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MATHEMATICAL STRUCTURES VIA b-OPEN SETS

SHYAMAPADA MODAK AND JIARUL HOQUE

Abstract. In view of a kernel, s-kernel and b-kernel in a topological space, we study a new type of

generalized closed set through this write-up. This type of generalized closed set splits various types
of collections of generalized open sets, as well as different types of collections of generalized closed

sets. Since the collection of b-open sets in a topological space is a generalization of both collections of

semi-open sets and pre-open sets, the study of generalized closed sets via b-open set is a remarkable
part.

1. Introduction

H. Maki [13] in 1986 initiated the concept of Λ-sets in topological spaces. A Λ-set is a set A which
coincides with its kernel (= saturated set) i.e., with the intersection of all open sets containing A. In
1997, Arenas et al. [2] introduced and studied the notion of λ-closed and λ-open sets by using Λ-sets
and closed sets. In 1996, D. Andrijević [1] gave a new type of generalized open sets, called b-open
sets, whereas generalized locally closed sets have been studied by Modak and Noiri [15] in 2019. Ekici
and Caldas [8] studied b-open sets under the name of γ-open sets.

The aim of this paper is to introduce a new class of sets called gbΛ-closed sets and gbΛ-open sets
in a topological space and to study their properties and characterizations. Throughout this paper, we
denote by η a topological space, where X is a set and τ is a topology on X on which no separation
axioms are accepted, unless explicitly mentioned. The collection of all closed sets in a topological
space η is denoted by C(τ). For a subset A of a topological space η, its closure (resp., interior) is
denoted by Cl(A) (resp., Int(A)) and they obey Int(A) = X \ Cl(X \A).

2. Known Facts

Let us recall the followings representing mathematical tools for our paper.
For a topological space η, a subset A of X is said to be b-open [1]

(
resp., semi-open [11], b-closed [1],

semi-closed [11]
)

if A ⊆ Cl
(

Int(A)
)
∪Int

(
Cl(A)

) (
resp., A ⊆ Cl

(
Int(A)

)
, Cl

(
Int(A)

)
∩Int

(
Cl(A)

)
⊆

A, Int
(
Cl(A)

)
⊆ A

)
.

The family of all b-open
(
resp., semi-open, b-closed, semi-closed

)
sets in a topological space η is

denoted by Ob(X)
(
resp., Os(X), Cb(τ), Cs(τ)

)
. The intersection of all b-closed

(
resp., semi-closed

)
subsets of X containing A is called b-closure

(
resp., semi-closure

)
of A and is denoted by Clb(A)(

resp., Cls(A)
)
.

The kernels are defined as follows:
Kernel [13]

(
resp., b-kernel [5], s-kernel [14]

)
of A is denoted by Ker(A)

(
resp., Kerb(A), Kers(A)

)
and is defined as Ker(A) =

⋂{
U ⊆ X : U ⊇ A, U ∈ τ

} (
resp., Kerb(A) =

⋂{
U ⊆ X : U ⊇ A, U ∈

Ob(X)
}

, Kers(A) =
⋂{

U ⊆ X : U ⊇ A, U ∈ Os(X)
})

.
In this respect, a subset A of X is said to be a Λ-set [13] if A = Ker(A).
The collection of all Λ-sets in a topological space η is denoted by OΛ(X). In general, Ker(A) is

neither an open set, nor a closed set.
A subset A of X is called:
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• λ-closed [2]
(
resp., generalized closed, or briefly, g-closed [12]

)
if A = B∩F , where B ∈ OΛ(X)

and F ∈ C(τ)
(
resp., Cl(A) ⊆ U , whenever A ⊆ U and U ∈ τ

)
. The complement of a λ-

closed
(
resp., g-closed

)
set is called λ-open

(
resp., g-open

)
. The collection of λ-closed

(
resp.,

λ-open, g-closed, g-open
)

sets in a topological space η is denoted by Cλ(τ)
(
resp., Oλ(X),

Cg(τ), Og(X)
)
.

• g∗-closed [10]
(
resp., generalized semi-closed (briefly, gs-closed) [3], semi-generalized closed

(briefly, sg-closed) [3], Λg-closed [6], gΛ-closed [6], gsΛ-closed [14], weakly closed (briefly, w-
closed) [16]

)
set if Cl(A) ⊆ U , whenever A ⊆ U and U ∈ Og(X)

(
resp., Cls(A) ⊆ U , whenever

A ⊆ U and U ∈ τ , Cls(A) ⊆ U , whenever A ⊆ U and U ∈ Os(X), Cl(A) ⊆ U , whenever A ⊆
U and U ∈ Oλ(X), Clλ(A) ⊆ U , whenever A ⊆ U and U ∈ τ , Clλ(A) ⊆ U , whenever A ⊆ U
and U ∈ Os(X), Cl(A) ⊆ U , whenever A ⊆ U and U ∈ Os(X)

)
. The family of all j-closed

sets in a topological space η is denoted by Cj(τ), where j ∈
{
g∗, gs, sg, Λg, gΛ, gsΛ, w

}
.

In view of the above, in [2], it has been shown that A is closed if and only if A = F ∩Cl(A)
(
where

F is a Λ-set
)

if and only if A = Ker(A) ∩ Cl(A); τ ⊆ OΛ(X) ⊆ Cλ(τ) and C(τ) ⊆ Cλ(τ).

Recall that a point x ∈ X is said to be a λ-cluster [4]
(
resp., λ-interior [4]

)
point of A if for every(

resp., there exists a
)
λ-open set U of X containing x, A ∩ U 6= ∅

(
resp., such that U ⊆ A

)
. The

collection of all λ-cluster
(
resp., λ-interior

)
points of A is called the λ-closure

(
resp., λ-interior

)
of A

and is denoted by Clλ(A)
(
resp., Intλ(A)

)
.

In view of the above, the authors Caldas et al. [4] have shown that A is λ-closed if and only
if Clλ(A) = A; Clλ(A) =

⋂{
F ∈ Cλ(τ) : A ⊆ F

}
; A ⊆ Clλ(A) ⊆ Cl(A), Clλ(A) is λ-closed;

X \ Intλ(A) = Clλ(X \A) and for A ⊆ B, Clλ(A) ⊆ Clλ(B).
Recall that a point x ∈ X is said to be a λ-limit point [4] of A if for each λ-open set U containing x,

U ∩
(
A \

{
x
})
6= ∅. The set of all λ-limit points of A is called λ-derived set of A and is denoted by

Dλ(A).
In this context, the author Caldas et al. [4] showed that Dλ(A) ⊆ D(A) and Clλ(A) = A ∪Dλ(A)

for a subset A of X, where D(A) is the derived set of A.

3. The Role of b-open Sets as a Kernel

In this section, we split the collections τ , OΛ(X), Cλ(τ), CgbΛ(τ), CgΛ(τ), C(τ) and CgsΛ(τ). We
study the collections in a topological space which are not related to the collection CgbΛ(τ).

Definition 1. Let η be a topological space and A ⊆ X. A is said to be gbΛ-closed in X if Clλ(A) ⊆ U ,
whenever A ⊆ U and U ∈ Ob(X).

The collection of all gbΛ-closed sets in a topological space η is denoted by CgbΛ(τ).
The following example shows the existence of a gbΛ-closed set in R.

Example 2. Consider the set R of real numbers with usual topology and A = (0, 1) ∩ Q, where
Q stands for the set of all rational numbers. Then Ker(A) = Ker

( ⋃
x∈A

{
x
})

=
⋃
x∈A

Ker
({
x
})

=⋃
x∈A

{
x
}

= A and hence A = Ker(A) ∩ Cl(A). Therefore A is λ-closed implies Clλ(A) = A. Thus for

any b-open set U ⊇ A, Clλ(A) ⊆ A. Hence A is gbΛ-closed in R.

Theorem 3. Let η be a topological space. Then Cλ(τ) ⊆ CgbΛ(τ).

Proof. Follows from the fact that for a λ-closed set A, Clλ(A) = A. �

The following example shows that the reverse inclusion of Theorem 3 does not hold, in general.

Example 4. Let X =
{
e1, e2, e3, e4, e5

}
and τ =

{
∅,
{
e1

}
,
{
e1, e2, e3

}
,
{
e1, e4, e5

}
, X
}

. Here,{
e2, e3, e4, e5

}
is gbΛ-closed, but not λ-closed.

However, we can give the converse of Theorem 3 as follows:

Theorem 5. Let η be a topological space and A ⊆ X. If A ∈ Ob(X) ∩ CgbΛ(τ), then A ∈ Cλ(τ).
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Proof. Follows from the definition of a gbΛ-closed set. �

Theorem 6. Let η be a topological space and A ⊆ X. Then for A ∈ C(τ), A ∈ CgbΛ(τ).

Proof. Follows from the fact that C(τ) ⊆ Cλ(τ) ⊆ CgbΛ(τ). �

For the converse of Theorem 6 we consider the following example.

Example 7. Let X =
{
e1, e2, e3, e4, e5

}
and τ =

{
∅,
{
e1

}
,
{
e1, e2, e3

}
,
{
e1, e4, e5

}
, X
}

. Let A ={
e1, e2, e3

}
. Since A is open, Ker(A) = A. So, A = Ker(A) ∩ Cl(A) implies that A is λ-closed and

hence Clλ(A) = A. So, for any b-open set U ⊇ A, Clλ(A) ⊆ U . Hence A is gbΛ-closed, but not closed
in X.

Theorem 8. Let η be a topological space. Then for U ∈ τ , U ∈ CgbΛ(τ).

Proof. Follows from the fact τ ⊆ Cλ(τ) ⊆ CgbΛ(τ). �

For the converse of this Theorem we intimate the following

Example 9. Let X =
{
e1, e2, e3, e4, e5

}
and τ =

{
∅,
{
e1

}
,
{
e1, e2, e3

}
,
{
e1, e4, e5

}
, X
}

. Let A ={
e2, e3

}
. Since A is closed in X, A is gbΛ-closed but not open in X.

Thus we conclude that every closed subset in a topological space is a gbΛ-closed set.

Theorem 10. Let η be a topological space and A ⊆ X. Then for A ∈ CgbΛ(τ), A ∈ CgΛ(τ).

Proof. Let A be a gbΛ-closed set in X and A ⊆ U , where U is open in X. Since every open set is
b-open [1] and A is gbΛ-closed, Clλ(A) ⊆ U . Hence A is gΛ-closed. �

For the converse of Theorem 10 we consider the following

Example 11. Let X =
{
e1, e2, e3, e4, e5

}
and τ =

{
∅,
{
e1

}
,
{
e2, e3

}
,
{
e1, e2, e3

}
, X
}

. Let A =
{
e3

}
.

Then A is b-open in X. Now Ker(A)∩Cl(A) =
{
e2, e3

}
∩
{
e2, e3, e4, e5

}
=
{
e2, e3

}
6= A implies that

A is not λ-closed and hence A $ Clλ(A), where A is b-open. Hence A is not gbΛ-closed in X. Since{
e2, e3

}
is λ-closed containing A, Clλ(A) ⊆

{
e2, e3

}
= Ker(A). Thus for any open set U ⊇ A,

Clλ(A) ⊆ U . Hence A is gΛ-closed in X.

From the above discussed results, we have the following chains:

• τ ⊆ OΛ(X) ⊆ Cλ(τ) ⊆ CgbΛ(τ) ⊆ CgΛ(τ);
• C(τ) ⊆ Cλ(τ) ⊆ CgbΛ(τ) ⊆ CgΛ(τ).

Thus we see that CgbΛ(τ) splits the collections Cλ(τ) and CgΛ(τ).
For the next results, we recall the following definition from [9].

Definition 12. A partition topology is a topology which can be induced on any set X by partitioning
X into disjoint subsets P ; these subsets form the basis for the topology.

Proposition 13. Let η be a topological space. Then:

(1) η is a partition space if and only if τ ⊆ C(τ) [9].
(2) For a partition space η, Cl(A) = Clλ(A), where A ⊆ X [14].

Theorem 14. In a partition space η, CgbΛ(τ) ⊆ Cw(τ).

Proof. Let A be a gbΛ-closed set in a partition space X and A ⊆ U , where U is semi-open in X.
Since every semi-open set is b-open and A is gbΛ-closed, Clλ(A) ⊆ U . Since in a partition space
Cl(A) = Clλ(A), Cl(A) ⊆ U . Hence A is w-closed. �

Theorem 15. Let η be a topological space and A ⊆ X. Then for A ∈ CgbΛ(τ), A ∈ CgsΛ(τ).

Proof. Follows from the fact Ob(X) ⊇ Os(X). �

The converse of Theorem 15 is not true, in general, which is followed by the following
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Example 16. Let X =
{
e1, e2, e3, e4, e5

}
and τ =

{
∅,
{
e1

}
,
{
e2, e3, e4

}
,
{
e1, e2, e3, e4

}
, X
}

. Let

A =
{
e2

}
. Then A is b-open in X. Also, Ker(A) ∩ Cl(A) =

{
e2, e3, e4

}
6= A. Therefore A is not

λ-closed and hence by Theorem 5, A is not gbΛ-closed. Now, the λ-closed sets containing A are{
e2, e3, e4

}
,
{
e1, e2, e3, e4

}
,
{
e2, e3, e4, e5

}
and X. These are also the only semi-open sets containing

A. Therefore Clλ(A) =
{
e2, e3, e4

}
= Kers(A). Hence A is gsΛ-closed.

From the above reasoning, we have the following chains:

• τ ⊆ OΛ(X) ⊆ Cλ(τ) ⊆ CgbΛ(τ) ⊆ CgsΛ(τ);
• C(τ) ⊆ Cλ(τ) ⊆ CgbΛ(τ) ⊆ CgsΛ(τ).

Thus we see that CgbΛ(τ) splits the collections Cλ(τ) and CgsΛ(τ).

Remark 17. We now mention that the following collections are not related to each other for a
topological space η:

(1) Cg(τ) and CgbΛ(τ);
(2) CΛg(τ) and CgbΛ(τ);
(3) Cgs(τ) and CgbΛ(τ);
(4) Csg(τ) and CgbΛ(τ);
(5) Cg∗(τ) and CgbΛ(τ);
(6) Cs(τ) and CgbΛ(τ);
(7) Cb(τ) and CgbΛ(τ).

Let X =
{
p1, p2, p3, p4, p5

}
and τ =

{
∅,
{
p1

}
,
{
p2, p3

}
,
{
p1, p2, p3

}
, X
}

.

For (1),
{
p4

}
is g-closed, but not gbΛ-closed and

{
p1, p2, p3

}
is gbΛ-closed, but not g-closed.

For (2),
{
p2, p3

}
is gbΛ-closed, but not Λg-closed and

{
p4

}
is Λg-closed, but not gbΛ-closed.

For (3),
{
p4

}
is gs-closed, but not gbΛ-closed and

{
p2, p3

}
is gbΛ-closed, but not gs-closed.

For (4),
{
p4, p5

}
is gbΛ-closed, but not sg-closed and

{
p1, p2, p3, p4

}
is sg-closed, but not gbΛ-closed.

For (5),
{
p2, p3

}
is gbΛ-closed, but not g∗-closed and

{
p4

}
is g∗-closed, but not gbΛ-closed.

For (6),
{
p1, p2, p3

}
is gbΛ-closed, but not semi-closed and

{
p1, p4

}
is semi-closed, but not

gbΛ-closed.
For (7),

{
p2, p4

}
is b-closed, but not gbΛ-closed and

{
p1, p2, p3

}
is gbΛ-closed, but not b-closed.

The following example shows that union of two gbΛ-closed sets in a topological space is not neces-
sarily a gbΛ-closed set.

Example 18. Let X =
{
p1, p2, p3, p4, p5

}
and τ =

{
∅,
{
p1

}
,
{
p2

}
,
{
p1, p2

}
,
{
p2, p3

}
,
{
p1, p2, p3

}
,{

p2, p3, p4

}
,
{
p1, p2, p3, p4

}
,
{
p2, p3, p4, p5

}
, X
}

. Let A =
{
p1, p2

}
and B =

{
p1, p4, p5

}
. Then A,

being an open set, is gbΛ-closed in X and B, being a closed set, is gbΛ-closed in X. Now, A ∪ B ={
p1, p2, p4, p5

}
and Ker(A ∪ B) ∩ Cl(A ∪ B) = X 6= A ∪ B. Therefore A ∪ B is not λ-closed in X.

Moreover, A ∪B is b-open in X. Hence by Theorem 5, it follows that A ∪B is not gbΛ-closed in X.

In a topological space, the intersection of two gbΛ-closed sets is not necessarily a gbΛ-closed set
which is followed by the following

Example 19. LetX =
{
p1, p2, p3, p4, p5

}
and τ =

{
∅,
{
p1

}
,
{
p2, p3

}
,
{
p1, p2, p3

}
,
{
p2, p3, p4, p5

}
, X
}

.

Let A =
{
p1, p2, p4, p5

}
and B =

{
p2, p3, p4, p5

}
. Then A is not λ-closed in X and the only λ-closed

set containing A is X. Therefore Clλ(A) = X, where X is the only b-open set containing X. So, A is
gbΛ-closed in X and B, being open, is gbΛ-closed in X. Now, A∩B =

{
p2, p4, p5

}
is b-open, but not

λ-closed. Hence by Theorem 5, it follows that A ∩B is not gbΛ-closed in X.

Thus the collection CgbΛ(τ) for a topological space η does not form a topology on X, in general.

4. Applications of b-open Sets as a Kernel

Theorem 20. Let η be a topological space and A ⊆ X. If A ∈ CgbΛ(τ), then F * Clλ(A) \A, where
∅ 6= F ∈ C(τ).
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Proof. If possible, suppose that F is a non-empty closed set such that F ⊆ Clλ(A) \ A. Then
A ⊆ X \F . Since A is gbΛ-closed and X \F is b-open, Clλ(A) ⊆ X \F which implies F ⊆ X \Clλ(A).
Moreover, F ⊆ Clλ(A). Hence F ⊆

(
X \ Clλ(A)

)
∩ Clλ(A), proving that F = ∅, a contradiction.

Hence Clλ(A) \A does not contain any non-empty closed set. �

If Clλ(A)\A does not contain any non-empty closed set, then it is not necessary that A ∈ CgbΛ(τ).

Example 21. Let X =
{
k1, k2, k3, k4, k5

}
and τ =

{
∅,
{
k1

}
,
{
k2, k3

}
,
{
k1, k2, k3

}
, X
}

. Let A ={
k2

}
. Then Clλ(A) =

{
k2, k3

}
and hence Clλ(A) \A =

{
k3

}
which does not contain any non-empty

closed set. Now, Ker(A) ∩ Cl(A) =
{
k2, k3

}
6= A implies that A is not λ-closed, where A is b-open.

Therefore by Theorem 5, it follows that A is not gbΛ-closed.

Theorem 22. Let η be a topological space and A ⊆ X. If A ∈ CgbΛ(τ), then T * Clλ(A) \A, where
∅ 6= T ∈ Cs(τ).

Proof. If possible, suppose that ∅ 6= T ∈ Cs(τ) such that T ⊆ Clλ(A) \ A. Then A ⊆ X \ T . Since
A is gbΛ-closed and X \ T is b-open, Clλ(A) ⊆ X \ T which implies T ⊆ X \ Clλ(A). Moreover,
T ⊆ Clλ(A). Hence T ⊆

(
X \ Clλ(A)

)
∩ Clλ(A), proving that T = ∅, a contradiction. Hence

Clλ(A) \A does not contain any non-empty semi-closed set. �

The converse of Theorem 22 need not hold, in general.

Example 23. Let X =
{
k1, k2, k3, k4, k5

}
and τ =

{
∅,
{
k1

}
,
{
k2, k3

}
,
{
k1, k2, k3

}
, X
}

. Let A ={
k2}. Then Clλ(A) =

{
k2, k3

}
and hence Clλ(A) \A =

{
k3

}
which does not contain any non-empty

semi-closed set, but A is not gbΛ-closed.

Theorem 24. Let η be a topological space and A ⊆ X. If A ∈ CgbΛ(τ), then T * Clλ(A) \A, where

∅ 6= T ∈ Cb(τ).

Proof. The proof is straightforward. �

The following example shows that the converse of Theorem 24 is not true, in general.

Example 25. LetX =
{
k1, k2, k3, k4, k5

}
and τ=

{
∅,
{
k1

}
,
{
k2, k3

}
,
{
k1, k2, k3

}
,
{
k2, k3, k4, k5

}
, X
}

.

Let A =
{
k4

}
. Then Clλ(A) =

{
k4, k5

}
and hence Clλ(A) \ A =

{
k5

}
which does not contain any

non-empty b-closed set, but A is not gbΛ-closed.

Theorem 26. Let η be a topological space. Then for each x ∈ X, either
{
x
}
∈ Cb(τ) or X \

{
x
}
∈

CgbΛ(τ).

Proof. Suppose that
{
x
}
/∈ Cb(τ). Then X \

{
x
}
/∈ Ob(X). Since X is the only b-open set containing

X \
{
x
}

, Clλ
(
X \

{
x
})
⊆ X. Hence X \

{
x
}
∈ CgbΛ(τ). Thus either

{
x
}
∈ Cb(τ) or X \

{
x
}
∈

CgbΛ(τ). �

For the next result, we recall that a topological space η is Hausdorff (or T2) if and only if for each
pair of distinct points x and y of X, there exist U , V ∈ τ such that x ∈ U , y ∈ V and U ∩ V = ∅.
In this context, a topological space η is called a T1-space if every singleton set is closed in η. It is
obvious that every Hausdorff space is a T1-space.

Theorem 27. Let η be a topological space in which each one-point set is closed. Then Cλ(τ) =
CgbΛ(τ).

Proof. Let A be a gbΛ-closed subset of X. If possible, let A be not λ-closed. Then Clλ(A) \ A is
non-empty. Let x ∈ Clλ(A) \A. Since

{
x
}

is closed, Clλ(A) \A contains a non-empty closed set
{
x
}

which leads towards a contradiction, by Theorem 20. Hence A is λ-closed. Therefore Cλ(τ) ⊇ CgbΛ(τ).
Moreover, Cλ(τ) ⊆ CgbΛ(τ). Hence the result follows. �

Corollary 28. In a Hausdorff space
(
and hence T1-space

)
η, Cλ(τ) = CgbΛ(τ).



78 S. MODAK AND J. HOQUE

Definition 29 ([12]). A topological space η is called a T 1
2
-space if every generalised closed subset of

X is closed.

Proposition 30 ([2]). For a topological space η, the followings are equivalent:

(1) X is a T 1
2
-space;

(2) every subset of X is λ-closed.

Theorem 31. Let η be a T 1
2
-space. Then for each A ⊆ X, A ∈ CgbΛ(τ).

Proof. The proof immediately follows from Proposition 30 and Theorem 3. �

Definition 32 ([2]). A topological space η is said to be a T 1
4
-space if for every finite subset F of X

and every y /∈ F , there exists a set Ay containing F and disjoint from
{
y
}

such that Ay is either open
or closed.

Proposition 33 ([2]). For a topological space η, the followings are equivalent:

(1) X is a T 1
4
-space;

(2) every finite subset of X is λ-closed.

Theorem 34. Let η be a T 1
4
-space. Then for any finite subset A of X, A ∈ CgbΛ(τ).

Proof. Follows immediately from Proposition 33 and Theorem 3. �

Theorem 35. Let η be a T1-space. Then CΛg(τ) ⊆ CgbΛ(τ).

Proof. Follows from Theorem 6 and the following �

Theorem 36 ([6]). Let η be a T1-space. Then CΛg(τ) ⊆ C(τ).

Definition 37 ([7]). A topological space η is said to be a door space if every subset of X is either
open or closed.

Theorem 38. Let η be a door space. Then CgbΛ(τ) = P(X), a power set of X.

Proof. Let A be a subset of a topological space η. Then A is either open or closed in η. Hence A is
gbΛ-closed, by Theorem 6 and Theorem 8. �

For a reason of the converse of Theorem 38, the following example is interesting.

Example 39. LetX =
{
k1, k2, k3, k4

}
and τ =

{
∅,
{
k1

}
,
{
k2

}
,
{
k1, k2

}
,
{
k1, k2, k3

}
,
{
k1, k2, k4

}
, X
}

.

By Theorems 6 and 8, it follows that every open and closed subset of X is gbλ-closed. Now, the only
subsets of X which are neither open, nor closed, are

{
k1, k3

}
,
{
k1, k4

}
,
{
k2, k3

}
and

{
k2, k4

}
which

are λ-closed and hence are gbΛ-closed
(
from Theorem 3

)
. Therefore every subset of X is gbΛ-closed,

but X is not a door space.

However, in a partition space, the following theorem holds.

Theorem 40. Let η be a partition space. Then CgbΛ(τ) ⊆ Cg(τ).

Proof. Let A be a gbΛ-closed subset of a partition space X and A ⊆ U , where U is open. Then
Clλ(A) ⊆ U , since U is b-open and A is gbΛ-closed. Since in a partition space, Cl(A) = Clλ(A) and
hence Cl(A) ⊆ U . Consequently, A is g-closed. �

Theorem 41. Let η be a topological space and A be a gbΛ-closed subset of X. Then A ∈ Cλ(τ) if
and only if Clλ(A) \A ∈ C(τ).

Proof. Let A be a λ-closed subset of X. Since A is λ-closed, Clλ(A) = A which implies that
Clλ(A) \ A = ∅, a closed set. Conversely, let A be a gbΛ-closed subset of X such that Clλ(A) \ A is
closed. Since A is gbΛ-closed, Clλ(A) \A contains no non-empty closed subset of X, by Theorem 20.
Since Clλ(A) \A is closed, we must have Clλ(A) \A = ∅. Therefore Clλ(A) = A and, consequently,
A is λ-closed. �
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Theorem 42. Let η be a topological space. If CgbΛ(τ) ⊆ Cλ(τ), then for each x ∈ X, either{
x
}
∈ Cb(τ) or

{
x
}
∈ Oλ(X).

Proof. If
{
x
}
/∈ Cb(τ), then X \

{
x
}
/∈ Ob(X). Now, the only b-open set containing X \

{
x
}

is X.

Moreover, Clλ
(
X \

{
x
})
⊆ X. So, X \

{
x
}

is gbΛ-closed and by the hypothesis, X \
{
x
}

is λ-closed.

Therefore
{
x
}

is λ-open. Hence for each x ∈ X,
{
x
}

is either b-closed or λ-open. �

For the next result, we need the following theorem from [4].

Theorem 43. Let η be a topological space and
{
Ai : i ∈ Λ

}
be an arbitrary collection of λ-closed sets.

Then
⋂
i

Ai ∈ Cλ(τ).

Theorem 44. Let η be a topological space and A, F ⊆ X. Then for A ∈ Ob(X) ∩ CgbΛ(τ) and
F ∈ Cλ(τ), A ∩ F ∈ CgbΛ(τ).

Proof. Since A is b-open and gbΛ-closed, by Theorem 5, we have A is λ-closed. Then by Theorem 43,
we get A ∩ F is λ-closed. Hence by Theorem 3, it follows that A ∩ F is gbΛ-closed. �

Theorem 45. Let η be a topological space and A ⊆ X. Then for A ∈ CgbΛ(τ), Clb
({
x
})
∩ A 6= ∅,

for every x ∈ Clλ(A).

Proof. If possible, suppose that Clb
({
x
})
∩ A = ∅ for some x ∈ Clλ(A). Then A ⊆ X \ Clb

({
x
})

,

where X \ Clb
({
x
})

is b-open in X. Therefore Clλ(A) ⊆ X \ Clb
({
x
})

. Thus x ∈ Clλ(A) implies

x /∈ Clb
({
x
})

, which is a contradiction. Hence Clb
({
x
})
∩A 6= ∅ for every x ∈ Clλ(A). �

Theorem 46. For a topological space η, the following statements are equivalent:

(1) Ob(X) ⊆ Cλ(τ);
(2) P(X) ⊆ CgbΛ(τ).

Proof. (1) implies (2): Let A be a subset of X and A ⊆ U , where U is b-open in X. Then Clλ(A) ⊆
Clλ(U). Since by the hypothesis, U is λ-closed, Clλ(U) = U . Therefore Clλ(A) ⊆ U and hence A is
gbΛ-closed.

(2) implies (1): Let A be b-open in X. By the assumption, A is gbΛ-closed. Then by Theorem 5,
A is λ-closed. �

Theorem 47. Let η be a topological space. Let A, B ∈ CgbΛ(τ) with D(A) ⊆ Dλ(A) and D(B) ⊆
Dλ(B). Then A ∪B ∈ CgbΛ(τ).

Proof. We know that Dλ(A) ⊆ D(A) and Dλ(B) ⊆ D(B). Therefore D(A) = Dλ(A) and D(B) =
Dλ(B). Now, Cl(A) = D(A) ∪ A = Dλ(A) ∪ A = Clλ(A). Similarly, Cl(B) = Clλ(B). Now, let
A ∪B ⊆ U , where U is b-open. Then A ⊆ U and B ⊆ U . This implies Clλ(A) ⊆ U and Clλ(B) ⊆ U
as A and B are gbΛ-closed. Now, Clλ(A∪B) ⊆ Cl(A∪B) = Cl(A)∪Cl(B) = Clλ(A)∪Clλ(B) ⊆ U .
Hence A ∪B is gbΛ-closed. �

Following theorem is a characterization of gbΛ-closed sets.

Theorem 48. Let η be a topological space and A ⊆ X. Then A ∈ CgbΛ(τ) if and only if Clλ(A) ⊆
Kerb(A).

Proof. Suppose that A is gbΛ-closed in X. If possible, let x ∈ Clλ(A) but x /∈ Kerb(A). Then x /∈ G
for some b-open set G ⊇ A. Since A is gbΛ-closed, Clλ(A) ⊆ G implies x ∈ G, we have a contradiction.
Hence Clλ(A) ⊆ Kerb(A).

Conversely, let A be a subset of X such that Clλ(A) ⊆ Kerb(A) and A ⊆ U , where U is b-open.
Then Kerb(A) ⊆ U . So, Clλ(A) ⊆ U . Hence A is gbΛ-closed in X. �

Theorem 49. Let η be a topological space. Let A and B be two subsets of X such that A ∈ CgbΛ(τ)
and A ⊆ B ⊆ Clλ(A). Then B ∈ CgbΛ(τ).

Proof. Let B ⊆ U , where U is b-open. Now, A ⊆ B ⊆ U implies A ⊆ U , where U is b-open. Since A
gbΛ-closed, Clλ(A) ⊆ U . By the hypothesis, B ⊆ Clλ(A) implies Clλ(B) ⊆ Clλ

(
Clλ(A)

)
= Clλ(A) ⊆

U . Hence B is a gbΛ-closed set. �
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5. Complement of gbΛ-closed Set

Throughout this section, we study the complement of gbΛ-closed sets.

Definition 50. Let η be a topological space and A ⊆ X. A is said to be gbΛ-open if X \A ∈ CgbΛ(τ).
Equivalently, a subset A of a topological space η is said to be gbΛ-open if Intλ(A) ⊇ F , whenever

A ⊇ F and F ∈ Cb(τ).

The collection of all gbΛ-open sets in a topological space η is denoted as OgbΛ(X).

Theorem 51. Let η be a topological space and A ⊆ X. Then A ∈ OgbΛ(X) if and only if Intλ(A) ⊇ F
whenever A ⊇ F and F ∈ Cb(τ).

Proof. Suppose that A is gbΛ-open in X. Suppose A ⊇ F , where F is b-closed. Then X \A ⊆ X \F ,
where X \ A is gbΛ-closed and X \ F is b-open. Therefore Clλ(X \ A) ⊆ X \ F and hence F ⊆
X \ Clλ(X \A) = Intλ(A). Thus Intλ(A) ⊇ F .

Conversely, let Intλ(A) ⊇ F , where A ⊇ F and F is b-closed. Then X\A ⊆ X\F and X\Intλ(A) ⊆
X \ F, whence Clλ(X \A) ⊆ X \ F . Therefore X \A is gbΛ-closed and A is gbΛ-open. �

Theorem 52. Let η be a topological space. Then Oλ(X) ⊆ OgbΛ(X).

Proof. Let A be λ-open. Then X \ A is λ-closed. Since every λ-closed set is gbΛ-closed, X \ A is
gbΛ-closed and hence A is gbΛ-open in X. �

Theorem 53. Let η be a topological space. Then τ ⊆ OgbΛ(X).

Proof. Let A be open. Then X \A is closed. Therefore X \A is λ-closed. So, X \A is gbΛ-closed, by
Theorem 3. Hence A ∈ OgbΛ(X). �

The converse of Theorem 53 is not necessarily true.

Example 54. Let X =
{
k1, k2, k3, k4, k5

}
and τ =

{
∅,
{
k1

}
,
{
k2

}
,
{
k1, k2

}
,
{
k2, k3

}
,
{
k1, k2, k3

}
,{

k2, k3, k4

}
,
{
k1, k2, k3, k4

}
,
{
k2, k3, k4, k5

}
, X
}

. Then
{
k1, k5

}
and

{
k1, k2, k4, k5

}
are gbΛ-open but

none of them is open.

Theorem 55. Let η be a topological space. Then C(τ) ⊆ OgbΛ(X).

Proof. Let A ∈ C(τ). Then X \A ∈ τ ⊆ Cλ(τ) ⊆ CgbΛ(τ). Therefore A ∈ OgbΛ(X). �

For the converse of Theorem 55, we consider the following

Example 56. Let X =
{
k1, k2, k3, k4, k5

}
and τ =

{
∅,
{
k1

}
,
{
k2

}
,
{
k1, k2

}
,
{
k2, k3

}
,
{
k1, k2, k3

}
,{

k2, k3, k4

}
,
{
k1, k2, k3, k4

}
,
{
k2, k3, k4, k5

}
, X
}

. Then
{
k1, k2

}
,
{
k2, k3, k4

}
and

{
k1, k2, k3, k5

}
are

gbΛ-open, but none of them is closed.

Theorem 57. Let η be a topological space and A ⊆ X. Then for A ∈ Cb(τ)∩OgbΛ(X), A ∈ Oλ(X).

Proof. Since A is gbΛ-open and A ⊆ A, where A is b-closed, so A ⊆ Intλ(A). Therefore X \ Intλ(A) ⊆
X \A. This implies Clλ(X \A) ⊆ X \A. Moreover X \A ⊆ Clλ(X \A). Therefore Clλ(X \A) = X \A
and consequently, X \A is λ-closed. Hence A ∈ Oλ(X). �

Theorem 58. Let η be a topological space and A ∈ OgbΛ(X). Then for Intλ(A) ⊆ B ⊆ A, B ∈
OgbΛ(X).

Proof. Intλ(A) ⊆ B ⊆ A implies X \ A ⊆ X \ B ⊆ X \ Intλ(A) = Clλ(X \ A), where X \ A is
gbΛ-closed. Therefore X \B is gbΛ-closed in X, by Theorem 49. Hence B is gbΛ-open. �

Theorem 59. Let η be a topological space. Let A ∈ OgbΛ(X) and G ∈ Ob(X) with Intλ(A)∪
(X \A) ⊆ G. Then G = X.
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Proof. Intλ(A) ∪ (X \ A) ⊆ G implies X \ G ⊆
(
(X \ Intλ(A)

)
∩ A = Clλ(X \ A) \ (X \ A). Since

X \A is gbΛ-closed, Clλ(X \A)\(X \A) does not contain any non-empty b-closed set, by Theorem 24.
Since X \G ⊆ Clλ(X \A) \ (X \A), we must have X \G = ∅. Hence G = X. �

Theorem 60. Let η be a topological space and A ⊆ X. Then for A ∈ CgbΛ(τ), Clλ(A)\A ∈ OgbΛ(X).

Proof. Let F ⊆ Clλ(A) \ A, where F is b-closed. Since A is gbΛ-closed, Clλ(A) \ A does not contain
any non-empty b-closed subset, by Theorem 24. Therefore F = ∅. So, ∅ = F ⊆ Intλ(Clλ(A) \ A).
Therefore Clλ(A) \A is gbΛ-open. �

Theorem 61. Let η be a door space. Then P(X) ⊆ OgbΛ(X).

Proof. Let A be a subset of a door space η. Since every subset in a door space is either open or closed,
A is either open or closed. Therefore by Theorem 53 or 55, we have A is gbΛ-open in X. �

We consider the following example to show that the converse of Theorem 61 is not true, in general.

Example 62. Consider the topological space in Example 39. In this space, every subset is gbΛ-closed
and hence gbΛ-open, but the space is not a door space.

Theorem 63. Let η be a topological space. Then for each x ∈ X, either
{
x
}
∈ Cb(τ) or

{
x
}
∈

OgbΛ(τ).

Proof. Suppose that
{
x
}
/∈ Cb(τ). Then X \

{
x
}
/∈ Ob(X). Since X is the only b-open set containing

X \
{
x
}

, Clλ
(
X \

{
x
})
⊆ X. Hence X \

{
x
}
∈ CgbΛ(τ) implies

{
x
}
∈ OgbΛ(τ). Hence either{

x
}
∈ Cb(τ) or

{
x
}
∈ OgbΛ(τ). �
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