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THE PROBABILITY WHEN A FINITE COMMUTATIVE RING IS NIL-CLEAN

PETER DANCHEV1 AND MAHDI SAMIEI2

Abstract. We define an indicator of the probability when a finite commutative ring is nil-clean,

and calculate this probability for certain classes of finite commutative rings.

1. Introduction and Motivation

Throughout the present paper, all rings are assumed to be finite and commutative with identity 1
unless indicated otherwise. The most part of our notation and terminology are standard as the specific
ones will be given explicitly in what follows.

In the existing literature there are numerous examples of articles (see, for instance, [3], [7] and [8])
which deal with a suitably defined probability calculating when a finite commutative ring possesses a
given property.

On the other hand, referring to the original source [6], we recall that a ring is called (uniquely)
nil-clean if every element is (uniquely) written as the sum of an idempotent and a nilpotent. It was
independently proved in [6] and [5] that in the commutative case each nil-clean ring is uniquely nil-
clean. Likewise, it has been shown in [10, Theorem 2.13] that both expressions are equivalent. Also, it
follows that in nil-clean rings the ring element 2 is always a nilpotent. However, there is an abundance
of finite rings which are surely not nil-clean, e.g., the rings Z/(k) ∼= Zk whenever k is an odd integer.

That is why, as our motivating tool, we combine the presented above two things to arrive at a new
notion concerning the probability of when a finite commutative ring is necessarily nil-clean. This will
be done in the next sections.

2. Definitions and Preliminaries

Our purpose here is to introduce an appropriate and useful indicator which will somewhat show
when a finite commutative ring may be nil-clean.

So, we come to our main key, motivating the writing of this article.

Definition 2.1. The symbol pn(R), which indicates the probability that a ring R is nil-clean, means
the following:

pn(R) =

∣∣r ∈ R : r = e+ q for some e ∈ Id(R) and q ∈ Nil(R)
∣∣

|R|
.

One can easily see the validity of the following facts by a direct inspection of the stated above
Definition 2.1.

Proposition 2.2. For a ring R, the following statements are true:

(1) R is nil-clean ⇐⇒ pn(R) = 1.

(2) 2
|R| ≤ pn(R) = |Id(R)|.|Nil(R)|

|R| .

(3) For a reduced ring R, pn(R) = |Id(R)|
|R| . Specifically, R is a reduced nil-clean ring ⇐⇒ R is a

Boolean ring.
(4) For an indecomposable ring R, e.g., a local ring

pn(R) =
2|Nil(R)|
|R|

.
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(5) If R is an indecomposable reduced ring, e.g., a domain, then pn(R) = 2
|R| .

(6) R is an indecomposable reduced nil-clean ring ⇐⇒ R is isomorphic to the ring Z2.

(7) If R =
n∏
i=1

Ri, then pn(R) =
n∏
i=1

pn(Ri).

Lemma 2.3. Let R be a ring. Then:

(1) R is local if and only if Zd(R), the set of zero divisors of R, is an ideal (and so, in particular,
Zd(R) = Nil(R) is the unique maximal ideal of R).

(2) ([9, Theorem 2(ii)]) If R is a local ring with the unique maximal ideal M , then |R| = pnr,
|M | = p(n−1)r for some prime p and positive integers n, r.

Corollary 2.4. For a local ring (R,M),

pn(R) =
2

pr
,

in which pr = |R|/|M | for some prime p and a positive integer r.

Proof. The proof is clear by the utilization of Proposition 2.2(4) and Lemma 2.3. �

Corollary 2.5. For a local ring (R,M), the following conditions are equivalent:

(1) R is nil-clean;
(2) |R| = 2n and |M | = 2n−1 for some positive integer n.

Proof. (1) ⇒ (2). Assume that R is nil-clean. By a new application of Corollary 2.4, one has
|R|/|M | = pr = 2. Consequently, we conclude from Lemma 2.3(2) that |R| = 2n and |M | = 2n−1 for
some positive integer n.

(2)⇒ (1). Suppose that |R| = 2n and |M | = 2n−1 for some positive integer n. Then pn(R) = 2
pr ,

where p = 2 and r = 1 by using Corollary 2.4. Thus R is a nil-clean ring. �

Recall that for a ring R and an R-module M , the Nagata’s idealization of M , denoted by R(+)M ,
is a ring which is formed from the direct sum R⊕M, but with multiplication defined by (r,m)(s, n) =
(rs, rn + sm) for any elements (r,m) and (s, n) of R(+)M . These operations make R(+)M a ring
with the identity element (1, 0), containing R. Also, all prime (maximal) ideals of R(+)M have the
form P (+)M for some prime (maximal) ideals P of R.

Corollary 2.6. Let p be a prime number and k > i positive integers. Then pn((Zpi)(+)(Zp)k−i) = 2
pi .

Moreover, the ring (Zpi)(+)(Zp)k−i is nil-clean if and only if p = 2 and i = 1.

Proof. Consider the ring R = (Zpi)(+)(Zp)k−i. It is obvious that |R| = pk and pZpi(+)(Zp)k−i is the

only maximal ideal of R and hence |Nil(R)| = pk−i. It follows that |R|/|Nil(R)| = pi and so, with
Corollary 2.4 at hand, one deduces that pn(R) = 2

pi , as required. �

Lemma 2.7. Any finite ring R with exactly t distinct maximal ideals can be decomposed into a direct
product of t local rings.

Proof. See [2, Theorem 8.7]. �

The next assertion follows by direct and straightforward calculations, so we leave it to the interested
reader for a verification.

Proposition 2.8. Let R be a ring with exactly t distinct maximal ideals, so R = R1 ×R2 × · · · ×Rt.
Then

|R|
|Nil(R)|

= pr11 p
r2
2 · · · p

rt
t ,

where prii = |Ri|
|Nil(Ri)| , for some (not necessarily distinct) primes p1, . . . , pt and positive integers

r1, . . . , rt.

We proceed by proving the following claim.
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Theorem 2.9. Let R be a ring and let t ∈ N be the number of maximal ideals of R. Then

pn(R) =
2t|Nil(R)|
|R|

=
2t

pr11 p
r2
2 · · · p

rt
t

,

where R ∼=
t∏
i=1

Ri and prii = |Ri|
|Nil(Ri)| .

Proof. With the aid of Lemma 2.7, one finds that R ∼=
t∏
i=1

Ri such that Ri is a local ring for any

1 ≤ i ≤ t. So, pn(R) =
t∏
i=1

pn(Ri) according to Proposition 2.2(7). It follows now from Proposi-

tion 2.2(4) that pn(Ri) = 2|Nil(Ri)|
|Ri| , whence pn(R) =

2t
t∏
i=1
|Nil(Ri)|

t∏
i=1
|Ri|

=
2t |

t∏
i=1

Nil(Ri)|

|R| =
2t|Nil(|

t∏
i=1

Ri)|

|R| =

2t|Nil(R)|
|R| . For the second part, by using the fact that pn(R) =

t∏
i=1

pn(Ri) and Corollary 2.4, we get

pn(R) = 2t

p
r1
1 p

r2
2 ···p

rt
t

, where prii = |Ri|
|Nil(Ri)| , as wanted. �

As two pivotal consequences, we obtain the following statements.

Corollary 2.10. Let R be a ring with exactly t distinct maximal ideals, writing R ∼= R1×R2×· · ·×Rt.
Then the following are equivalent:

(1) R is nil-clean.
(2) All of the local rings Ri are nil-clean.

(3) |R|
|Nil(R)| = 2t.

(4) |R| = 2s and |Nil(R)| = 2s−t for some positive integer s ≥ t.

Proof. (1) ⇒ (2), (3). Let R = R1 × R2 × · · · × Rt be nil-clean. We conclude from Theorem 2.9

that 1 = pn(R) = 2m

p
r1
1 p

r2
2 ···p

rt
t

in which prii = |Ri|
|Nil(Ri)| for 1 ≤ i ≤ t. Thus p1 = p2 = · · · = pt = 2

and r1 + r2 + · · · + rt = t. Since all ri’s are positive integers, we get r1 = r2 = · · · = rt = 1. So,
|Ri|

|Nil(Ri)| = 2 and hence Ri’s are nil-clean rings employing Corollary 2.5. Moreover, |R|
|Nil(R)| = 2t by

virtue of Proposition 2.8.
(2)⇒ (1) is clear.
(3)⇒ (1) is trivially true by Theorem 2.9.
(1) ⇒ (4). Suppose that R is nil-clean. Then by point (2), all of the local rings Ri are nil-clean.

It follows from Corollary 2.5 that |Ri| = 2ni and |Nil(Ri)| = 2ni−1, and so, |R| =
t∏
i=1

|Ri| = 2s and

|Nil(R)| =
t∏
i=1

|Nil(Ri)| = 2s−t, where s = n1 + n2 + · · ·+ nt.

(4)⇒ (3) is straightforward. �

Corollary 2.11. For any ring R with exactly t maximal ideals, the following statements are equivalent:

(1) R is a reduced nil-clean ring.
(2) |R| = 2t.
(3) R is a Boolean ring.
(4) R is a semi-primitive ring.

Proof. Points (1) and (3) are equivalent owing to Theorem 2.2(3). Also, (1) implies (2) obviously.
Now, let |R| = 2t. Thus Theorem 2.9 and the fact that pn(R) ≤ 1 show that pn(R) = |Nil(R)| = 1,
i.e., R is a reduced nil-clean ring, as expected. �
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3. The Probability pn(Zn)

Note that among the rings of the form Zn ∼= Z/(n), where n ∈ N, the local ones are all of the form
Zpk , where p is a prime and k, n are positive integers. Also, the ring of the residues modulo pk, say
Zpk , has the unique maximal ideal pZpk . We start by characterizing the probability pn(Zpk).

Lemma 3.1. For a prime p and a positive integer k the following equality

|Nil(Zpk)| = pk−1, and pn(Zpk) =
2

p

holds. Therefore the ring Zpk is nil-clean if and only if p = 2.

Proof. Since Nil(Zpk) = pZpk and p is the generator of the additive group pZpk , one writes that

|Nil(Zpk)| = |pZpk | = | < p > | = |p| = pk

gcd(pk,p)
= pk−1, where |p| is the order of the element p in

the group Zpk . Therefore
|Z
pk
|

|Nil(Z
pk

)| = p. Thus we conclude from Corollary 2.4 that pn(Zpk) = 2
p , as

promised. �

The following two results are the central ones in this section.

Theorem 3.2. Let n = pα1
1 pα2

2 · · · p
αt
t be the unique factorization of the positive integer n, where pi

a prime for each 1 ≤ i ≤ t with pi 6= pj and for i 6= j with αj ∈ N. Then:

(1) pn(Zn) = 2t

p1p2···pt .

Therefore the ring Zn is nil-clean if and only if n = 2k for some positive integer k.
(2) |Nil(Zn)| = pα1−1

1 pα2−1
2 · · · pαt−1t .

Proof. (1) Let R = Zn. Then R ' Zpα1
1
× Zpα2

2
× · · · × Zpαtt . By applying Proposition 2.2(7) in this

case, we get pn(R) =
n∏
i=1

pn(Zpαii ). So, by utilizing Lemma 3.1, we conclude that pn(Zn) = 2t

p1p2···pt .

(2) Since Zn ' Zpα1
1
× Zpα2

2
× · · · × Zpαtt , one writes that

|Nil(Zn)| =
∣∣∣ n∏
i=1

Nil(Zpαii )
∣∣∣ =

n∏
i=1

|Nil(Zpαii )|,

and so, |Nil(Zn)| = pα1−1
1 pα2−1

2 · · · pαt−1t by the usage of Lemma 3.1, as required. �

Theorem 3.3. For two positive integers k and n, the following statements are equivalent:

(i) There exist integers r, s such that rk + sn = 1, i.e., (k, n) = 1.
(ii) The ring kZkn has the identity element rk for some r ∈ Z.
(iii) kZkn ' Zn.

Proof. (i) ⇒ (ii). Let k and n be two positive integers such that (k, n) = 1. Then rk + sn = 1 for

r, s ∈ Z. Now, it is easy to check that kZkn has exactly n elements as {0, k, 2k, . . . , (n− 1)k}. Now, let

ik ∈ kZkn for some 0 ≤ i ≤ n− 1. We have (ik)(rk) = irk2 = i(rk)k = i(1− ns)k = i(k − nsk) = ik,
as required.

(ii)⇒ (i). If rk is the identity element of kZkn, then k = k.rk = rk2. This implies that n | 1− rk,
and so (k, n) = 1.

(ii) ⇒ (iii). Let the ring kZkn have an identity rk for some r ∈ Z. We show that every subgroup
of the ring kZkn is an ideal, and thus kZkn ' Zn. Let H be a subgroup of kZkn. Since kZkn ' kZ

knZ ,

there is an integer h such that H ' hkZ
knZ , where knZ ⊆ hkZ. Thus we have H = hkZkn, where h | n.

(iii) ⇒ (i). Let kZkn ' Zn and (k, n) 6= 1. Then the ring kZkn does not have an identity element
by (ii), a contradiction. �
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4. The Probability pn(R) for Commutative Rings Without Identity

Our basic instrument here is the following well-known concept.

Definition 4.1. Let R be a finite commutative ring (which does not necessarily have an identity).
An element x of R is called quasi-idempotent, provided xn is an idempotent for some n ∈ N. We
denote the set of all quasi-idempotent elements of R by QI(R).

It is easy to see that every element in a finite commutative ring is either nilpotent or quasi-
idempotent. So, we have the following result.

Lemma 4.2. For a finite commutative ring R (which does not necessarily have an identity),

|R| = |Nil(R)|+ |QI(R)| − 1.

The following statement is a re-writing of [1, Lemma 4.4], which use we will need in the sequel.

Theorem 4.3. Let R be a finite commutative ring. Then either

(i) R has an identity,
or

(ii) R is nilpotent,
or

(iii) there exists a positive integer l such that R ' R0e0 × R1e1 × · · · × Rlel × S, where R0 = R,
ei ∈ Id(Ri), Ri = Ri−1 − Ri−1ei−1, each |Ri| is a divisor of |Ri−1| for all 1 ≤ i ≤ l and
S = Nil(S) 6= 0.

As an immediate consequence, we extract the following

Corollary 4.4. Let R be a finite commutative ring, which is neither unitary, nor nilpotent. Then

pn(R) =
l∏
i=0

pn(Riei), where ei ∈ Id(Ri) and Ri = Ri−1 −Ri−1ei−1 for all 1 ≤ i ≤ l and R0 = R.

5. The Probability pn(R) for Finite Cyclic Rings

Recall that a ring R is said to be cyclic if R+ the additive group of R is a cyclic group. In [4,
Corollary 2], it has been shown that R is a finite cyclic ring of order n if, and only if, there exists a
positive divisor k of n such that R is isomorphic to kZkn. Thus there are exactly τ(n) non-isomorphic
finite cyclic rings of order n, where τ(n) is the number of the divisors of n. In addition, according to
Theorem 3.3, the cyclic ring kZkn has an identity if, and only if, k = 1. So, from now on, we shall

assume that pα1
1 pα2

2 · · · p
αt
t is the prime factorization of the positive integer n and k = pβ1

1 p
β2

2 · · · p
βt
t ,

where 0 ≤ βi ≤ αi and 1 ≤ i ≤ t. To investigate the probability that a finite cyclic ring is nil-clean,
we now consider two different possibilities for k.

Case 1: If βi 6= 0 for all 1 ≤ i ≤ t, then we have the following results.

Theorem 5.1. Let pα1
1 pα2

2 · · · p
αt
t be the prime factorization of the positive integer n. Then kZkn =

Nil(kZkn) if, and only if, k = pβ1

1 p
β2

2 · · · p
βt
t , where 0 < βi ≤ α for all 1 ≤ i ≤ t.

Proof. Let k = pβ1

1 p
β2

2 · · · p
βt
t with 0 < βi ≤ α and γi = αi + βi. Then pγ11 p

γ2
2 · · · p

γt
t is the prime

factorization of the positive integer kn, and so, Zkn ' Zpγ11 × Zpγ22 × · · · × Zpγtt . Since βi 6= 0, we

find that kZpγii ⊆ piZpγii for all 1 ≤ i ≤ t. Therefore we have kZkn ' kZpγ11 × kZpγ22 × · · · × kZpγtt ⊆
p1Zpγ11 × p2Zpγ22 × · · · × pkZpγtt ' Nil(Zkn). On the other hand, Nil(kZkn) = Nil(Zkn) ∩ kZkn, and

hence kZkn = Nil(kZkn). Since the above steps are reversible, we have completed our proof. �

As a direct consequence, we yield the following:

Corollary 5.2. If n = pα1
1 pα2

2 · · · p
αt
t and k = pβ1

1 p
β2

2 · · · p
βt
t , where 0 < βi ≤ αi for all 1 ≤ i ≤ t, then

pn(kZkn) = 1.
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Case 2: Suppose that βi = 0 for some 1 ≤ i ≤ t.
So, an inference from [4, Theorem 13] to determine the prime ideals of finite cyclic rings is as

follows:

Lemma 5.3. Let P be an ideal of the ring kZkn. Then P is prime if, and only if, there exists a prime

number p with (k, p) = 1 such that P =< pk > and |P | = |R|
p .

Referring to Lemma 5.3, one can see that there is exactly one prime ideal of the ring kZkn, for each
prime number p, satisfying the condition (k, p) = 1.

If βi = 0 for every 1 ≤ i ≤ t, then k = 1 and so, pn(kZkn) = pn(Zn) as mentioned earlier. Hence
in the following statement we shall assume that there is at least one i such that βi 6= 0.

Theorem 5.4. Let n = pα1
1 pα2

2 · · · p
αt
t and k = pβ1

1 p
β2

2 · · · p
βt
t in which βi = 0 for some 1 ≤ i ≤ t, and

also there is at least one 0 ≤ i ≤ t such that βi 6= 0. If H = {pj : βj = 0 for some 1 ≤ j ≤ t}, then

pn(kZkn) = 2s∏
pj∈H

pj
, where s = |H|.

Proof. Let n = pα1
1 pα2

2 · · · p
αt
t and k = pβ1

1 p
β2

2 · · · p
βt
t such that βi 6= 0 for at least one 0 ≤ i ≤ t.

Let γi = αi + βi. Then kZkn ∼= kZpγ11 × kZpγ22 × · · · × kZpγtt . For all pj ∈ H, we have (k, pj) = 1

and so, it is easy to verify that kZ
p
γj
j

∼= Z
p
γj
j

, where pj ∈ H. So, we conclude from Lemma 3.1 that

pn(kZ
p
γj
j

) = 2
pj

, for all pj ∈ H. On the other hand, we can easily obtain that kZpγii = Nil(kZ
p
γj
j

),

and hence pn(kZ
p
γj
j

) = 1 for all pi /∈ H. Thus

pn(kZkn) =
∏
pj∈H

2

pj
=

2s∏
pj∈H

pj
. �

By application of Theorem 3.2(1), Corollary 5.2 and Theorem 5.4, we could build several examples
of finite cyclic rings that are necessarily nil-clean.

We finish our work with the following intriguing question.

Problem 5.5. Define and calculate the probability of when a finite commutative ring is weakly
nil-clean as stated in [5].
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