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ON SOME NEW SEQUENCE SPACES DEFINED BY q-PASCAL MATRIX

TAJA YAYİNG1, BİPAN HAZARİKA2 AND FEYZİ BAŞAR3∗

Abstract. In this study, we construct the q-analog P (q) of Pascal matrix and study the sequence

spaces c(P (q)) and c0(P (q)) defined as the domain of q-Pascal matrix P (q) in the spaces c and c0,

respectively. We investigate certain topological properties, determine Schauder bases and compute
Köthe duals of the spaces c0(P (q)) and c(P (q)). We state and prove the theorems characterizing

the classes of matrix mappings from the space c(P (q)) to the spaces `∞ of bounded sequences
and f of almost convergent sequences. Additionally, we also derive the characterizations of some

classes of infinite matrices as a direct consequence of the results about the classes (c(P (q)), `∞) and

(c(P (q)), f)). Finally, we obtain the necessary and sufficient conditions for a matrix operator to be
compact from the space c0(P (q)) to anyone of the spaces `∞, c, c0, `1, cs0, cs, bs.

1. Introduction and Preliminaries

The q-analog of a mathematical expression means the generalization of that expression using the
parameter q. The generalized expression returns the original expression when q approaches 1. The
study of q-calculus dates back to the time of Euler. It is a wide and an interesting area of research
in recent times. Several researchers are engaged in the field of q-calculus due to its vast applications
in mathematics, physics and engineering sciences. In the field of mathematics, it is widely used by
researchers in approximation theory, combinatorics, hypergeometric functions, operator theory, special
functions, quantum algebras, etc.

Let 0 < q < 1. Then the q-number r(q) is defined by

r(q) =


r−1∑
v=0

qv, r = 1, 2, 3, . . . ,

0, r = 0.

One can notice that r(q) = r whenever q → 1.
The q-analog

(
r
s

)
q

of the binomial coefficient
(
r
s

)
is defined by

(
r

s

)
q

=


r(q)!

(r − s)(q)!s(q)!
, r ≥ s,

0, s > r,

where q-factorial r(q)! of r is given by

r(q)! = r(q)(r − 1)(q) · · · 2(q)1(q).

Also,
(

0
0

)
q

=
(
r
0

)
q

=
(
r
r

)
q

= 1. Further,
(
r
r−s
)
q

=
(
r
s

)
q

which is a natural q-analog of its ordinary version(
r
r−s
)

=
(
r
s

)
. We strictly refer to [21] for detailed studies in q-calculus.

1.1. Sequence space. A linear subspace of ω, the space of all real- or complex-valued sequences, is
called a sequence space. Few examples of classical sequence spaces are the space `k of k-absolutely
summable sequences, 1 ≤ k < ∞, the space `∞ of bounded sequences, the space c of convergent
sequences, the space c0 of null sequences, etc. Further, the spaces of all bounded, convergent and
null series are denoted by bs, cs and cs0, respectively. A Banach sequence space having continuous
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operator.
∗Corresponding author.
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coordinates is called a BK-space. The spaces c0 and c are BK-spaces endowed with the supremum
norm ‖x‖∞ = sup

r∈N0

|xr|, where N0 is the set of non-negative integers.

It is well known that the matrix mappings between BK-spaces are continuous. Because of this
celebrated property, the theory of matrix mappings takes an important place in the study of sequence
spaces. Let X and Y be two sequence spaces and Φ = (φrs) be an infinite matrix of real or complex
entries. Further, let Φr denote the rth row of the matrix Φ, i.e., Φr = (φrs)s∈N0 for all r ∈ N0. The

sequence Φx = {(Φx)r} =
{ ∞∑
s=0

φrsxs

}
is called Φ-transform of the sequence x = (xs), provided that

the series
∞∑
s=0

φrsxs converges for each r ∈ N0. Further, if Φx ∈ Y for every sequence x ∈ X, then

the matrix Φ is said to define a matrix mapping from X to Y. The notation (X,Y ) represents the
family of all matrices that map from X to Y. Furthermore, the matrix Φ = (φrs) is called a triangle
if φrr 6= 0 and φrs = 0 for r < s.

The matrix domain XΦ of the matrix Φ in the space X is defined by

XΦ = {x ∈ ω : Φx ∈ X}. (1.1)

The set XΦ itself is a sequence space. This property plays a significant role in constructing new
sequence spaces. Additionally, if Φ is a triangle and X is a BK-space, then the sequence space XΦ

is also a BK-space equipped with the norm ‖x‖XΦ
= ‖Φx‖X . Several authors applied this celebrated

theory in the past to construct new Banach (or BK) sequence spaces using some special triangles.
For relevant literature, we refer to the papers [23,34,39,41–45] and textbooks [9, 27,40].

1.2. Compact operators and Hausdorff measure of non-compactness (Hmnc). Let X and Y
be two Banach spaces. By B(X,Y ) we denote the set of all bounded linear operators from the space X
into the space Y which is again a Banach space equipped with the norm ‖L‖ = supx∈BX

‖Lx‖, where

L ∈ B(X,Y ) and BX denotes the open ball in X. Further, we denote ‖z‖X† = supx∈BX

∣∣∣ ∞∑
s=0

zsxs

∣∣∣. In

this case, we observe that x = (xs) ∈ Xβ provided that the supremum exists.
Now, we recall the definitions of compact operator and Hmnc of a bounded set.

Definition 1.1. An operator L : X → Y is said to be compact if the domain of L is all of X and for
every bounded sequence (xr) in X, the sequence (L(xr)) has a convergent subsequence in Y.

Definition 1.2. The Hmnc of a bounded set H in a metric space X is defined by

χ(H) = inf {ε > 0 : H ⊂ ∪rs=0B(xs, as), xs ∈ X, as < ε (s = 0, 1, 2, . . . , r), r ∈ N0} ,
where B(xs, as) is the open ball centered at xs and of radius as for each s = 0, 1, 2, . . . , r.

The compact operator and Hmnc are closely related. An operator L : X → Y is compact if and
only if ‖L‖χ = 0, where ‖L‖χ denotes Hmnc of the operator L and is defined by ‖L‖χ = χ(L(BX)).
Using Hmnc, several authors obtained the necessary and sufficient conditions for matrix operators
to be compact between BK-spaces. For relevant literature, we refer to [12,13,28–31].

1.3. Pascal matrix and related sequence spaces. The Pascal matrix P = (prs) is defined by

prs =

{(
r
r−s
)
, 0 ≤ s ≤ r,

0, s > r

for all r, s ∈ N0, (see [8, 24]). The domains c(P ) and c0(P ) of the matrix P in the spaces c and
c0, respectively are studied by Polat [33]. Aydın and Polat [8] further extended these domains to
difference spaces by introducing the difference spaces c(P∇) = cP∇ and c0(P∇) = (c0)P∇, where ∇
denotes the first order backward difference operator.

Let 0 < q < 1. Then the q-analog of P (q) =
(
pqrs
)

of Pascal matrix is defined by

pqrs =

{(
r
s

)
q
, 0 ≤ s ≤ r,

0, s > r
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for all r, s ∈ N0, (cf. [38]). We refer to [19,38] for some publications dealing with q-Pascal matrices.
The construction of sequence spaces using q-analog C(q) of Cesàro matrix has been studied recently

by Demiriz and Şahin [18], where C(q) =
(
cqrs
)

is defined by

cqrs =


qs

(r + 1)(q)
, 0 ≤ s ≤ r,

0, s > r

for all r, s ∈ N0. The authors studied the domains X0(q) = (c0)C(q) and Xc(q) = cC(q). More recently,
Yaying et al. [46] studied the Banach spaces Xq

k = (`k)C(q) and Xq
∞ = (`∞)C(q), and the associated

operator ideals. For studies in q-Hausdorff matrices, we refer to [1, 2, 15,35].

1.4. The spaces f and f0. We begin with giving a short survey on the concept of almost convergence.
The shift operator P is defined on ω by Ps(x) = xs+1 for all s ∈ N0. A Banach limit L is defined on
`∞, as a non-negative linear functional such that L(Px) = L(x) and L(e) = 1, where e = (1, 1, 1, . . .).
A sequence x = (xs) ∈ `∞ is said to be almost convergent to the generalized limit α if all Banach
limits of x coincide, are equal to α [25] and is denoted by f − limxs = α. Let P k be the composition
of P with itself k times and for a sequence x = (xs), we write

trs(x) =
1

r + 1

r∑
k=0

P ks (x) for all r, s ∈ N0.

Lorentz [25] proved that f − limxs = α if and only if lim
r→∞

trs(x) = α, uniformly in s. It is well-

known that a convergent sequence is almost convergent such that its ordinary and generalized limits
are equal. For more detail on the Banach limit, the reader may refer to Çolak and Çakar [16], and
Das [17]. Now, we can define the spaces f0 and f of almost null and almost convergent sequences by

f0 :=

{
x = (xs) ∈ `∞ : lim

r→∞

r∑
k=0

xs+k
r + 1

= 0 uniformly in s

}
,

f :=

{
x = (xs) ∈ `∞ : lim

r→∞

r∑
k=0

xs+k
r + 1

= α uniformly in s for some α ∈ C
}
.

It is known that the α-, β- and γ-duals of the spaces f0 and f are the space `1, (see [14, Part (d) of
Theorem 7.1.11] and [11, Proposition 4.5]).

Inspired by the above studies, we construct the BK-spaces c0(P (q)) and c(P (q)) generated by the
q-analog P (q) of the matrix P . We exhibit some topological properties and determine the bases for
the spaces c0(P (q)) and c(P (q)). In Section 3, we compute Köthe duals (α-, β- and γ-duals) of the
spaces c0(P (q)) and c(P (q)). In Section 4, we state and prove theorems characterizing the classes
of matrix mappings from the space c(P (q)) to the spaces `∞ of bounded sequences and f of almost
convergent sequences. In the final section, we determine the necessary and sufficient conditions for a
matrix operator to be compact from the space c0(P (q)) to the space Y ∈ {`∞, c, c0, `1, bs, cs, cs0}.

2. The Sequence Spaces c0(P (q)) and c(P (q))

The q-Pascal matrix P (q) can be expressed in the explicit form as

P (q) =



(
0
0

)
q

0 0 0 · · ·(
1
0

)
q

(
1
1

)
q

0 0 · · ·(
2
0

)
q

(
2
1

)
q

(
2
2

)
q

0 · · ·(
3
0

)
q

(
3
1

)
q

(
3
2

)
q

(
3
3

)
q
· · ·

...
...

...
...

. . .

 .

Clearly, the q-Pascal matrix P (q) reduces to P when q approaches 1. Also, we observe that the sum

of the elements of the rth row is
r∑
s=0

pqrs = Gr(q), where Gr(q) is called the rth Galois number and is
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defined by the recurrence relation Gr+1(q) = 2Gr(q)+(qr−1)Gr−1(q) with G0(q) = 1 and G1(q) = 2.
If we consider the ordinary binomial coefficient in place of q-binomial coefficient, then the rth Galois
number reduces to 2r. The Galois number plays significant role in determining the number of subspaces
of a finite field. For more details, we refer to [21]. Further, we also point out here that the sequence in
each column of the matrix P (q) converges unlike the sequence in the columns of the ordinary Pascal
matrix. More specifically, pqrs → 1/[s(q)!(1− q)s], as r →∞.

Now we define the q-Pascal sequence spaces c0(P (q)) and c(P (q)) by

c0(P (q)) :=

{
x = (xs) ∈ ω : lim

r→∞

r∑
s=0

(
r

s

)
q

xs = 0

}
,

c(P (q)) :=

{
x = (xs) ∈ ω : lim

r→∞

r∑
s=0

(
r

s

)
q

xs exists

}
.

We emphasize that when q tends to 1 the spaces c0(P (q)) and c(P (q)) are reduced to the Pascal
sequence spaces c0(P ) and c(P ), respectively, introduced by Polat [33]. With the notation of (1.1),
we redefine these sequence spaces by

c0(P (q)) = (c0)P (q) and c(P (q)) = cP (q).

The sequence y = (yr) is defined as the P (q)-transform of the sequence x = (xs). That is,

yr = (P (q)x)r =

r∑
s=0

(
r

s

)
q

xs (2.1)

for each r ∈ N0. We suppose throughout that the sequences x and y are connected with the relation
in (2.1). Further, we observe by using (2.1) that

xs =

s∑
v=0

(−1)s−vq(
s−v

2 )
(
s

v

)
q

yv (2.2)

for each s ∈ N0.
Now, we state our first result.

Theorem 2.1. c0(P (q)) and c(P (q)) are BK-spaces endowed with the norm defined by

‖x‖c0(P (q)) = ‖x‖c(P (q)) = sup
r∈N0

∣∣∣∣ r∑
s=0

(
r

s

)
q

xs

∣∣∣∣.
Proof. This is a routine verification. So, we omit details. �

Theorem 2.2. c0(P (q)) ∼= c0 and c(P (q)) ∼= c.

Proof. We provide the proof for the space c0(P (q)). The proof for the space c(P (q)) can be obtained
in a similar way. Define the mapping π : c0(P (q)) → c0 by πx = y = P (q)x for all x ∈ c0(P (q)).
Clearly, π is linear and one-one. Let y = (yr) be any sequence in c0 and x = (xs) be defined as in
(2.2). Then, since y ∈ c0, we have

lim
r→∞

r∑
s=0

(
r

s

)
q

xs = lim
r→∞

r∑
s=0

(
r

s

)
q

[ s∑
t=0

(−1)s−tq(
s−t

2 )
(
s

t

)
q

yt

]
= lim
r→∞

yr = 0.

Thus we realize that x is a sequence in c0(P (q)) and the mapping π is onto, and norm preserving.
Hence, c0(P (q)) ∼= c0. �

To end this section, we construct the bases for the spaces c0(P (q)) and c(P (q)). We recall that the
domain XΦ of a triangle Φ in the space X has a basis if and only if X has a basis, (see Jarrah and
Malkowsky [20, Theorem 2.3]). This statement together with Theorem 2.2 leads us to the following
result.
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Theorem 2.3. For every fixed s ∈ N0, define the sequence b(s)(q) =
(
b
(s)
r (q)

)
of the elements of the

space c0(P (q)) by

b(s)r (q) =

{
(−1)r−sq(

r−s
2 )(r

s

)
q
, s ≤ r,

0, s > r.

Then the following statements hold:

(a) The set
{
b(0)(q), b(1)(q), b(2)(q), . . .

}
forms the basis for the space c0(P (q)) and every x ∈

c0(P (q)) has a unique representation x =
∞∑
s=0

ysb
(s)(q).

(b) The set
{
e, b(0)(q), b(1)(q), b(2)(q), . . .

}
forms the basis for the space c(P (q)) and every x ∈

c(P (q)) can be uniquely expressed in the form x = ze +
∞∑
s=0

(ys − z)b(s)(q), where ys =

(P (q)x)s → z, as s→∞.

3. Köthe Duals

In this section, we determine Köthe duals (α-, β-, γ-duals) of the spaces c(P (q)) and c0(P (q)).
Since the computation of duals is similar for both spaces, we omit the proof for the space c(P (q)).
Before proceeding, we recall the definitions of Köthe duals.

Definition 3.1. The Köthe-Toeplitz duals or α-, β- and γ-duals Xα, Xβ and Xγ of a sequence space
X are defined by

Xα :={u = (us) ∈ ω : ux = (usxs) ∈ `1 for all x ∈ X},

Xβ :={u = (us) ∈ ω : ux = (usxs) ∈ cs for all x ∈ X},
Xγ :={u = (us) ∈ ω : ux = (usxs) ∈ bs for all x ∈ X},

respectively.

The following lemma is essential to determine the dual spaces. Throughout the paper, we denote
the collection of all finite subsets of N0 by N .

Lemma 3.2 ([37]). The following statements hold:

(i) Φ = (φrs) ∈ (c0, `1) = (c, `1) if and only if

sup
K∈N

∞∑
r=0

∣∣∣∣∣∑
s∈K

φrs

∣∣∣∣∣ <∞; (3.1)

(ii) Φ = (φrs) ∈ (c0, c) if and only if

sup
r∈N0

∞∑
s=0

|φrs| <∞ (3.2)

∃αs ∈ C 3 lim
r→∞

φrs = αs for each s ∈ N0; (3.3)

(iii) Φ = (φrs) ∈ (c0, `∞) = (c, `∞) if and only if (3.2) holds.

Theorem 3.3. The α-dual of the spaces c0(P (q)) and c(P (q)) is the set δ1(q) which is defined by

δ1(q) :=

{
z = (zr) ∈ ω : sup

R∈N

∞∑
s=0

∣∣∣∣∑
r∈R

(−1)r−sq(
r−s

2 )
(
r

s

)
q

zr

∣∣∣∣ <∞}
Proof. Consider the following equality:

zrxr =

r∑
s=0

(−1)r−sq(
r−s

2 )
(
r

s

)
q

zrys = (A(q)y)r (3.4)
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for all r ∈ N0, where the matrix A(q) =
(
aqrs
)

is defined by

aqrs =

{
(−1)r−sq(

r−s
2 )(r

s

)
q
zr, 0 ≤ s ≤ r,

0, s > r

for all r, s ∈ N0. We realize by using (3.4) that zx = (zrxr) ∈ `1 whenever x ∈ c0(P (q)) if and only
if A(q)y ∈ `1 whenever y ∈ c0. Thus we deduce that z = (zr) is a sequence in the α-dual of c0(P (q))
if and only if the matrix A(q) belongs to the class (c0, `1). Thus we conclude from Part (i) of Lemma
3.2 that [c0(P (q))]

α
= δ1(q). �

Theorem 3.4. Define the sets δ2(q), δ3(q) and δ4(q) by

δ2(q) :=

{
z = (zr) ∈ ω :

∞∑
r=s

(−1)r−sq(
r−s

2 )
(
r

s

)
q

zr exists for each s ∈ N0

}
,

δ3(q) :=

{
z = (zr) ∈ ω : sup

r∈N0

r∑
s=0

∣∣∣∣ r∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

zt

∣∣∣∣ <∞},
δ4(q) :=

{
z = (zr) ∈ ω : lim

r→∞

r∑
s=0

r∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

zt exists

}
.

Then [c0(P (q))]
β

= δ2(q) ∩ δ3(q) and [c(P (q))]
β

= δ2(q) ∩ δ3(q) ∩ δ4(q).

Proof. Consider the following equality

r∑
s=0

zsxs =

r∑
s=0

[ s∑
t=0

(−1)s−tq(
s−t

2 )
(
s

t

)
q

yt

]
zs

=

r∑
s=0

[
r∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

zt

]
ys

=(B(q)y)r (3.5)

for each r ∈ N0, where the matrix B(q) = (bqrs) is defined by

bqrs =


r∑
t=s

(−1)t−sq(
t−s

2 )(t
s

)
q
zt, 0 ≤ s ≤ r,

0, s > r

for all r, s ∈ N0. Thus, on using (3.5), we realize that zx = (zrxr) ∈ cs whenever x = (xr) ∈ c0(P (q))
if and only if B(q)y ∈ c whenever y = (ys) ∈ c0. This yields that z = (zr) is a sequence in β-dual of
c0(P (q)) if and only the matrix B(q) belongs to the class (c0, c). This in turn implies by using Part
(ii) of Lemma 3.2 that

sup
r∈N0

r∑
s=0

|bqrs| <∞ and lim
r→∞

bqrs exists for each s ∈ N0.

Thus [c0(P (q))]
β

= δ2(q) ∩ δ3(q). �

Theorem 3.5. The γ-dual of the spaces c0(P (q)) and c(P (q)) is the set δ3(q).

Proof. This is similar to the proof of Theorem 3.4 with Part (iii) instead of Part (ii) of Lemma 3.2.
To avoid the repetition of the similar statements, we omit details. �
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4. Matrix Mappings

In the present section, we essentially determine the necessary and sufficient conditions for a matrix
to define the mapping from the space c(P (q)) to the spaces `∞ and f , firstly. Later, we give the
characterizations from the space c(P (q)) to any of the spaces c, f0, c0, bs, fs, fs0, cs, cs0.

Now, define the matrix Θ = (θrs) via the matrix Φ = (φrs) by

θrs =

∞∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

φrt for all r, s ∈ N0. (4.1)

Throughout the text, we suppose that the elements of the matrices Θ = (θrs) and Φ = (φrs) are
connected with the relation (4.1).

Theorem 4.1. Φ = (φrs) ∈ (c(P (q)), `∞) = (c0(P (q)), `∞) if and only if

sup
r∈N0

∞∑
s=0

|θrs| <∞. (4.2)

Proof. Suppose that (4.2) holds and take any x = (xs) ∈ c(P (q)). Then Φr = (φrs)s∈N0 ∈ [c(P (q))]β

for each r ∈ N0. This implies the existence of Φx. Let r ∈ N0 be fixed. Let us consider the following

equality obtained from the jth partial sum of the series
∞∑
s=0

φrsxs with (2.2):

j∑
s=0

φrsxs =

j∑
s=0

φrs

[ s∑
t=0

(−1)s−tq(
s−t

2 )
(
s

t

)
q

yt

]

=

j∑
s=0

[ j∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

φrt

]
ys (4.3)

for all j, r ∈ N0. Then, by letting j →∞ in (4.3), we observe that

(Φx)r =

∞∑
s=0

θrsys = (Θy)r (4.4)

for all r ∈ N0. Therefore the condition in (3.2) of Part (iii) of Lemma 3.2 is satisfied by the matrix Θ.
This leads to the fact that Θy = Φx ∈ `∞. Hence the condition in (4.2) is sufficient.

Conversely, suppose that Φ = (φrs) ∈ (c(P (q)), `∞). Then Φx exists and belongs to the space `∞
for every x = (xs) ∈ c(P (q)). Then Φr = (φrs)s∈N0 ∈ [c(P (q))]β for each r ∈ N0. This means that the
condition in (4.2) is necessary. �

Prior to giving the theorem characterizing the class of matrix transformations from the space
c(P (q)) to the space f , we quote the following lemma due to King [22] which yields the necessary and
sufficient conditions of the class (c, f) of almost conservative matrices.

Lemma 4.2. Φ = (φrs) ∈ (c, f) if and only if

sup
r∈N0

∞∑
s=0

|φrs| <∞, (4.5)

∃(αs) ∈ ω such that f − lim φrs = αs for each s ∈ N0, (4.6)

∃α ∈ C such that f − lim

∞∑
s=0

φrs = α. (4.7)

Theorem 4.3. Φ = (φrs) ∈ (c(P (q)), f) if and only if (4.2) holds, and

∃(αs) ∈ ω such that f − lim θrs = αs for each s ∈ N0, (4.8)

∃α ∈ C such that f − lim

∞∑
s=0

θrs = α. (4.9)
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Proof. Suppose that the conditions in (4.2), (4.8) and (4.9) hold, and take any x = (xs) ∈ c(P (q)).
Then, since Φr = (φrs)s∈N0

∈ [c(P (q))]β for each r ∈ N0, Φx exists. Therefore, bearing in mind the
relation (4.4), one can see that the conditions in (4.2), (4.8) and (4.9) correspond to the conditions in
(4.5), (4.6) and (4.7) of Lemma 4.2 with θrs instead of φrs, respectively. That is to say that Θy ∈ f
which leads by (4.4) to the desired result that Φ ∈ (c(P (q)), f).

Conversely, let Φ = (φrs) ∈ (c(P (q)), f). Then Φx exists and is in the space f for all x = (xs) ∈
c(P (q)). Since the inclusion f ⊂ `∞ holds, the necessity of the condition in (4.2) follows from Theorem
4.1. In this situation, since we again have (4.4), one can easily see by passing to f -limit that Θy ∈ f .
Hence Θ ∈ (c, f). Therefore the conditions in (4.6) and (4.7) are satisfied by the matrix Θ which
correspond to the conditions in (4.8) and (4.9). �

If we replace the space f0 by the space f , then Theorem 4.3 reduces to the following:

Corollary 4.4. Φ = (φrs) ∈ (c(P (q)), f0) if and only if (4.2) holds, and

f − lim θrs = 0 for each s ∈ N0, (4.10)

f − lim

∞∑
s=0

θrs = 0. (4.11)

If we replace the spaces c and c0 by the spaces f and f0, then Theorem 4.3 and Corollary 4.4
respectively reduce to the following

Corollary 4.5. Φ = (φrs) ∈ (c(P (q)), c) if and only if (4.2) holds, and

∃(αs) ∈ ω such that lim
r→∞

θrs = αs for each s ∈ N0, (4.12)

∃α ∈ C such that lim
r→∞

∞∑
s=0

θrs = α. (4.13)

Corollary 4.6. Φ = (φrs) ∈ (c(P (q)), c0) if and only if (4.2) holds, and

lim
r→∞

θrs = 0 for each s ∈ N0, (4.14)

lim
r→∞

∞∑
s=0

θrs = 0. (4.15)

Lemma 4.7 ([10, Lemma 5.3]). Let X and Y be any two sequence spaces, A be an infinite matrix,
and B be a triangle matrix. Then A ∈ (X,YB) if and only if BA ∈ (X,Y ).

It is trivial that combining Theorems 4.1, 4.3 and Corollaries 4.4, 4.5 and 4.6 with Lemma 4.7, one
can derive the following results.

Corollary 4.8. Let Φ = (φrs) be an infinite matrix over the complex field. Then the following
statements hold:

(i) Φ ∈ (c(P (q)), bs) if and only if (4.2) holds with
r∑
j=0

θjs instead of θrs for all r, s ∈ N0.

(ii) Φ ∈ (c(P (q)), bv∞) if and only if (4.2) holds with θrs−θr−1,s instead of θrs, where bv∞ denotes
the space of all sequences x = (xs) such that (xs − xs−1) ∈ `∞, (cf. Başar and Altay [10]).

(iii) Φ ∈ (c(P (q)), X∞) if and only if (4.2) holds with
r∑
j=0

θjs/(r+1) instead of θrs for all r, s ∈ N0,

where X∞ denotes the space of all sequences x = (xs) such that
{ r∑
s=0

xs/(r + 1)
}
∈ `∞,

(cf. Ng and Lee [32]).

(iv) Φ ∈ (c(P (q)), gt∞) if and only if (4.2) holds with
r∑
j=0

tjθjs/Tr instead of θrs for all r, s ∈ N0,

where Tr = t0 + t1 + · · · + tr and gt∞ denotes the space of all sequences x = (xs) such that( r∑
s=0

tsxs/Tr

)
∈ `∞, (cf., Altay and Başar [4]).
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(v) Φ ∈ (c(P (q)), at∞) if and only if (4.2) holds with
r∑
j=0

(1 + tj)θjs/(1 + r) instead of θrs for all

r, s ∈ N0, where at∞ denotes the space of all sequences x = (xs) such that
{ r∑
s=0

(1 + ts)xs/(1 +

r)
}
∈ `∞, (cf., Aydın and Başar [7]).

(vi) Φ ∈ (c(P (q)), et∞) if and only if (4.2) holds with
r∑
j=0

(
r
j

)
(1 − t)r−jtjθjs instead of θrs for

all r, s ∈ N0, where et∞ denotes the space of all sequences x = (xs) such that
{ r∑
s=0

(
r
s

)
(1 −

t)r−stsxs

}
∈ `∞, (cf., Altay et al. [5]).

Corollary 4.9. Let Φ = (φrs) be an infinite matrix over the complex field. Then the following
statements hold:

(i) Φ ∈ (c(P (q)), fs) if and only if (4.2), (4.8) and (4.9) hold with
r∑
j=0

θjs instead of θrs for all

r, s ∈ N0, where fs denotes the space of all series whose sequence of partial sums are in the
space f .

(ii) Φ ∈ (c(P (q)), cs) if and only if (4.2), (4.12) and (4.13) hold with
r∑
j=0

θjs instead of θrs for all

r, s ∈ N0.
(iii) Φ ∈ (c(P (q)), c(∆)) if and only if (4.2), (4.12) and (4.13) hold with θrs − θr−1,s instead

of θrs for all r, s ∈ N0, where c(∆) denotes the space of all sequences x = (xs) such that
(xs − xs−1) ∈ c, (cf., Başar [9]).

(iv) Φ ∈ (c(P (q)), c̃) if and only if (4.2), (4.12) and (4.13) hold with
r∑
j=0

θjs/(r + 1) instead of θrs

for all k, n ∈ N0, where c̃ denotes the space of all sequences x = (xs) such that
{ r∑
s=0

xs/(r +

1)
}
∈ c, (cf., Şengönül and Başar [36]).

(v) Φ ∈ (c(P (q)), gtc) if and only if (4.2), (4.12) and (4.13) hold with
r∑
j=0

tjθjs/Tr instead of θrs for

all r, s ∈ N0, where gtc denotes the space of all sequences x = (xs) such that
( r∑
s=0

tsxs/Tr

)
∈ c,

(cf., Altay and Başar [4]).

(vi) Φ ∈ (c(P (q)), atc) if and only if (4.2), (4.12) and (4.13) hold with
r∑
j=0

(1 + tj)θjs/(1 + r) instead

of θrs for all r, s ∈ N0, where atc denotes the space of all sequences x = (xs) such that{ r∑
s=0

(1 + ts)xs/(1 + r)
}
∈ c, (cf., Aydın and Başar [6]).

(vii) Φ ∈ (c(P (q)), etc) if and only if (4.2), (4.12) and (4.13) hold with
r∑
j=0

(
r
j

)
(1− t)r−jtjθjs instead

of θrs for all r, s ∈ N0, where etc denotes the space of all sequences x = (xs) such that{ r∑
s=0

(
r
s

)
(1− t)r−stsxs

}
∈ c, (cf., Altay and Başar [3]).

Corollary 4.10. Let Φ = (φrs) be an infinite matrix over the complex field. Then the following
statements hold:

(i) Φ ∈ (c(P (q)), fs0) if and only if the conditions in (4.2), (4.10) and (4.11) hold with
r∑
j=0

θjs

instead of θrs for all r, s ∈ N0, where fs0 denotes the space of all series whose sequence of
partial sums are in the space f0.
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(ii) Φ ∈ (c(P (q)), cs0) if and only if the conditions in (4.2), (4.14) and (4.15) hold with
r∑
j=0

θjs

instead of θrs for all r, s ∈ N0.
(iii) Φ ∈ (c(P (q)), c0(∆)) if and only if the conditions in (4.2), (4.14) and (4.15) hold with θrs −

θr−1,s instead of θrs for all r, s ∈ N0, where c0(∆) denotes the space of all sequences x = (xs)
such that (xs − xs−1) ∈ c0, (cf., Başar [9]).

(iv) Φ ∈ (c(P (q)), c̃0) if and only if the conditions in (4.2), (4.14) and (4.15) hold with
r∑
j=0

θjs/(r+ 1)

instead of θrs for all k, n ∈ N0, where c̃0 denotes the space of all sequences x = (xs) such that{ r∑
s=0

xs/(r + 1)
}
∈ c0, (cf., Şengönül and Başar [36]).

(v) Φ ∈ (c(P (q)), gt0) if and only if the conditions in (4.2), (4.14) and (4.15) hold with
r∑
j=0

tjθjs/Tr

instead of θrs for all r, s ∈ N0, where gt0 denotes the space of all sequences x = (xs) such that( r∑
s=0

tsxs/Tr

)
∈ c0, (cf., Altay and Başar [4]).

(vi) Φ ∈ (c(P (q)), ar0) if and only if the conditions in (4.2), (4.14) and (4.15) hold with
r∑
j=0

(1 +

tj)θjs/(1 + r) instead of θrs for all r, s ∈ N0, where at0 denotes the space of all sequences

x = (xs) such that
{ r∑
s=0

(1 + ts)xs/(1 + r)
}
∈ c0, (cf., Aydın and Başar [6]).

(vii) Φ ∈ (c(P (q)), et0) if and only if the conditions in (4.2), (4.14) and (4.15) hold with
r∑
j=0

(
r
j

)
(1−

t)r−jtjθjs instead of θrs for all r, s ∈ N0, where et0 denotes the space of all sequences x = (xs)

such that
{ r∑
s=0

(
r
s

)
(1− t)r−stsxs

}
∈ c0, (cf., Altay and Başar [3]).

5. Compactness by Hmnc

It is known from Part (a) of Theorem 3.2.4 of [27] that if X and Y are any two BK-spaces, then
every matrix Φ ∈ (X,Y ) defines a linear operator LΦ ∈ B(X,Y ), where LΦx = Φx for all x ∈ X.
Moreover, if X ⊃ σ is a BK-space and Φ ∈ (X,Y ), then ‖LΦ‖ = ‖Φ‖(X,Y ) = supr∈N0

‖|Φr‖X† <
∞ (see [26, Theorem 1.23]), where σ represents the set of all sequences that terminate in zeroes. The
following lemmas are essential for our investigation.

Lemma 5.1. `β∞ = cβ = cβ0 = `1. Further, if X ∈ {`∞, c, c0}, then ‖x‖X† = ‖x‖`1 .

Lemma 5.2 ([26, Theorem 2.15]). Let H be a bounded subset in c0 and define the operator πr : c0 → c0
by πr(x0, x1, x2, . . .) = (x0, x1, x2, . . . , xr, 0, 0, . . .) for all x = (xr) ∈ c0, then

χ(H) = lim
r→∞

[
sup
r∈H
‖(I − πr)(x)‖

]
,

where I is the identity operator on c0.

Lemma 5.3 ([29, Theorem 3.7]). Let X ⊃ σ be a BK-space. Then the following statements hold:

(a) If Φ ∈ (X, c0), then ‖LΦ‖χ = lim sup
r→∞

‖Φr‖X† and LΦ is compact if and only if lim
r→∞

‖Φr‖X† =

0.
(b) If X has AK and Φ ∈ (X, c), then

1

2
lim sup
r→∞

‖Φr − φ‖X† ≤ ‖LΦ‖χ ≤ lim sup
r→∞

‖Φr − φ‖X†

and LΦ is compact if and only if lim
r→∞

‖Φr − φ‖X† = 0, where φ = (φs) with φrs → φs, as

r →∞, for all s ∈ N0.
(c) If Φ ∈ (X, `∞), then 0 ≤ ‖LΦ‖χ ≤ lim sup

r→∞
‖Φr‖X† and LΦ is compact if lim

r→∞
‖Φr‖X† = 0.
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In the rest of the paper, Rm is the subcollection of R consisting of subsets of N0 with elements
that are greater than m.

Lemma 5.4 ([29, Theorem 3.11]). Let X ⊃ σ be a BK-space. If Φ ∈ (X, `1), then

lim
m→∞

(
sup
R∈Rm

∥∥∥∥∑
r∈R

Φr

∥∥∥∥
X†

)
≤ ‖LΦ‖χ ≤ 4 · lim

m→∞

(
sup
R∈Rm

∥∥∥∥∑
r∈R

Φr

∥∥∥∥
X†

)
and LΦ is compact if and only if lim

m→∞

(
sup
R∈Rm

∥∥∥ ∑
r∈R

Φr

∥∥∥
X†

)
= 0.

Lemma 5.5 ([29, Theorem 4.4, Corollary 4.5]). Let X ⊃ σ be a BK-space and let

‖Φ‖[r]bs =

∥∥∥∥ r∑
s=0

Φs

∥∥∥∥
X†
.

Then the following statements hold:

(a) If Φ ∈ (X, cs0), then ‖LΦ‖χ = lim sup
r→∞

‖Φ‖[r](X,bs) and LΦ is compact if and only if lim
r→∞

‖Φ‖[r](X,bs)

= 0.
(b) If X has AK and Φ ∈ (X, cs), then

1

2
lim sup
r→∞

∥∥∥∥ r∑
s=0

Φs − φ̃
∥∥∥∥
X†
≤ ‖LΦ‖χ ≤ lim sup

r→∞

∥∥∥∥ r∑
s=0

Φs − φ̃
∥∥∥∥
X†

and LΦ is compact if and only if lim sup
r→∞

∥∥∥ r∑
s=0

Φs − φ̃
∥∥∥
X†

= 0, where φ̃ = (φ̃s) with

φ̃s = lim
r→∞

r∑
m=0

φms for all s ∈ N0.

(c) If Φ ∈ (X, bs), then 0 ≤ ‖LΦ‖χ ≤ lim sup
r→∞

‖Φ‖[r](X,bs) and LΦ is compact if lim
r→∞

‖Φ‖[r](X,bs) = 0.

Lemma 5.6. Let X be a sequence space and Φ = (φrs) be an infinite matrix. If Φ ∈ (c0(P (q)), X),
then Θ ∈ (c0, X) and Φx = Θy for all x ∈ c0(P (q)).

Proof. Let Φ ∈ (c0(P (q)), X) and x ∈ c0(P (q)). Then Φr = (φrs)s∈N0 ∈ [c0(P (q))]
β

for all r ∈ N0.
Consider the following equality:

(Θy)r =

∞∑
s=0

θrsys

=

∞∑
s=0

∞∑
t=s

(−1)t−sq(
t−s

2 )
(
t

s

)
q

φrt

[ s∑
v=0

(
s

v

)
q

xv

]

=

∞∑
s=0

φrsxs = (Φx)r

for all r ∈ N0. Thus we realize that Θr is absolutely summable for each r ∈ N0 and Θy ∈ X. This
yields the desired consequence Θ ∈ (c0, X). �

Theorem 5.7. The following statements hold:

(a) If Φ ∈ (c0(P (q)), c0), then ‖LΦ‖χ = lim sup
r→∞

∞∑
s=0
|θrs| .

(b) If Φ ∈ (c0(P (q)), c), then

1

2
lim sup
r→∞

∞∑
s=0

|θrs − θ| ≤ ‖LΦ‖χ ≤ lim sup
r→∞

∞∑
s=0

|θrs − θ| ,

where θ = (θs) and θs = lim
r→∞

θrs for each s ∈ N0.

(c) If Φ ∈ (c0(P (q)), `∞), then 0 ≤ ‖LΦ‖χ ≤ lim sup
r→∞

∞∑
s=0
|θrs| .
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(d) If Φ ∈ (c0(P (q)), `1), then

lim
m→∞

‖Φ‖[m]
(c0(P (q)),`1) ≤ ‖LΦ‖χ ≤ 4 lim

m→∞
‖Φ‖[m]

(c0(P (q)),`1) ,

where ‖Φ‖[m]
(c0(P (q)),`1) = supR∈Rm

∞∑
s=0

∣∣∣ ∑
r∈R

θrs

∣∣∣.
(e) If Φ ∈ (c0(P (q)), cs0), then ‖LΦ‖χ = lim sup

r→∞

( ∞∑
s=0

∣∣∣ r∑
t=0

θts

∣∣∣).

(f) If Φ ∈ (c0(P (q)), cs), then

1

2
lim sup
r→∞

( ∞∑
s=0

∣∣∣∣ r∑
t=0

θts − θ̃
∣∣∣∣) ≤ ‖LΦ‖χ ≤ lim sup

r→∞

( ∞∑
s=0

∣∣∣∣ r∑
t=0

θts − θ̃
∣∣∣∣),

where θ̃ = (θ̃s) with θ̃s = lim
r→∞

r∑
t=0

θts for each s ∈ N0.

(g) If Φ ∈ (c0(P (q)), bs), then 0 ≤ ‖LΦ‖χ ≤ lim sup
r→∞

( ∞∑
s=0

∣∣∣ r∑
t=0

θts

∣∣∣).
Proof. (a) Let Φ ∈ (c0(P (q)), c0) . We observe that

‖Φr‖c0(P (q))† = ‖Θr‖c†0 = ‖Θr‖`1 =

∞∑
s=0

|θrs|

for r ∈ N0. We realize by using Part (a) of Lemma 5.3 that

‖LΦ‖χ = lim sup
r→∞

( ∞∑
s=0

|θrs|
)
.

(b) Notice that

‖Θr − θ‖c†0 = ‖Θr − θ‖`1 =

r∑
s=0

|θrs − θs| (5.1)

for each r ∈ N0. Now, let Φ ∈ (c0(P (q)), c). Then Lemma 5.6 implies that Θ ∈ (c0, c).
Employing Part (b) of Lemma 5.3, we deduce that

1

2
lim sup
r→∞

‖Θr − θ‖c†0 ≤ ‖LΦ‖χ ≤ lim sup
r→∞

‖Θr − θ‖c†0 ,

which yields in the light of (5.1) that

1

2
lim sup
r→∞

∞∑
s=0

|θrs − θs| ≤ ‖LΦ‖χ ≤ lim sup
r→∞

∞∑
s=0

|θrs − θs|

which is the desired result.
(c) The proof is analogous to that of Part (a). So, we omit details.
(d) We have ∥∥∥∥∑

r∈R
Θr

∥∥∥∥
c†0

=

∥∥∥∥∑
r∈R

Θr

∥∥∥∥
`1

=

∞∑
s=0

∣∣∣∣∑
r∈R

θrs

∣∣∣∣. (5.2)

Let Φ ∈ (c0(P (q)), `1). Then Lemma 5.6 implies that Θ ∈ (c0, `1) . Hence by using Lemma
5.4, we get

lim
m→∞

(
sup
R∈Rm

∥∥∥∥∑
r∈R

Θr

∥∥∥∥
c†0

)
≤ ‖LΦ‖χ ≤ 4 · lim

m→∞

(
sup
R∈Rm

∥∥∥∥∑
r∈R

Θr

∥∥∥∥
c†0

)
which is reduced by using (5.2) to

lim
m→∞

‖Φ‖[m]
(c0(P (q)),`1) ≤ ‖LΦ‖χ ≤ 4 lim

m→∞
‖Φ‖[m]

(c0(P (q)),`1) ,

as desired.
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(e) Notice that ∥∥∥∥ r∑
t=0

Φt

∥∥∥∥
c0(P (q))†

=

∥∥∥∥ r∑
t=0

Θt

∥∥∥∥
c†0

=

∥∥∥∥ r∑
t=0

Θt

∥∥∥∥
`1

=

∞∑
s=0

∣∣∣∣ r∑
t=0

θts

∣∣∣∣,
which yields by using Part (a) of Lemma 5.5 that

‖LΦ‖χ = lim sup
r→∞

( ∞∑
s=0

∣∣∣∣ r∑
t=0

θts

∣∣∣∣).
(f) We have ∥∥∥∥ r∑

t=0

Θt − θ̃
∥∥∥∥
c†0

=

∥∥∥∥ r∑
t=0

Θt − θ̃
∥∥∥∥
`1

=

∞∑
s=0

∣∣∣∣ r∑
t=0

θts − θ̃s
∣∣∣∣ (5.3)

for each r ∈ N0. Let Φ ∈ (c0(P (q)), cs). Then Lemma 5.6 implies that Θ ∈ (c0, cs). Thus with
the aid of Part (b) of Lemma 5.5, we deduce that

1

2
lim sup
r→∞

∥∥∥∥ r∑
t=0

Θt − θ̃s
∥∥∥∥
c†0

≤ ‖LΦ‖χ ≤ lim sup
r→∞

∥∥∥∥ r∑
t=0

Θt − θ̃t
∥∥∥∥
c†0

,

which yields us by using (5.3) that

1

2
lim sup
r→∞

(∑
s=0

∣∣∣∣ r∑
t=0

θts − θ̃s
∣∣∣∣) ≤ ‖LΦ‖χ ≤ lim sup

r→∞

( ∞∑
s=0

∣∣∣∣ r∑
t=0

θts − θ̃s
∣∣∣∣),

as desired.
(g) Since the proof is analogous to that of Part (e), we omit the details. �

Now, we have the following

Corollary 5.8. The following statements hold: (a) Let Φ ∈ (c0(P (q)), c0). Then LΦ is compact if

and only if lim
r→∞

∞∑
s=0
|θrs| = 0.

(b) Let Φ ∈ (c0(P (q)), c). Then LΦ is compact if and only if lim
r→∞

( ∞∑
s=0

∣∣∣θ̃rs − θ̃s∣∣∣ ) = 0.

(c) Let Φ ∈ (c0(P (q)), `∞). Then LΦ is compact if lim
r→∞

∞∑
s=0
|θrs| = 0.

(d) Let Φ ∈ (c0(P (q)), `1). Then LΦ is compact if and only if lim
m→∞

[
sup
R∈Rm

( ∞∑
s=0

∣∣∣ ∑
r∈R

θrs

∣∣∣)] = 0.

(e) Let Φ ∈ (c0(P (q)), cs0). Then LΦ is compact if and only if lim sup
r→∞

( ∞∑
s=0

∣∣∣ r∑
t=0

θts

∣∣∣) = 0.

(f) Let Φ ∈ (c0(P (q)), cs). Then LΦ is compact if and only if lim sup
r→∞

( ∞∑
s=0

∣∣∣ r∑
t=0

θts − θ̃
∣∣∣) = 0.

(g) Let Φ ∈ (c0(P (q)), bs). Then LΦ is compact if lim sup
r→∞

( ∞∑
s=0

∣∣∣ r∑
t=0

θts

∣∣∣) = 0.
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Current address: Dumlupınar Mah. Hızırbey Cad. Binyıl Apt. No: 179-181, D:1, 34730 – Kadıköy/İstanbul,
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