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THE PROBLEM OF FINDING AN EQUISTRONG CONTOUR FOR A

VISCOELASTIC RECTANGULAR DOMAIN

GOGI KAPANADZE1,2∗ AND LIDA GOGOLAURI1

Abstract. The problem of finding an equistrong contour in a rectangular viscoelastic plate is consid-

ered by using the Kelvin–Voigt model. It is assumed that normal contractive forces with prescribed

principal vectors (or with constant normal displacements) are applied to the rectangle sides by means
of a linear absolutely rigid punch, while an unknown part of the boundary (an unknown equistrong

contour) is free from external forces. The equistrength of an unknown contour lies in the fact that

tangential normal stress at each point of the contour admits the same values. To solve the problem,
we use the methods of conformal mappings and of boundary value problems of analytic functions.

The equation of an unknown contour, as a function of a point and time, is constructed effectively

(analytically).

Introduction

The problems of finding an equistrong contour in the plane theory of elasticity and viscoelasticity
may be attributed to a wide class of problems of optimization of shapes of elastic and viscoelastic
bodies (see [1]). In the theory of elasticity, the above-mentioned problems for doubly-connected
polygonal domains are considered in [2–4].

As is known, the presence of a hole in a plate leads to a non-uniform stress distribution in the
vicinity of the holes contour and to the appearance of the so-called plastic zones. In this process,
the tangential normal stress is of importance. As the hole expands, the stress values increase, and
for viscoelastic bodies, following from the process of stress relaxation, their values decrease over time.
So it becomes interesting to adjust the hole shape and size in such a way that for each moment of
time the above-mentioned stresses remain constant values. It is to this question that the present work
based on the Kelvin–Voigt model [10] is devoted.

Statement of the problem. Let a middle surface of a viscoelastic isotropic plate on the plane z of a
complex variable occupy a doubly-connected domain S0 bounded by a rectangle and a smooth closed
contour L0. Suppose that the rectangle sides are under the action of rectilinear smooth punches with
the known principal vectors of normal contractive forces (or with constant normal displacements),
while the internal part of the boundary (an unknown equistrong contour) is free from external forces.
The equistrength of an unknown contour lies in the fact that the acting tangential normal stress at
every point of that contour admits a constant value, i.e., σϑ(σ, t) = K∗0 = const (in a general case, the
above-mentioned stresses depend both on a point and on time). The viscoelasticity of the domain S0

is understood by the Kelvin–Voigt model.

Solution of the problem. By virtue of the symmetry, we restrict ourselves with consideration of
equilibria quarter portion of the domain S0, lying in the first quarter of the coordinate plane, which
we denote by S.

Introduce the notation L = L0

⋃
L1, where L0 = A5A1, L1 =

⋃
L
(k)
1 (L

(k)
1 = AkAk+1, k = 1, 4).
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We cite here certain results of works [5,7,8,11], viz, the boundary conditions of the first and second
basic problems for a viscoelastic plate S have, according to the Kelvin–Voigt model, the form

ϕ(σ, t) + σϕ′(σ, t) + ψ(σ, t) = i

σ∫
A1

(Xn + iYn)ds, σ ∈ L1, (1)

t∫
0

[
κ∗ek(τ−t)ϕ(σ, τ) + em(τ−t)(ϕ(σ, τ)− σϕ′(σ, τ)− ψ(σ, τ)

)]
dτ = 2µ∗(u+ iv), σ ∈ L1, (2)

ϕ(σ, t) + σϕ′(σ, t) + ψ(σ, t) = 0, σ ∈ L0,

t∫
0

[
κ∗ek(τ−t)ϕ(σ, τ) + em(τ−t)(ϕ(σ, τ)− σϕ′(σ, τ)− ψ(σ, τ)

)]
dτ = 0, σ ∈ L0,

Re
[
ϕ′(σ, t)

]
= Re

[
Φ(σ, t)

]
=
K∗0
4

= K0, σ ∈ L0,

where

κ∗ =
2µ∗

λ∗ + µ∗
; k =

λ+ µ

λ∗ + µ∗
; m =

µ

µ∗
.

Here and in the sequel, under t we mean a time parameter.
From (1) and (2), we get the equality

Γ∗
[
ϕ(σ, t)

]
= M

[
i

σ∫
A1

(Xn + iYn)ds

]
+ 2µ∗(u+ iv), σ ∈ L1, (3)

where Γ∗ and M are the functions of time,

Γ∗
[
ϕ(σ, t)

]
=

t∫
0

[
κ∗ek(τ−t) + 2em(τ−t)]ϕ(σ, τ)dτ,

M

[
i

σ∫
A1

(Xn + iYn)ds

]
=

t∫
0

em(τ−t)
[
i

σ∫
A1

(Xn + iYn)ds

]
dτ.

(4)

In view of the fact that in the case under consideration T (σ, t) = 0, σ ∈ L1; N(σ, t) = T (σ, t) = 0,

σ ∈ L0, νn = ν
(k)
n = const (k = 1, 4), νs = 0, σ ∈ L1; νn = νs = 0, σ ∈ L0, and taking into account

the equalities Xn + iYn = (N + iT )eiα(σ), u + iν = (νn + iνs)e
iα(σ) (α(σ) is the angle made by the

Ox - axis and the outer normal to the contour L1), from (3), we obtain

Re
[
Γ∗
[
e−iα(σ)ϕ(σ, t)

]]
= C(σ)F (t) + 2µ∗νn(σ), σ ∈ L1; (5)

Re
[
ϕ′(σ, t)

]
= K0, σ ∈ L0,

where

C(σ) = Re

[
i

σ∫
A1

N(s0)ei[α(s0)−α(s)]ds0

]
=

r∑
j=1

N(s0) sin(αj − αr)ds0 = Cr = const,

σ ∈ L(r)
1 , r = 1, 4,

F (t) =
1

m

[
1− e−mt

]
.

Performing the mapping of the domain S onto a unit circle by means of the function z = ω0(ζ),
and then differentiating (5) with respect to the arc coordinate s, due to the piecewise permanence
(with respect to σ) of the right-hand side of (5), for the function

Ω(z, t) = Γ∗
[
ϕ′(z, t)−K0

]
= Γ∗

[
Φ(z, t)−K0

]
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we get the Riemann-Hilbert boundary value problem for the circle

Im Ω(η, t) = 0, η ∈ `1, Re Ω(η, t) = 0, η ∈ `0. (6)

where `1 and `0 are the arcs corresponding to the lines L1 and L0.
Problem (6) has only trivial solution and, hence, we have

Γ∗
[
Φ(z, t)−K0

]
= 0. (7)

It is not difficult to prove that equation (7) has only trivial solution and thus for the function ϕ(z, t)
we get the formula

ϕ(z, t)−K0 · z (8)

(an arbitrary constant is assumed to be zero).
Taking into account (8), the boundary conditions (1) and (2) can be written in the form

2K0σ + ψ(σ, t) = i

σ∫
A1

(Xn + iYn)ds, σ ∈ L1, (9)

Γ
[
K0σ

]
−M

[
ψ(σ, t)

]
= 2µ∗(u+ iν), σ ∈ L1, (10)

2K0σ + ψ(σ, t) = 0, σ ∈ L0, (11)

Γ
[
K0σ

]
−M

[
ψ(σ, t)

]
= 0, σ ∈ L0, (12)

where Γ is the time function,

Γ
[
K0σ

]
=

t∫
0

κ∗K0σe
k(τ−t)dτ, (13)

and M is defined by formula (4).
From the boundary conditions (9), (10) and (12), after certain transformations, for the function

Φ1(z, t) = Γ
[
K0z

]
+M

[
ψ(z, t)

]
(14)

we obtain the following boundary conditions

Im Φ1(σ, t) = 0, σ ∈ L0, Im Φ1(σ, t) = 0, σ ∈ L(1)
1 ,

Re Φ1(σ, t) = Γ
[
2K0a

]
+ 2µ∗ν(2)n , σ ∈ L2;

Im Φ1(σ, t) = 2µ∗ν(3)n , σ ∈ L(3)
1 , Re Φ1(σ, t) = 0, σ ∈ L(4)

1 .

(15)

Moreover, for normal displacements ν
(2)
n and ν

(3)
n we get the formulas

2µ∗ν(1)n = −
[
Γ[K0a] +M [2K0a+ P/2]

]
,

2µ∗ν(3)n = −
[
Γ[K0b] +M [2K0b+Q/2]

]
.

(16)

Analogously, from (9)–(12), for the function

Φ2(z, t) = i
[
Γ[K0z]−M [ψ(z, t)]

]
, (17)

we have
Im Φ2(σ, t) = 0, σ ∈ L0, Re Φ2(σ, t) = 0, σ ∈ L1,

Im Φ2(σ, t) = Γ[K0a] +M [2K0a+ P/2], σ ∈ L2,

Re Φ2(σ, t) = −Γ[K0b] +M [2K0b+Q/2], σ ∈ L3,

Im Φ2(σ, t) = 0, σ ∈ L4,

(18)

Problems (15) and (18) are of the same type.
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Let the function z = ω(ζ) map conformally a unit semi-circle D0 = {|ζ| < 1; Im ζ > 0} onto the
domain S. By ak (k = 1, . . . , 5) we denote preimages of the points Ak and assume that a1 = 1, a3 = i,
a5 = −1 (that is, the contour L0 transforms into a segment [−1; 1]). Consider the functions

Wj(ζ, t) =

{
Φj(ζ, t), Im ζ > 0,

Φj∗(ζ, t), Im ζ < 0, j = 1, 2,

where Φj∗(ζ, t) = Φj(ζ, t).
On the basis of (15) and (18), we can conclude that the functions Wj(ζ, t) (j = 1, 2) are holomorphic

in the circle D = {|ζ| < 1}, continuously extendable on the boundary ` = {|ζ| = 1} and satisfy the
following boundary conditions:

W1(ω, t)−W1

( 1

ω
, t
)

= 0, ω ∈ `(1)1 , W1(ω, t) +W1

( 1

ω
, t
)

= 2H11, ω ∈ `(2)1 ,

W1(ω, t)−W1

( 1

ω
, t
)

= 2iH12, ω ∈ `(3)1 , W1(ω, t) +W1

( 1

ω
, t
)

= 0, ω ∈ `(4)1 ,

(19)

W2(ω, t) +W2

( 1

ω
, t
)

= 0, ω ∈ `(1)1 , W2(ω, t)−W2

( 1

ω
, t
)

= 2iH21, ω ∈ `(2)1 ,

W2(ω, t) +W2

( 1

ω
, t
)

= 2H22, ω ∈ `(3)1 , W2(ω, t)−W2

( 1

ω
, t
)

= 0, ω ∈ `(4)1 ,

(20)

where due to (16), we have

H11 = Γ
[
K0a

]
−M [2K0a+ P/2

]
, H12 = Γ

[
K0b

]
+M

[
2K0b+Q/2

]
,

H21 = Γ
[
K0a

]
+M

[
2K0a+ P/2

]
, H22 = −Γ

[
K0b

]
+M

[
2K0b+Q/2

]
,

(`
(k)
1 are the preimages of the lines L

(k)
1 (k = 1, 4)).

To solve problems (19) and (20), we use the method of conformal “sewing”, provided that in the
capacity of a “sewing” function we take Zhukovski’s function ξ = ζ+ 1

ζ (see [6]), mapping conformally

the circle D onto the whole plane with a cut along the segment I = [−2; 2] of the real axis in such
a way that the upper semi-circle `+ is mapped onto a lower edge of the segment, while the lower
semi-circle `− is mapped onto an upper edge of the segment I. As a positive direction on I we take
the direction of the real axis and consider an inverse function

ζ(ξ) =
1

2

(
ξ −

√
ξ2 − 4

)
,

where under the radical sign we mean its branch which is positive on the real axis autside the segment I.
Then we have

ζ+(η) =
1

2

(
η −

√
η2 − 4

)
, ω ∈ `+,

ζ−(η) =
1

2

(
η +

√
η2 − 4

)
,

1

ω
∈ `−.

Consider the functions

Wj0(ξ, t) = Wj

[
ζ(ξ), t

]
= Wj

[(
ξ −

√
ξ2 − 4

)
/2, t

]
(j = 1, 2).

We have

Wj(ω, t) = Wj

[1

2

(
η −

√
η2 − 4

)
, t
]

= W+
j0(η, t), ω ∈ `+,

Wj

( 1

ω
, t
)

= Wj

[1

2

(
η +

√
η2 − 4

)
, t
]

= W−j0(η, t),
1

ω
∈ `−, j = 1, 2,
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and conditions (19) and (20) can be written in the form

W+
10(η, t)−W−10(η, t) = 0, η ∈ [δ; 2], W+

10(η, t) +W−10(η, t) = 2H11, η ∈ [0; δ],

W+
10(η, t)−W−10(η, t) = 2iH12, η ∈ [−δ0; 0], W+

10(η, t) +W−10(η, t) = 0, η ∈ [−2;−δ0],
(21)

W+
20(η, t) +W−20(η, t) = 0, η ∈ [δ; 2], W+

20(η, t)−W−20(η, t) = 2iH21, η ∈ [0; δ],

W+
20(η, t) +W−20(η, t) = 2H22, η ∈ [−δ0; 0], W+

20(η, t)−W−20(η, t) = 0, η ∈ [−2;−δ0],
(22)

where −2, −δ0, 0, δ, 2 are the points of the segment I, corresponding to the points ak (k = 1, 5),

under the mapping ξ = ζ +
1

ζ
.

We are looking for bounded at infinity solutions of problems (21) and (22) of the class h(−2;−δ0;
0; δ; 2), (for this class see [8]), satisfying the condition

Wj0(ξ, t) = Wj0(ξ, t) (j = 1, 2). (23)

Indices of the problems of the class mentioned above are equal to −2.
The necessary and sufficient conditions for the existence of a bounded at infinity solution of problems

(21) and (22) of the class h(−2;−δ0; 0; δ; 2), have respectively the form

iH12

0∫
−δ0

dη

χ1(η)
+H11

δ∫
0

dη

χ1(η)
= 0, (24)

H22

0∫
−δ0

dη

χ2(η)
+ iH21

δ∫
0

dη

χ2(η)
= 0, (25)

where

χ1(ξ) =
√

(ξ + 2)(ξ + δ0)ξ(ξ − δ); χ2(ξ) =
√

(ξ + δ0)ξ(ξ − δ)(ξ − 2). (26)

If conditions (24) and (25) are satisfied, then a solution of problems (21) and (22) is given by the
formulas

W10(ξ, t) =
χ1(ξ)

πi

[
iH12

0∫
−δ0

dη

χ1(η)(η − ξ)
+H11

δ∫
0

dη

χ1(η)(η − ξ)

]
, (27)

W20(ξ, t) =
χ2(ξ)

πi

[
H22

0∫
−δ0

dη

χ2(η)(η − ξ)
+ iH21

δ∫
0

dη

χ2(η)(η − ξ)

]
. (28)

It can be easily verified that the functions Wj0(ξ, t) = Wj [ζ(ξ), t] (j = 1, 2) satisfy condition (23).
Integrals appearing in formulas (24)–(28) are expressed by the first and third kind elliptic integrals,

viz (see [9]),

0∫
−δ0

dη

χ1(η)
=

2√
2(δ + δ0)

F

[
π

2
;

√
δ0(δ + 2)

2(δ + δ0)

]
,

δ∫
0

dη

χ1(η)
= − 2i√

2(δ + δ0)
F

[
π

2
;

√
δ(2− δ0)

2(δ + δ0)

]
,
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0∫
−δ0

dη

χ1(η)(η − ξ)
= − 2

ξ(ξ − δ)
√

2(δ + δ0)

×

{
− δ

∏[
π

2
;
δ0(ξ − δ)
ξ(δ + δ0)

;

√
δ0(δ + 2)

2(δ + δ0)

]
+ (ξ + δ0)F

[
π

2
;

√
δ0(δ + 2)

2(δ + δ0)

]}
,

δ∫
0

dη

χ1(η)(η − ξ)
=

2i

ξ(ξ + δ0)
√

2(δ + δ0)

×

{
δ0
∏[

π

2
;
δ(ξ + δ0)

ξ(δ + δ0)
;

√
δ(2− δ0)

2(δ + δ0)

]
+ ξF

[
π

2
;

√
δ(2− δ0)

2(δ + δ0)

]}
,

0∫
−δ0

dη

χ2(η)
=

−2i√
2(δ + δ0)

F

[
π

2
;

√
(2− δ)δ0
2(δ + δ0)

]
,

δ∫
0

dη

χ2(η)
=

2√
2(δ + δ0)

F

[
π

2
;

√
δ(2 + δ0)

2(δ + δ0)

]
,

0∫
−δ0

dη

χ2(η)(η − ξ)
=

2i

ξ(ξ − δ)
√

2(δ + δ0)

×

{
− δ

∏[
π

2
;
δ0(ξ − δ)
ξ(δ − δ0)

;

√
(2− δ)δ0
2(δ + δ0)

]
+ ξF

[
π

2
;

√
(2− δ)δ0
2(δ + δ0)

}
,

δ∫
0

dη

χ2(η)(η − ξ)
=

−2

ξ(ξ + δ0)
√

2(δ + δ0)

×

{
δ0
∏[

π

2
;
δ(ξ + δ0)

ξ(δ + δ0)
;

√
δ(2 + δ0)

2(δ + δ0)

]
+ (ξ − δ)F

[
π

2
;

√
δ(2 + δ0)

2(δ + δ0)

]}
,

where

F [ϕ; k] =

ϕ∫
0

dϕ√
1− k2 sin2 ϕ

;
∏

(ϕ, n, k) =

ϕ∫
0

dϕ

(1− n sin2 ϕ)
√

1− k2 sin2 ϕ

are the first and third kind elliptic integrals, respectively.
If we are satisfied with the approximations

F
[π

2
; k
]
≈ π

2

(
1 +

k2

4

)
;
∏[π

2
;n; k

]
≈ π

2

(
1 +

k2

4
+
n

2

)
,

then conditions (24) and (25) can be written as follows:

H12

[
1 +

δ0(δ + 2)

8(δ + δ0)

]
−H11

[
1 +

δ(2− δ0)

8(δ + δ0)

]
= 0,

H22

[
1 +

δ0(2− δ)
8(δ + δ0)

]
−H21

[
1 +

δ(2 + δ0)

8(δ + δ0)

]
= 0.
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If the above conditions are satisfied, then the functions W10(ξ, t) and W20(ξ, t) are given by the
formulas

W10(ξ, t) =
δ0 δ χ1(ξ)[

2(δ + δ0)
]3/2

ξ2
(H12 +H11),

W20(ξ, t) = − δ0 δ χ2(ξ)[
2(δ + δ0)

]3/2
ξ2

(H22 +H21).

Having found the functions Wj0(ξ, t) (j = 1, 2), for determining conformally mapping function
z = ω[ζ(ξ), t] = ω0(ξ, t), relying on (13), (14) and (16), we get the integral equation

κ∗
t∫

0

ekτω(ξ, τ)dτ = ektN(ξ, t), (29)

where

N(ξ, t) =
1

2K0
=
[
W10(ξ, t)−W20(ξ, t)

]
. (30)

From (29), differentiating with respect to t , we obtain

ω0(ξ, t) =
1

κ∗
[
kN(ξ, t) + Ṅ(ξ, t)

]
,

where N(ξ, t) is defined by formula (30) and Ṅ(ξ, t) denotes differentiation with respect to t.
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