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SIERPIŃSKI–ZYGMUND FUNCTIONS AND ω-POWERS

ALEXANDER KHARAZISHVILI

Abstract. It is shown that, by using some method of extending the topology of a Baire space with-

out isolated points, the extended topology preserves Baire’s property but does not have Blumberg’s
property.

All topological spaces (E, T ) considered throughout this note are assumed to satisfy the
T1-separation axiom.

As usual, we denote by B(E, T ) the Borel σ-algebra of E. If E is infinite, then card(B(E, T )) ≥
(card(E))ω, where ω stands for the least infinite cardinal (ordinal) number.

Let R denote the real line. By definition, (E, T ) has Blumberg’s property (or E is a Blumberg
space) if, for any function f : E → R, there exists an everywhere dense set X ⊂ E such that the
restriction f |X is continuous.

This concept is motivated by the classical theorem of Blumberg [1], according to which E = R,
equipped with its standard topology, is a Blumberg space.

It can easily be verified that every Blumberg space is a Baire space. As is well-known, the converse
assertion does not hold (cf. Theorem 2 of this note). However, as was proved in [2], if E is a metrizable
Baire space, then E has Blumberg’s property. Any discrete topological space is a Blumberg space,
and this trivial fact implies that a bijective continuous image of a Blumberg space is not, in general,
a Blumberg space. The topological sum of any family of Blumberg spaces is a Blumberg space. At
the same time, there exists a metrizable Baire space whose topological square is not a Baire space
(see [3, 5, 6, 8]). Thus, Blumberg’s property is not preserved under finite topological products.

In this note, we show that Blumberg’s property of (E, T ) is rather delicate and can be destroyed
by a fairly standard method of extending the original topology T .

We need the following auxiliary proposition which generalizes the classical result of Sierpiński and
Zygmund [7] on the existence of a totally discontinuous function acting from R into R
(cf. also [4, Chapter 11, Lemma 3]).

Lemma 1. Let a be an infinite cardinal number and let (E, T ) be a topological space such that

card(E) = card(B(E, T )) = a.

Then there exists a function f : E → R having the following property: for every set X ⊂ E with
card(X) = a, the restriction f |X is not continuous.

Proof. First, observe that the relation card(E) = card(B(E, T )) implies at once that aω = a. In other
words, a is an ω-power.

Denote by G the family of all real-valued functions g such that g is defined on a Borel subset of E,
is continuous and card(dom(g)) = a.

In view of the assumption of this lemma, we have the equality

card(G) = aω = a.

Using the standard diagonal argument (cf. [7]), we are able to construct a function f : E → R
satisfying the following condition: for any function g ∈ G, the cardinality of the set

Xg = {x ∈ dom(g) : g(x) = f(x)}
is strictly less than a.
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Let us check that f has the property indicated in the formulation of the lemma. For this purpose,
take an arbitrary setX ⊂ E with card(X) = a and suppose to the contrary that h = f |X is continuous.
Let cl(X) denote the closure of X and let

A = {x ∈ E : osch(x) = 0},

where the symbol osch(x) stands for the oscillation of h at x (in general, x does not belong to X).
The set A is of type Gδ, so the set

B = cl(X) ∩A
is Borel in E and includes X (because h is continuous on X).

Take any point x ∈ B and consider the family of closed sets

{cl(h(U)) : U is an open neighborhood of x}.

This family is centered and contains members with arbitrarily small diameters. Consequently, the
intersection of this family is a singleton, say {y}. We define g(x) = y. Now, it is not difficult to check
that the obtained function

g : B → R

is a continuous extension of h = f |X. In particular, we have

card({x ∈ dom(g) : g(x) = f(x)}) ≥ card(X) = a,

which yields a contradiction and finishes the proof. �

Remark 1. Assume the Continuum Hypothesis and let E be a Sierpiński subset of R. Denote by
Td the topology on E induced by the density topology of R. Then (E, Td) is a Baire space satisfying
the conditions of Lemma 1, so there exists a Sierpiński–Zygmund type function on (E, Td). This
circumstance implies that (E, Td) is not a Blumberg space. Analogously, if S is a Suslin line, then S
is a Baire space and also satisfies the conditions of Lemma 1. In view of this lemma, there exists a
Sierpiński–Zygmund type function on S. Consequently, S does not have Blumberg’s property.

Recall that a topological space E is isodyne if card(E) = card(U) for every nonempty open set
U ⊂ E.

Let b be an infinite cardinal number.
We say that a topological space (E, T ) is b-Lindelöf if every open covering of E contains a subcov-

ering whose cardinality is strictly less than b.
For example, if b = ω, then b-Lindelöf spaces are precisely quasi-compact spaces; if b = ω1, then

b-Lindelöf spaces are precisely Lindelöf spaces in the usual sense.
We say that a topological space (E, T ) is b-Baire if no nonempty open subset U of E can be

represented as the union of a family F of nowhere dense sets in E, where card(F) < b.
For example, if b = ω1, then b-Baire spaces are precisely Baire spaces in the usual sense.

Lemma 2. Let b be an infinite regular cardinal and let (E, T ) be a hereditarily b-Lindelöf topological
space with card(E) = b.

Then the family of sets

T ∗ = {U \D : U ∈ T , D ⊂ E, card(D) < b}

is a topology on E extending T and (E, T ∗) is also a hereditarily b-Lindelöf space.
In addition, if (E, T ) is a b-Baire space without isolated points (respectively, an isodyne b-Baire

space), then (E, T ∗) is also a b-Baire space without isolated points (respectively, an isodyne b-Baire
space).

Theorem 1. Let (E, T ) be an uncountable hereditarily card(E)-Lindelöf space such that:
(1) card(T ) = card(E);
(2) card(Eκ) = card(E) for every nonzero cardinal κ < card(E).
Let T ∗ denote the topology on E described in Lemma 2.
Then (E, T ∗) is not a Blumberg space.
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Proof. It follows from the assumption (2) of the theorem that card(E) is a regular cardinal number.
Consequently, T ∗ is well-defined and

card(B(E, T ∗)) = card(E).

Applying Lemma 1 to (E, T ∗), we can find a function f : E → R such that, for any set X ⊂ E with
card(X) = card(E), the restriction f |X is not continuous on X with respect to the topology T ∗|X.

It remains to show that there exists no everywhere dense subset Z of (E, T ∗) such that f |Z is
continuous with respect to T ∗|Z. But the latter fact is almost trivial, because any everywhere dense
subset Z of (E, T ∗) must be equinumerous with E and, by virtue of the definition of f , the partial
function f |Z is not continuous on Z with respect to T ∗|Z. �

Let c denote the cardinality of the continuum and let (E, T ) be an uncountable isodyne Polish
space. If c is a regular cardinal, then we may consider the topology T ∗ described in Lemma 2 (as is
known, for E = R, the topology T ∗ was introduced by Sierpiński). Theorem 1 implies the following
statement.

Theorem 2. Under Martin’s Axiom, the isodyne c-Baire hereditarily c-Lindelöf space (E, T ∗) does
not have Blumberg’s property.

In fact, there exists a Sierpiński–Zygmund function for (E, T ∗) such that its restriction to any
second category subset of (E, T ∗) is not continuous.

Remark 2. Suppose that c = 2ω1 = ω2 (this assumption is consistent with Martin’s Axiom). Let K
be a set of cardinality ω1 endowed with the discrete topology. Put E = Kω and equip this E with
the product topology. Clearly, E is an isodyne nonseparable complete metrizable space, hence E is a
Blumberg space. Denote

T ∗ = {U \D : U is open in E, D ⊂ E, card(D) < c}.
Then (E, T ∗) is an isodyne Baire hereditarily c-Lindelöf space. Using Lemma 1, we conclude that
this space does not have Blumberg’s property.

Lemma 3. Let (E, T ) be a Blumberg space, let T ′ be a topology on E extending T , and suppose that
there exists a subfamily of T which is a pseudo-base of T ′.

Then (E, T ′) is also a Blumberg space.

Remark 3. Let T be the standard topology on R and let Ts denote Sorgenfrey’s topology on the
same R. As is known, Ts extends T and (R, Ts) is an isodyne hereditarily Lindelöf space. It follows
from Lemma 3 that (R, Ts) is a Blumberg space. However, under Martin’s Axiom, the isodyne c-Baire
hereditarily c-Lindelöf space (R, T ∗s ) does not have Blumberg’s property.

There are other similar examples of extensions of a Baire space topology, which do not possess
Blumberg’s property. It should be noticed that, in the works [2, 3, 5, 8, 9] concerned with Blumberg’s
property, the transfinite construction of Sierpiński–Zygmund type functions is not mentioned at all.

Remark 4. If (E, T ) is a Blumberg space, then each open subset of E is a Blumberg space, so the
family of all isodyne open Blumberg subspaces of E forms a pseudo-base of E. Under the Gener-
alized Continuum Hypothesis, the cardinality of any uncountable Hausdorff isodyne space of second
category (hence the cardinality of any uncountable Hausdorff isodyne Blumberg space) is an ω-power.
Conversely, if a is an ω-power, then there exists an isodyne complete metric space F of cardinality a
and, consequently, in view of [2], F is a Blumberg space.
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