

ϕ̃k = O(k−1), k →∞

and
∞∑

k,j=1

Γ2
kj <∞,

∞∑
k=1

ϕ̃2
k <∞ (21)

respectively.

The investigation of system (19) under condition (21) in the class l2

(
i.e.,

∞∑
k=1

N2
k <∞

)
is reduced

to that of a finite system of linear algebraic equations.
If a homogeneous system corresponding to (19) has in l2 a unique solution (zero, obviously), then

the given system has a unique solution, as well.
One of the methods of solving system (19) is the method of reduction which consists in replacing

the infinite system (19) by a system of n equations with n unknowns. A solution of such an finite
system is considered as an approximate solution of the initial system. System (19) under condition
(21) is quasi-regular [2].

II. Let an elastic isotropic plate on the plane z = x + iy occupy the lower half-plane Im z < 0.
Along the positive semi-axis, the plate is reinforced with a straight stringer through the rivets, but
along the negative semi-axis it is free from external stresses. The rivets are located by the law xk = k,
k = 1, 2, . . . . The stringer end at the point x = 0 is under the action of concentrated force of intensity
P , directed along the Ox-axis. r is the radius of the rivet.

For the problem under consideration, the unknown complex potentials have the form [3]

Φ(z) =− 1

2π

∞∑
k=1

Xk

z − xk
,

Ψ(z) =
1

2π

∞∑
k=1

Xk

z − xk
− 1

2π

∞∑
k=1

xkXk

(z − xk)
2 ,

(22)

where Xk (k = 1, 2, . . .) are unknown interaction forces of the plate and the stringer, applied at the
points xk = k.

Relying on formula (5), we have

−κ + 1

4µhπ

∞∑
j=1

Γk−jXj =
Nk
E0F0

, k = 1, 2, . . . ,
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where

Γk =


ln(1 + k−1), k 6= 0,−1,

− ln r, k = 0,

ln r, k = −1.

It follows from (1) that
∞∑
j=1

Γk−jXj =

∞∑
j=1

Γk−j(Nj −Nj−1) =

∞∑
j=1

(Γk−j − Γk−j−1)Nj − Γk−1N0, k = 1, 2, . . . .

Then the system of equations (22) takes the form

ω

∞∑
j=1

Bk−jNj = Nk − ω Γk−1N0, k = 1, 2, 3 . . . , (23)

where

Bk =


−2 ln r, k = 0,

ln 2r, |k| = 1,

ln(1− k−2), |k| = 2, 3, . . . ,

ω = − (κ + 1)E0F0

4µhπ
.

Let us consider the following system:

ω

∞∑
j=1

Bk−jNj = Nk − ω Γk−1k
−εN0, k = 1, 2, 3 . . . , (24)

where ε is an arbitrarily small positive number.
As is known, l1 denotes a class of vectors (of infinite sequences of complex numbers) a={ak}∞k=−∞

which satisfy the following restriction:

|ak| <
M

k1+λ
, 0 < λ ≤ 1;

the space l1 is a commutative normed ring in which the process of multiplication is defined by the
convolution

Γb = Γ ∗ b =

{ ∞∑
j=−∞

Γk−jbj

}
=

{ ∞∑
j=−∞

bk−jΓj

}
= b ∗ Γ = bΓ.

To every vector from the space l1 there corresponds the function which is a sum of an absolutely
summable Fourier series, and vice versa, to every function defined on the circular |t| = 1, expandable
into an absolutely summable Fourier series, there corresponds the vector of a ring l1, i.e.,

Ψ = {Ψn}∞−∞ ∈ l1, Ψn → Ψ(t), Ψ(t) =
∞∑

n=−∞
Ψnt

n, |t| = 1,

Ψ(t)→ {Ψn}∞−∞ ; Ψn =
1

2πi

∫
γ

Ψ(t)t−(n+1)dt.

A class of functions defined on the circular γ : |t| = 1, expandable into an absolutely converging
Fourier series, is called Wiener’s class and denoted by W . The norm is defined as follows: ‖Ψ‖W =

‖Ψ‖l1 =
∞∑

n=−∞
|Ψn|. It is proved that the functions of the class W satisfy Hölder’s (H) condition [4].

Let us define each of equations (24) so that they are valid for all integers k:

ω

∞∑
j=−∞

Bk−jN
+
j = N+

k − ω Γk−1k
−εN0 +Mk

−, k = 0,±1,±2, . . . , (25)

where

N+
k =

{
Nk, k ≥ 0,

0, k < 0,
M−k =

{
0, k ≥ 0,

Mk, k < 0.
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Performing the discrete Fourier transformation [1] of system (25) and using the property of con-
volution, we obtain the following boundary value problem of the theory of analytic functions, the
Riemann problem for the circle

(B(t)− 1)N+
ε (t) = M−(t) + ϕε(t), γ : |t| = 1, (26)

where

B(t) = ω

∞∑
k=−∞

Bkt
k, N+

ε (t) =

∞∑
k=−∞

N+
k t

k, M−(t) =

∞∑
k=−∞

M−k tk,

ϕε(t) = −ωN0

∞∑
k=1

Γk−1k
−εtk B(t), ϕε(t) ∈ H.

It is proved that B(t) is the real function and, consequently, Indγ(B(t)−1) = 0 and B(t)−1 6= 0 on γ.
A solution of the boundary value problem (26) can be constructed by the well-known method [4], and
the solution of the infinite system (25) has the form

N+
k =

1

2πi

∫
|t|=1

N+(t)dt

tk+1
, k = 1, 2, . . . , N+(t) = lim

ε→0
Nε

+(t).

References
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