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ON THE GENERALIZED WIENER BOUNDED VARIATION SPACES WITH
p-VARIABLE

ANI OZBETELASHVILI AND SHALVA ZVIADADZE

Abstract. In this paper, the generalized Wiener space of bounded variation with p-variable is
investigated. Various results such as uniform convexity and reflexivity are obtained. Characterization
of a set of points of discontinuity of functions from this space is also given. For bounded exponents,
the existence of right— and left-hand limits at each point is shown. Further, it is proved that there
is an unbounded exponent such that in the corresponding space exists a function that does not have
the right-hand limit at a point. Also, it is shown that for a wide class of exponents the additivity
property of the variation is not fulfilled.

1. INTRODUCTION

In 1881, C. Jordan [13], when studying the Fourier series convergence, introduced the notion of a
function of bounded variation and established the relationship between those and monotonic functions.
Later, motivated by the problems in such areas as the calculus of variations, the convergence of Fourier
series, geometric measure theory, mathematical physics, etc. mathematicians generalized the idea to
generalize the concept of bounded variation in various directions. Because of a great number of authors
who have generalized the notion of bounded variation, we do not list them here.

The topic of function spaces with a variable exponent is an important area of research at present,
mainly, due to its wide applications in the modeling of electrorheological fluids, in the study of image
processing and differential equations with a non-standard growth. Different aspects concerning these
spaces with variable exponents can be found in [3,4] and references therein.

To shorten the expressions that will appear in our further reasoning, we introduce the following
notation. Denote by P := {Qy}}_, the partition of [a;b], where Qi = [tp—1;tx] and a =t) < --- <
t, = b. Besides, let f(Qr) := f(tx) — f(tx—1) and I[a; b] denote the set of all finite partitions of [a; b].

The first attempt to investigate the bounded variation spaces with a variable exponent was made
by H. Herda [12]. Following H. Nakano, he generalized the Wiener p-th variation in the same way as
the LP() space generalizes classical L? space!. H. Herda established various properties of such spaces,
namely, modular completeness, uniform convexity, and reflexivity.

Recently, the authors of [2], introduced the space of functions of bounded variation with p-variable
BVP(), They considered the exponent p : [a;b] — (1;+00) such that supp(x) < 4oo and for such
exponent defined the functional by

Vi (1) = sup ST F(Qu)Pe,
’ I1*[a;b] =1

where IT1*[a; b] is a set of tagged partitions P* of [a;b], i.e., a partition of the segment [a;b] together
with a finite sequence of numbers 1, ..., x, subject to the conditions that for each k, t;_1 < zp < t.
In [2], the authors defined the space of functions of p(-)-bounded variation by

BV*Va;0] = {f : [a;0] = R | f(a) = 0, [|fllpvec) < +o0},

where

1fllzveer = inf {3 > 0| V2L (F/3) <1}
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is the Luxemburg norm. The authors of paper [2] investigated properties of the BV?()[a;b] space.
Namely, they proved that BVP()[a;b] is the Banach space, if q(z) > p(z) for all # € [a;b], then
BVPO)a;b] < BVI)[a;b], and also, they proved Helly’s principle of choice type result in the
BVP(')[a;b}. Moreover, the analogue of absolutely p-continuous functions is defined in the frame-
work of a variable space and the fact that this space of absolutely continuous functions is a closed and
separable subspace of BVP()[a;b] is proved. (For different results concerning the space BVP?()[a;b]
and other spaces of bounded variation with p-variable, see [5,14-16]).

A more general form of the definition of functions of bounded variation was introduced in a series
of papers by S. Gnilka [6-11] (see also Ch.II, §10, Definition 10.4 and the following results in [17]).
Although Gnilka’s definition of bounded variation is more general than that in [2] as certain restrictions
are imposed on the variational function, some results of paper [2] can’t be obtained from the previous
results.

In the present paper, we are going to introduce the notion of bounded variation with p-variable
differently and investigate the obtained W BV,,.y space of functions.

The first motivation to introduce bounded variation with p-variable in somewhat different way is
that the space BV”(')[a; b] is not ”stable” with respect to the changes of the exponent function even
on the countable set. In other words, if we change the exponent function on the countable set, then we
change the corresponding space. Therefore, in our definition, we use the mean values of the exponent
at the partition intervals. Such a definition of the bounded variation allows us to get a more ”stable”
space with respect to the changes in the exponent on a set of measure zero. Besides, below we will
show that BVP()[a;b] C W BV,yla;b] for all exponents p, and also, we will give an example of the
exponent for which WBV,.)[a;b]\BVP([a;b] # 0; this effect is achieved due to the fact that the
constant exponent changes on a set of measure zero (see Theorem 2.6).

Another motivation to consider the mean values of the exponent is that in 2016, independently,
there appeared two papers [1] and [14] in which the Riesz bounded variation was introduced with a
variable exponent. Besides, the main result in these papers was a generalization of the Riesz result
(about representation as to the indefinite integral of a function from the LP space) to a variable
exponent Lebesgue spaces. In the [1], the authors considered the so-called tagged partition as above,
in the definition of the space BV?() [a; b], and proved the corresponding result by using the log-Holder
continuity of the exponent. On the other hand, in [14], the authors introduced a Riesz bounded
variation with p-variable by using mean values of the exponent which allowed them to prove the
above-mentioned result for a much wider set of exponents such that the Hardy—Littlewood maximal
operator is bounded on the LP(") space.

These reasons motivated us to consider the W BV,,.y[a; b] space and investigate various properties
of this space. Besides, we have obtained some new results that were not considered in the papers
published earlier.

2. THE SPACE W BV,(.y OF FUNCTIONS OF BOUNDED VARIATION

Let p : [a;b] — [1;+00) be a Lebesgue function, integrable on [a;b], and for the interval @ C [a;b]

define : ) »
PR) = (mQ/ m“) |

Here and throughout the whole paper, for the set A, the symbol |A| denotes Lebesgue measure of the
set A and x4 is the characteristic function of the set A.

Definition 2.1. Let us consider the functional

Vip, f) = sup DI QPO < oo, (2.1)

We define the generalized Wiener bounded variation spaces with p-variable by

WBV,()la;0] = {f + [a;8] = R| f(a) =0, [|[f[lwbv,, < +oo},
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where
I fllwsv,., =nf {A>0[V2(p, f/A) <1}
is the Luxemburg norm.

Remark 2.1. Note that in this definition, the exponent p may be unbounded.
Now, we formulate the results concerning the functional properties of the space W BV,,,).
Theorem 2.1. The space W BV, is a Banach space.

Theorem 2.2. If the exponent p : [a;b] — [1;+00) is such that 1 < essinfp(z) < esssupp(z) < 400,
then the space W BV,,(.y is uniformly convex and reflexive.

Theorem 2.3. The space WBV,,.y is not separable.

Theorem 2.4. Given the functions p1,ps : [a;b] — [1;+00) and p1(x) < pa(z) a.e. x € [a;b], then
WBVPl(') = WBVPz(')'

Next, we investigate the relationship between the BV?() and W BV, spaces. Let us start with
the following

Theorem 2.5. Suppose p : [a;b] — [1;+00) is bounded, then BVP) C WBV,.).

Corollary 2.1. Let p : [a;b] — [1;400) be a bounded function. Then WBV,.y has a sub-space,
isomorphic to cg.

It is clear that if for some p > 1, the exponent function is such that p(x) = p for all x, then
WBV,. = BVP(). So, there arises a question: Does the inclusion WBV,. C BV?P() hold for all
bounded exponents? The answer to this question is negative.

Theorem 2.6. There exists a bounded exponent for which WBVP(.)\BV”(') £ 0.
Further, we show the properties of the functions from the W BV, space.
Theorem 2.7. If f € WBV,,., then f is bounded.

The next results concern the existence of one-sided limits at each point of a function from W BV,
and how the existence of one-sided limits depends on the exponent p.

Theorem 2.8. Let p: [a;b] — [1;+00) be an essentially bounded function and f € WBV,.y, then at
each point of the domain of function f there exist left-hand and right-hand limits (at the end points
of the interval, we consider only f(a+) and f(b—)).

One of the direct consequences of Theorem 2.8 is the following

Corollary 2.2. Let p : [a;b] — [1;400) be an essentially bounded function. Then if the function
f € WBV,(y has a point of discontinuity, it should be only of the first kind. The same is true for the

functions of the space BVP().

Corollary 2.3. Let p: [a;b] — [1;+00) be an essentially bounded function, then the set of discontin-
uous points of the function f € WBV,.y is at most countable. The same is true for the functions of
the space BVP().

Here, there arise the questions: What role does the boundedness of the exponent in the previous
results play? Do the same results maintain if the exponent is not essentially bounded? As it turned
out, the answers to these questions are negative.

Theorem 2.9. There exists an essentially unbounded exponent p : [a;b] — [1;4+00) and the function
J € WBV,,y such that f(a+) does not exist.

Theorem 2.10. There is an essentially unbounded exponent p : [a;b] — [1;+00) and f € WBV,,
such that the set of discontinuity points of f has continuum power.

Now, we present the results concerning the additivity of the variation V2(p, -).
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Theorem 2.11. For any point ¢ € (a;b), we have

Ve, )+ VEip, f) < Vi, f).

The following result shows even a more contrasting property of the W BV,,(.) space compared to the
Jordan, Wiener and Gnilka’s bounded variation classes. In general, if the exponent p is not equivalent
to the constant, then there might not exist a number C' > 0 such that the following inequality

Vi, f) < C- (Vi ) + Ve, f))

holds for all ¢ € (a;b) and for all f € WBV,,.
Introduce the notation
7 (a:b) i= inf{p(lc; d)) | @ € [ d)  [asb]}.

Theorem 2.12. Let there be given the function p : [a;b] — [1; +00). If there exists the point x € (a;b)
such that

7 (a;0) < max{p® (a; x), p% (x;b)}, (2.2)
then for any number C > 1 there exists the function f := fc such that f € WBV,.y and

Vab(paf)>c(Vax(p7f)+vaf)(paf))

Condition (2.2) seems to be non-transparent and we are trying to fix this. Consider p* (a;b). By
its definition, we get

P2 (a;0) =inf{p([¢;d]) | = € [¢; d] C [a; 0]}

:inf{(dic/dp(lt)dt)_l |z € [e;d] € [a;b]}

C

(ow{ /()d| ) = ((m)

Here, the symbol M denotes the Hardy—Littlewood maximal operator. By the analogous reasoning,
we obtain

1 -1 1 -1
pae) = (M (5)@)  and p(wh) = (MF(5)@)
p p
where M~ and M™ denote the one-sided Hardy—Littlewood maximal operators. So, in terms of the
Hardy-Littlewood maximal operator, we can rewrite condition (2.2) in the following form:

1 1 1
M<f)x >min{M‘(7>x,M+<f)x}.
’ (z) ’ (z) ’ (z)
The investigation of the class of such exponents for which there exists a point z € (a;b) such that the

above inequality holds is beyond of the scope of our paper and let it remain an open problem.
Now, we formulate Helly’s principle of choice type result for the space W BV),.).

Theorem 2.13. Let p : [a;b] — [1;4+00) be an essentially bounded function and F be a uniformly
bounded infinite family of functions of the space W BV),(.. If the variations of functions from F are
bounded by the same number, then from the family F, we can choose the sequence which is pointwise
convergent to the function f € WBV),.).
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