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BOUNDARY-TRANSMISSION PROBLEMS OF THE

THERMO-PIEZO-ELECTRICITY THEORY WITHOUT ENERGY DISSIPATION

OTAR CHKADUA1,2 AND ANIKA TOLORAIA2

Abstract. In the paper, we study Dirichlet, Neumann and mixed type interaction problems of
pseudo-oscillations between thermo-elastic and thermo-piezo-elastic bodies. The model under con-

sideration is based on the Green–Haghdi theory of thermo-piezo-electricity without energy dissi-

pation. This theory allows the thermal waves to propagate only with a finite speed. Using the
potential theory and the method of boundary pseudodifferential equations, we prove the existence

and uniqueness of solutions and analyze their smoothness.

1. Introduction

In this paper, we investigate the boundary-transmission problems, i.e., the Dirichlet, Neumann
and mixed type interaction problems of pseudo-oscillations between thermo-elastic and thermo-piezo-
elastic bodies. The model under consideration is based on the Green–Haghdi theory of thermo-piezo-
electricity without energy dissipation. This theory allows the thermal waves to propagate only with
a finite speed.

Other models of thermo-piezo-electricity, in particular, Foigt and Mindlin’s model is well known.
Our model is refined, it takes into account microrotation and microstretch of a particle.

Almost complete historical and bibliographical notes in this direction can be found in [14], where
the dynamical equations of the thermo-piezo-electricity without energy dissipation are derived on the
basis of the GreenNaghdi theory established in [11, 12] and Eringen’s results obtained in [7, 8]. In
the present paper, we consider the pseudo-oscillation equations obtained by the Laplace transform
from the dynamical equations derived by Iean in [14] for homogeneous isotropic solids possessing
thermo-piezo-electricity properties without energy dissipation.

Using the potential theory and the method of boundary pseudodifferential equations, we prove the
existence and uniqueness theorems of solutions in appropriate function spaces. We prove regularity
results of the Dirichlet and Neumann boundary-transmission problems. Further, we analyze regularity
of solutions of mixed boundary-transmission problem near the exceptional curve, where different type
boundary conditions collide. This regularity of solutions depends on the material constants and does
not depend on the geometry of the exceptional curve. If these constants meet certain conditions, then
the smoothness of solutions is C

1
2 (see [2–6]).

2. Thermo-elastic Field Equations and Thermo-piezo-elastic Field Equations
without Energy Dissipation

The model under consideration is based on the Green–Haghdi theory of thermo-piezo-electricity
without energy dissipation.

Consider disjoint bounded domains Ω1 and Ω2 in the Euclidean space R3 with sufficiently smooth
boundaries ∂Ω1 = S1 and ∂Ω2 = S1∪S2 (S1∩S2 = ∅). Throughout the paper n = (n1, n2, n3) stands
for the exterior unit normal vector to ∂Ω1 = S1 and vector ν = (ν1, ν2, ν3) is exterior unit normal
vector to ∂Ω2 = S1 ∪ S2.

Suppose the domain Ω1 is filled with a homogeneous thermo-elastic material, then the system of
governing differential equations of pseudo-oscillations with respect to the sought vector function U (1) =
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Figure 1. Composed body

(u(1), ϑ(1))⊤, where u(1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 )⊤ is the displacement vector and ϑ(1) is the temperature,

has the following form (see [15]):

(µ(1) + κ(1))∆u(1) + (λ(1) + µ(1)) graddiv u(1) − τ2ρ1u
(1)−τβ(1)

0 gradϑ(1)=(F
(1)
1 , F

(1)
2 , F

(1)
3 )⊤, (2.1)

k(1)∆ϑ(1) − τ2a(1)ϑ(1) − τβ
(1)
0 div u(1) = F

(1)
4 , (2.2)

where (F
(1)
1 , F

(1)
2 , F

(1)
3 )⊤ is a mass force density, F

(1)
4 is a heat source density, ρ1 is the mass density,

µ(1), κ(1), λ(1), β
(1)
0 , k(1), and a(1) are the thermo-elastic constants satisfying the conditions

κ(1) > 0, κ(1) + 2µ(1) > 0, κ(1) + 2µ(1) + 3λ(1) > 0, k(1) > 0, ρ1 > 0, a(1) > 0,

β
(1)
0 > 0, τ = σ + iω, σ > σ0 > 0, ω ∈ R.

The stress operator for a homogeneous isotropic system of equations is defined as follows:

T (1) = T (1)(∂x, n, τ) =
[
T

(1)
ij (∂x, n, τ)

]
4×4

: =

[
[λ(1)ni∂j + µ(1)nj∂i + δij(µ

(1) + κ(1))nk∂k]3×3, [−τβ(1)
0 n]3×1

[0]1×3 k(1)nl∂l

]

4×4

.

We can write the above system (2.1)–(2.2) of equations for pseudo-oscillations of the theory of
homogeneous isotropic thermo-elasticity in the following matrix form:

A(1)(∂x, τ)U
(1) = F (1),

where U (1) = (u(1), ϑ(1))⊤, F (1) = (F
(1)
1 , F

(1)
2 , F

(1)
3 , F

(1)
4 )⊤, and A(1)(∂x, τ) is the 4-dimensional matrix

differential operator of the generalized thermo-elasticity:

A(1)(∂x, τ) =
[
A

(1)
ij (∂x, τ)

]
4×4

: =

[
[δij(λ

(1) + µ(1))∆ + (λ(1) + κ(1))∂i∂j − τ2ρ1δij ]3×3, −τβ(1)
0 [∂i]3×1

−τβ(1)
0 [∂j ]1×3 −τa(1) + k(1)∆

]

4×4

,

where δij is the Kronecker delta.
The domain Ω2 is filled with a thermo-electro-elastic material. The corresponding system of differ-

ential equations of pseudo-oscillations with respect to the sought vector function U (2) has the following
form (see [14]):

(µ(2) + κ(2))∂j∂ju
(2)
i + (λ(2) + µ(2))∂i∂ju

(2)
j − ρ2τ

2u
(2)
i + κ(2)εijk∂jφ

(2)
k

+ λ
(2)
0 ∂iϕ

(2) − τβ
(2)
0 ∂iϑ

(2) = −ρ2fi, i = 1, 2, 3, (2.3)

k(2)∂j∂jϑ
(2) − τ2a(2)ϑ(2) − τβ

(2)
0 ∂ju

(2)
j − τc

(2)
0 ϕ(2) + ν

(2)
1 ∂j∂jϕ

(2) − ν
(2)
3 ∂j∂jψ

(2) = − 1

T0
ρ2Q, (2.4)

γ(2)∂j∂jφ
(2)
i + (α(2) + β(2))∂j∂iφ

(2)
j − τ2I

(2)
0 φ

(2)
i + κ(2)εijk∂ju

(2)
k
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(2)
i + (λ(2) + µ(2))∂i∂ju

(2)
j − ρ2τ
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(2)
i + κ(2)εijk∂jφ

(2)
k
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(2)
0 ∂iϕ

(2) − τβ(2)
0 ∂iϑ
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k(2)∂j∂jϑ
(2) − τ2a(2)ϑ(2) − τβ(2)

0 ∂ju
(2)
j − τc

(2)
0 ϕ(2) + ν

(2)
1 ∂j∂jϕ

(2) − ν(2)
3 ∂j∂jψ

(2) = − 1

T0
ρ2Q, (2.4)

γ(2)∂j∂jφ
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i + (α(2) + β(2))∂j∂iφ
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− 2κ(2)φ
(2)
i = −ρ2Xi, i = 1, 2, 3, (2.5)

(a
(2)
0 ∂j∂j − ξ(2)

0 )ϕ(2) − j(2)
0 τ2ϕ(2) − λ(2)

2 ∂j∂jψ
(2) + ν

(2)
1 ∂j∂jϑ

(2)

+ c
(2)
0 τϑ(2) − λ(2)

0 ∂ju
(2)
j = −ρ2F, (2.6)

λ
(2)
0 ∂j∂jϕ

(2) + χ(2)∂j∂jψ
(2) + ν

(2)
3 ∂j∂jϑ

(2) = −f, (2.7)

where U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , ϑ(2), φ

(2)
1 , φ

(2)
2 , φ

(2)
3 , ϕ(2), ψ(2))>, u(2) = (u

(2)
1 , u

(2)
2 , u

(2)
3 )> is the displace-

ment vector, ϑ(2) is the temperature, φ(2) = (φ
(2)
1 , φ

(2)
2 , φ

(2)
3 )> is the vector of microrotation, ϕ(2)

is the microstretch, ψ(2) is the electric field potential, and (f1, f2, f3) is the external body force per
unit mass, Q is the external rate of supply of heat per unit mass, Xi is the external body couple per
unit mass, F is the microstretch body force, f is the density of free charge, T0 is the initial reference
temperature, εijk is the Levi-Civita symbol and ρ2 is the mass density.

Due to the positiveness of internal energy, the coefficients of system (2.3)–(2.7) must satisfy the
following conditions:

κ(2) > 0, κ(2) + 2µ(2) > 0, κ(2) + 2µ(2) + 3λ(2) > 0,

ξ
(2)
0 (κ(2) + 2µ(2) + 3λ(2)) > 3(λ

(2)
0 )2,

γ(2) > |β(2)|, a
(2)
0 k(2) − (ν

(2)
1 )2 > 0, β(2) + γ(2) + 3α(2) > 0,

χ(2) > 0, a(2) > 0, k(2) > 0, a
(2)
0 > 0, a

(2)
0 (γ(2) − β(2)) > 2(b

(2)
0 )2,

(γ(2) − β(2))[a
(2)
0 k(2) − (ν

(2)
1 )2] + 4b

(2)
0 ν

(2)
1 ν

(2)
2 − 2a

(2)
0 (ν

(2)
2 )2 − 2k(2)(b

(2)
0 )2 > 0,

ρ2 > 0, I
(2)
0 > 0, j

(2)
0 > 0, β

(2)
0 > 0.

Denote by

A(2)(∂x, τ) = [A
(2)
ij (∂x, τ)]9×9

the matrix differential operator generated by the left-hand side expressions in (2.3)–(2.7),

A
(2)
ij (∂x, τ) = δij(µ

(2) + κ(2))∂l∂l + (λ(2) + µ(2))∂i∂j − τ2ρ2δij ,

A
(2)
i4 (∂x, τ)) = −τβ(2)

0 ∂i, A
(2)
i,j+4(∂x, τ) = −κ(2)εijl∂l,

A
(2)
i8 (∂x, τ) = λ

(2)
0 ∂i, A

(2)
i9 (∂x, τ) = 0,

A
(2)
4j (∂x, τ) = −τβ(2)

0 ∂j , A
(2)
44 (∂x, τ) = k(2)∂l∂l − τ2a(2),

A
(2)
4,j+4(∂x, τ) = 0, A

(2)
48 (∂x, τ) = ν

(2)
1 ∂l∂j − τc(2)

0 , A
(2)
49 (∂x, τ) = −ν(2)

3 ∂l∂l,

A
(2)
i+4,j(∂x, τ) = −κ(2)εijl∂l, Ai+4,4(∂x, τ) = 0,

A
(2)
i+4,j+4(∂x, τ) = δijγ

(2)∂l∂l + (α(2) + β(2))∂i∂j − (2κ(2) + τ2I
(2)
0 )δij ,

Ai+4,8(∂x, τ) = 0, A
(2)
i+4,9(∂x, τ) = 0,

A
(2)
8j (∂x, τ) = −λ(2)

0 ∂j , A
(2)
84 (∂x, τ) = ν

(2)
1 ∂l∂l + τc

(2)
0 ,

A
(2)
8,j+4(∂x, τ) = 0, A

(2)
88 (∂x, τ) = a

(2)
0 ∂l∂l − (ξ

(2)
0 + τ2j

(2)
0 ),

A
(2)
89 (∂x, τ) = −λ(2)

2 ∂l∂l, A
(2)
9j (∂x, τ) = 0, A

(2)
94 (∂x, τ) = ν

(2)
3 ∂l∂l,

A
(2)
9,j+4(∂x, τ) = 0 A

(2)
98 (∂x, τ) = λ

(2)
2 ∂l∂l, A99(∂x, τ) = χ(2)∂l∂l, i, j = 1, 2, 3.

The stress differential operator of thermo-electro-elasticity is defined as follows:

T (2) = T (2)(∂x, ν, τ) := [T
(2)
ij (∂x, ν, τ)]9×9,

where

T
(2)
ij (∂x, ν, τ) = λ(2)νi∂j + µ(2)νj∂i + δij(µ

(2) + κ(2))νk∂k, T
(2)
i4 (∂x, ν, τ) = −τβ(2)

0 νi,

T
(2)
i,j+4(∂x, ν, τ) = −κ(2)εijkνk, T

(2)
i8 (∂x, ν, τ) = λ

(2)
0 νi, T

(2)
i9 (∂x, ν, τ) = 0,
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T
(2)
4,j (∂x, ν, τ) = 0, T

(2)
44 (∂x, ν, τ) = k(2)νl∂l,

T
(2)
4,j+4(∂x, ν, τ) = −ν(2)

2 εljkνl∂k, T
(2)
48 (∂x, ν, τ) = ν

(2)
1 νk∂k,

T
(2)
49 (∂x, ν, τ) = −ν(2)

3 νk∂k, T
(2)
i+4,j(∂x, ν, τ) = 0,

T
(2)
i+4,4(∂x, ν, τ) = ν

(2)
2 εlikνl∂k, T

(2)
i+4,j+4(∂x, ν, τ) = α(2)νi∂j + β(2)νj∂i + δijγ

(2)νk∂k,

T
(2)
i+4,8(∂x, ν, τ) = b

(2)
0 εlikνl∂k, T

(2)
i+4,9(∂x, ν, τ) = λ

(2)
1 εlikνl∂k,

T
(2)
8j (∂x, ν, τ) = 0, T

(2)
84 (∂x, ν, τ) = ν

(2)
1 νk∂k,

T
(2)
8,j+4(∂x, ν, τ) = −b(2)

0 εlikνl∂k, T
(2)
88 (∂x, ν, τ) = a

(2)
0 νk∂k, T

(2)
89 (∂x, ν, τ) = −λ(2)

2 νk∂k,

T
(2)
9j (∂x, ν, τ) = 0, T

(2)
94 (∂x, ν, τ) = ν

(2)
3 νk∂k,

T
(2)
9,j+4(∂x, ν, τ) = −λ(2)

1 εljkνl∂k, T
(2)
98 (∂x, ν, τ) = λ

(2)
2 νk∂k,

T
(2)
99 (∂x, ν, τ) = χ(2)νk∂k, i, j = 1, 2, 3.

The system of equations (2.3)–(2.7) can be written in a matrix form

A(2)(∂x, τ)U (2) = Φ,

where

U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , ϑ(2), φ

(2)
1 , φ

(2)
2 , φ

(2)
3 , ϕ(2), ψ(2))>,

Φ = −
(
ρ2f1, ρ2f2, ρ2f3,

1

T0
ρ2Q, ρ2X1, ρ2X2, ρ2X3, ρ2F, f

)>

and A(2)(∂x, τ) is the 9-dimensional matrix differential operator corresponding to system (2.3)–(2.7).

3. Formulation of Boundary-transmission Pseudo-oscillation Problems

By Hs with s ∈ R, we denote the Sobolev-Slobodetsky space. Let M0 be a smooth surface without

boundary. For a proper sub-manifold M ⊂M0, we denote by H̃s(M ) the subspace of Hs(M0),

H̃s(M ) =
{
g : g ∈ Hs(M0), supp g ⊂M

}
,

while Hs(M ) stand for the space of restriction on M of functions from Hs(M0).

3.1. Formulation of the Dirichlet boundary-transmission problem (TD)τ of pseudo-osci-
llations. We are looking for a solution

U (1) = (u(1), ϑ(1))> = (u(1), u
(1)
4 )> ∈ [H1(Ω1)]4,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = (u(2), u
(2)
4 , u

(2)
5 , . . . , u

(2)
9 )> ∈ [H1(Ω2)]9

of the pseudo-oscillation equations

A(1)(∂x, τ)U (1) = 0 in Ω1,

A(2)(∂x, τ)U (2) = 0 in Ω2,

which satisfy on the surface S1 the following transmission conditions:

{u(1)
j }+ − {u

(2)
j }+ = f

(1)
j on S1, j = 1, 4,

{T (1)(∂x, ν, τ)U (1)}+j + {T (2)(∂x, ν, τ)U (2)}+j = f
(2)
j on S1, j = 1, 4, ν = −n,

and the boundary conditions

{u(2)
j }+ = Q

(2)
j , j = 5, 9,

while on the surface S2, the Dirichlet boundary conditions

{U (2)}+ = p(2) on S2,

where

f
(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S1), j = 1, 4,
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Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, p(2) ∈ [H

1
2 (S2)]9.

3.2. Formulation of the Neumann boundary-transmission problem (TN)τ of pseudo-osci-
llations. We are looking for a solution

U (1) = (u(1), ϑ(1))> = (u(1), u
(1)
4 )> ∈ [H1(Ω1)]4,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = (u(2), u
(2)
4 , u

(2)
5 , . . . , u

(2)
9 )> ∈ [H1(Ω2)]9

of the pseudo-oscillation equations

A(1)(∂x, τ)U (1) = 0 in Ω1,

A(2)(∂x, τ)U (2) = 0 in Ω2,

which satisfy on the surface S1 the following transmission conditions:

{u(1)
j }+ − {u

(2)
j }+ = f

(1)
j on S1, j = 1, 4,

{T (1)(∂x, ν, τ)U (1)}+j + {T (2)(∂x, ν, τ)U (2)}+j = f
(2)
j on S1, j = 1, 4, ν = −n,

and the boundary conditions

{u(2)
j }+ = Q

(2)
j , j = 5, 9,

while on the surface S2, the Neumann boundary conditions

{T (2)(∂x, ν, τ)U (2)}+ = q(2) on S2,

where

f
(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S1), j = 1, 4,

Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, q(2) ∈ [H−

1
2 (S2)]9.

3.3. Formulation of the mixed boundary-transmission problem (TM)τ of pseudo-osci-
llations. We are looking for a solution

U (1) = (u(1), ϑ(1))> = (u(1), u
(1)
4 )> ∈ [H1(Ω1)]4,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = (u(2), u
(2)
4 , u

(2)
5 , . . . , u

(2)
9 )> ∈ [H1(Ω2)]9

of the pseudo-oscillation equations

A(1)(∂x, τ)U (1) = 0 in Ω1,

A(2)(∂x, τ)U (2) = 0 in Ω2,

which satisfy on the surface S1) the following transmission conditions:

{u(1)
j }+ − {u

(2)
j }+ = f

(1)
j on S1, j = 1, 4,

{T (1)(∂x, ν, τ)U (1)}+j + {T (2)(∂x, ν, τ)U (2)}+j = f
(2)
j on S1, j = 1, 4, ν = −n,

and the boundary conditions

{u(2)
j }+ = Q

(2)
j on S1, j = 5, 9,

while on the surface S2, the mixed boundary conditions

{U (2)}+ = p
(D)
2 on S

(D)
2 ,

{T (2)(∂x, ν, τ)U (2)}+ = q
(N)
2 on S

(N)
2 ,

where

S2 = S
(D)
2 ∪ S (N)

2 , S
(D)
2 ∩ S(N)

2 = ∅,

`m = ∂S
(D)
2 = ∂S

(N)
2 ∈ C∞, f

(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S1), j = 1, 4,

Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, p

(D)
2 ∈ [H

1
2 (S

(D)
2 ]9, q

(N)
2 ∈ [H−

1
2 (S

(N)
2 ]9.



6 O. CHKADUA AND A. TOLORAIA

4. Uniqueness Theorems for Solutions of Boundary-transmission Problems of
Pseudo-oscillations

Theorem 4.1. The boundary-transmission problems (TD)τ and (TN)τ cannot have two different
solutions in the class of regular vector functions U (1) ∈ [C2(Ω1)]4 ∩ [C1(Ω1)]4, U (2) ∈ [C2(Ω2)]9 ∩
[C1(Ω2)]9 and also in the Sobolev space [H1(Ω1)]4 × [H1(Ω2)]9.

Proof. It is sufficient to show that the homogeneous problems (TD)τ and (TN)τ have only the trivial
solution. Indeed, suppose (U (1), U (2)) is a regular solution to the homogeneous problem (TD)τ or
(TN)τ . Let us write Green’s formulas for the vector functions U (1) and U (2) in the domains Ω1 and
Ω2, respectively:

∫

Ω1

A(1)(∂x, τ)U (1) · U (1)dx+

∫

Ω1

E(1)
τ (U (1), U

(1)
)dx =

∫

S1

{T (1)U (1)}+ · {U (1)}+ds, (4.1)

∫

Ω2

A(2)(∂x, τ)U (2) · U (2)dx+

∫

Ω2

E(2)
τ (U (2), U

(2)
)dx =

∫

S1∪S2

{T (2)U (2)}+ · {U (2)}+ds, (4.2)

where

U (1) = (u(1), ϑ(1))T , U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))T ,

E(1)
τ (U (1), U (1)) = E (u(1), u(1)) + ρ1τ

2|u(1)|2 − τβ(1)
0 ϑ(1) div u (1) + k(1)| gradϑ(1)|2

+τβ
(1)
0 div u(1)ϑ (1) + τ2a(1)|ϑ(1)|2,

E (u(1), u(1)) = (µ(1) + κ(1))| gradu(1)|2 + (λ(1) + µ(1))|div u(1)|.
Here and in what follows, a · b denotes the scalar product of two, in general, complex-valued vectors

a · b =

N∑

k=1

akbk, a, b ∈ CN .

Obviously, E (u(1), u(1)) > 0,

E(2)
τ (U (2), U (2)) = B(u(2), u(2)) + 2iλ

(2)
1 εijk Im(∂kψ

(2)∂iφ
(2)

j ) + 2iλ
(2)
2 Im(∂jϕ

(2)∂jψ
(2)

)

+2iν
(2)
3 Im(∂jϑ

(2)∂jψ
(2)

) + 2iτβ
(2)
0 Im(∂ju

(2)
j ϑ (2)) + 2iτc

(2)
0 Im(ϕ(2)ϑ (2))

+τ2(ρ2|u(2)|2 + I
(2)
0 |φ(2)|2 + j

(2)
0 |ϕ(2)|2 + a(2)|ϑ(2)|2);

here, B(u(2), u(2)) > 0 ∀u(2) 6= 0 (for the definition of this form see [5] formula (2.19)).
Adding Green’s formulas (4.1) and (4.2) and taking into account the fact that (U (1), U (2)) is a

solution to the homogeneous transmission problem (TD)τ or (TN)τ , we get
∫

Ω1

E(1)
τ (U (1), U (1))dx+

∫

Ω2

E(2)
τ (U (2), U (2))dx

=

∫

S1

4∑

j=1

{T (1)U (1)}+j {U (2)}+j ds+

∫

S1

4∑

j=1

{T (2)U (2)}+j {U (2)}+j ds

=

∫

S1

4∑

j=1

(
{T (1)U (1)}+j + {T (2)U (2)}+j

)
{U (2)}+j ds = 0.

Therefore we obtain ∫

Ω1

E(1)
τ (U (1), U

(1)
)dx+

∫

Ω2

E(2)
τ (U (2), U

(2)
)dx = 0. (4.3)
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Similarly we get (see [5])
∫

Ω1

E(1)
τ (U (1), U (1))dx+

∫

Ω2

Ẽ(2)
τ (U (2), U (2))dx = 0, (4.4)

where

Ẽ(2)
τ (U (2), U (2)) := B(2)(u(2), u(2)) + 2iτβ

(2)
0 Im(∂ju

(2)
j ϑ

(2)
) + 2iτc

(2)
0 Im(ϕ(2)ϑ

(2)
)

+ τ2(ρ2|u|2 + I
(2)
0 |φ|(2) + j

(2)
0 |ϕ(2)|2 + a(2)|ϑ(2)|2). (4.5)

Now, let us take first the real part of equality (4.3), and then the imaginary part, where

τ = σ + iω, τ2 = (σ2 − ω2) + 2iσω, σ > σ0 > 0, ω ∈ R.

Thus we obtain the following integral equalities:
∫

Ω1

[
E (u(1), u(1)) + (σ2 − ω2)ρ1|u(1)|2 − 2β

(1)
0 ω Im(ϑ (1) div u(1)) + k(1)| gradϑ(1)|2

+ a(1)(σ2 − ω2)|ϑ(1)|2
]
dx

+

∫

Ω2

[
B(u(2), u(2))− 2ωβ

(2)
0 Im(ϑ (2) div u(2))− 2ωc

(2)
0 Im(ϕ(2)ϑ (2)) + (σ2 − ω2)

(
ρ2|u(2)|2

+ I
(2)
0 |φ(2)|2 + j

(2)
0 |ϕ(2)|2 + a(2)|ϑ(2)|2

)]
dx = 0, (4.6)

∫

Ω1

[
2σωρ1|u(1)|2 + 2a(1)σω|ϑ(1)|2 + 2β

(1)
0 σ Im(ϑ (1) div u(1))dx

]

+

∫

Ω2

[
2σβ

(2)
0 Im(ϑ (2) div u(2)) + 2σc

(2)
0 Im(ϕ(2)ϑ (2)) + 2σω(ρ2|u(2)|2

+ I
(2)
0 |φ(2)|2 + j

(2)
0 |ϕ(2)|2 + a(2)|ϑ(2)|2)

]
dx = 0. (4.7)

Multiplying (4.7) by ω
σ and adding equality (4.6), we get

∫

Ω1

[
E (u(1), u(1)) + (σ2 + ω2)ρ1|u(1)|2 + k(1)| gradϑ(1)|2 + a(1)(σ2 + ω2)|ϑ(1)|2

]
dx

+

∫

Ω2

[
B(u(2), u(2)) + (σ2 + ω2)(ρ2|u(2)|2 + I

(2)
0 |φ(2)|2 + j

(2)
0 |ϕ(2)|2 + a(2)|ϑ(2)|2)

]
dx = 0. (4.8)

Since

E (u(1), u(1)) > 0, ∀u(1) 6= 0,

B(u(2), u(2)) > 0, ∀u(2) 6= 0,

ρ1 > 0, k(1) > 0, a(1) > 0, ρ2 > 0, I
(2)
0 > 0, j

(2)
0 > 0, a(2) > 0,

we obtain

|u(1)| = |ϑ(1)| = 0,

|u(2)| = |φ(2)| = |ϕ(2)| = |ϑ(2)| = 0,
∫

Ω2

χ(2)|E|2dx = 0,

where E = − gradψ(2) (see formula (2.3) in [5]), hence

u(1) = 0, ϑ(1) = 0, in Ω1,
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u(2) = 0, φ(2) = 0, ϕ(2) = 0, ϑ(2) = 0 and ψ(2) = b in Ω2,

here, b is an arbitrary constant.
For the function ψ(2), the Dirichlet homogeneous condition on the surface S1 implies that b = 0.

Therefore for the homogeneous transmission problem (TD)τ , we obtain

U (1) = (u(1), ϑ(1))> = 0 in Ω1,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = 0 in Ω2,

while for the homogeneous transmission problem (TN)τ , for the function ψ(2), the Dirichlet homoge-
neous condition on the surface S1 implies that b = 0, and we get

U (1) = (u(1), ϑ(1))> = 0 in Ω1,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = 0 in Ω2.

Note that the uniqueness theorem of the transmission problems (TD)τ and (TN)τ in the Sobolev
space [H1(Ω1)]4 × [H1(Ω2)]9 can be proved similarly. �

For the mixed boundary-transmission problem (TM)τ , the following theorem holds.

Theorem 4.2. The mixed boundary-transmission problem (TM)τ cannot have two different solutions
in the Sobolev space [H1(Ω1)]4 × [H1(Ω2)]9.

Proof. It is sufficient to show that the homogeneous problem (TM)τ has only the trivial solution.
Indeed, suppose (U (1), U (2)) is a solution to the homogeneous problem (TM)τ . Let us write Green’s

formulas for the vector functions U (1) and U (2) in the domains Ω1 and Ω2, respectively:∫

Ω1

A(1)(∂x, τ)U (1) · U (1)dx+

∫

Ω1

E(1)
τ (U (1), U (1))dx = 〈{T (1)U (1)}+, {U (1)}+〉S1

, (4.9)

∫

Ω2

A(2)(∂x, τ)U (2) · U (2)dx+

∫

Ω2

E(2)
τ (U (2), U (2))dx = 〈{T (2)U (2)}+, {U (2)}+〉S1∪S2

, (4.10)

where the symbols 〈·, ·〉S1
and 〈·, ·〉S1∪S2

denote the duality between the function spaces [H−
1
2 (S1))]4

and [H
1
2 (S1))]4, and the function spaces [H−

1
2 (S1 ∪ S2)]9 and [H

1
2 (S1 ∪ S2)]9, respectively.

Adding Green’s formulas (4.9) and (4.10) and taking into account that (U (1), U (2)) is a solution to
the homogeneous transmission problem (TM)τ , we get
∫

Ω1

E(1)
τ (U (1), U (1))dx+

∫

Ω2

E(2)
τ (U (2), U (2))dx

=

4∑

j=1

〈{T (1)U (1)}+j , {U (1)}+j 〉S1 +

9∑

j=1

〈{T (2)U (2)}+j , {U (2)}+j 〉S1

=

4∑

j=1

〈{T (1)U (1)}+j + {T (2)U (2)}+j , {U (2)}+j 〉S1
= 0.

Therefore we obtain ∫

Ω1

E(1)
τ (U (1), U (1))dx+

∫

Ω2

E(2)
τ (U (2), U (2))dx = 0, (4.11)

and ∫

Ω1

E(1)
τ (U (1), U (1))dx+

∫

Ω2

Ẽ(2)
τ (U (2), U (2))dx = 0.

Now, if we repeat the reasoning in Theorem 4.1, we get

u(1) = 0, ϑ(1) = 0 in Ω1,

u(2) = 0, φ(2) = 0, ϕ(2) = 0, ϑ(2) = 0 and ψ(2) = b in Ω2,
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where b is an arbitrary constant.

For the function ψ(2), the Dirichlet homogeneous condition on the surface S
(2)
D implies that b = 0.

Therefore for the homogeneous transmission problem (TM)τ , we obtain

U (1) = (u(1), ϑ(1))> = 0 in Ω1,

U (2) = (u(2), ϑ(2), φ(2), ϕ(2), ψ(2))> = 0 in Ω2. �

5. Properties of Potentials and Boundary Operators

The single layer potentials are defined as follows (their properties see [15], [5]):

V
(1)
S1

(g)(x) =

∫

S1

Γ(1)(x− y)g(y)dyS,

V
(2)
S1

(f)(x) =

∫

S1

Γ(2)(x− y)f(y)dyS,

V
(2)
S2

(h)(x) =

∫

S2

Γ(2)(x− y)h(y)dyS,

where Γ(1)(x−y) and Γ(2)(x−y) are the fundamental solutions of the differential operators A(1)(∂x, τ)
and A(2)(∂x, τ) respectively (see [15], [5]).

The following theorem holds (see [15], [5], [17]).

Theorem 5.1. Let g ∈
[
H−

1
2 (S1)

]4
, f ∈

[
H−

1
2 (S1)

]9
, h ∈

[
H−

1
2 (S2)

]9
, then the following jump

relations hold:

{T (1)(∂x, n, τ)V
(1)
S1

(g)}± =
(
∓ 1

2
I4 + K

(1)
S1

)
(g) on S1,

{T (2)(∂x, ν, τ)V
(2)
S1

(f)}± =
(
∓ 1

2
I9 + K

(2)
S1

)
(f) on S1,

{T (2)(∂x, ν, τ)V
(2)
S2

(h)}± =
(
∓ 1

2
I9 + K

(2)
S2

)
(h) on S2,

where

K
(1)
S1

(g)(z) =

∫

S1

T (1)(∂z, n(z), τ)Γ(1)(z − y)g(y)dyS, z ∈ S1,

K
(2)
S1

(f)(z) =

∫

S1

T (2)(∂z, ν(z), τ)Γ(2)(z − y)f(y)dyS, z ∈ S1,

K
(2)
S2

(h)(z) =

∫

S2

T (2)(∂z, ν(z), τ)Γ(2)(z − y)h(y)dyS, z ∈ S2,

and

H
(1)
S1

(g)(z) = {V (1)
S1

(g)(z)}+ = {V (1)
S1

(g)(z)}−, z ∈ S1,

H
(2)
S1

(f)(z) = {V (2)
S1

(f)(z)}+ = {V (2)
S1

(f)(z)}−, z ∈ S1,

H
(2)
S2

(h)(z) = {V (2)
S2

(h)(z)}+ = {V (2)
S2

(h)(z)}−, z ∈ S2.

Here we collect some theorems describing the mapping properties of potentials and corresponding
boundary (pseudodifferential) operators. The proof of these theorems can be found in references [5],
[17], [9].

Theorem 5.2. Let s ∈ R. Then the single layer potentials can be extended to the continuous operators

V
(1)
S1

:
[
Hs(S1)

]4 −→
[
Hs+ 3

2 (Ω1)
]4
,
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V
(2)
S1

:
[
Hs(S1)

]9 −→
[
Hs+ 3

2 (Ω1)
]9
,

V
(2)
S2

:
[
Hs(S2)

]9 −→
[
Hs+ 3

2 (Ω2)
]9
.

Theorem 5.3. Let s ∈ R. Then the pseudodifferential operators of order −1

H
(1)
S1

:
[
Hs(S1)

]4 −→
[
Hs+1(S1)

]4
,

H
(2)
S1

:
[
Hs(S1)

]9 −→
[
Hs+1(S1)

]9
,

H
(2)
S2

:
[
Hs(S2)

]9 −→
[
Hs+1(S2)

]9

are invertible.

Theorem 5.4. Let s ∈ R. Then the singular integral operators

K
(1)
S1

:
[
Hs(S1)

]4 −→
[
Hs(S1)

]4
,

K
(2)
S1

:
[
Hs(S1)

]9 −→
[
Hs(S1)

]9
,

K
(2)
S2

:
[
Hs(S2)

]9 −→
[
Hs(S2)

]9

are continuous.

6. Existence of Solutions to the Dirichlet Boundary-transmission Problem (TD)τ of
Pseudo-oscillations

We look for a solution of the boundary-transmission problem (TD)τ in the form of the single layer
potentials

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1,

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2,

where the unknown densities g(1), g(2) and h(2) belong to the following Sobolev spaces:

g(1) = (g
(1)
1 , . . . , g

(1)
4 )> ∈ [H

1
2 (S1)]4, g(2) = (g

(2)
1 , . . . , g

(2)
9 )> ∈ [H

1
2 (S1)]9,

h(2) = (h
(2)
1 , . . . , h

(2)
9 )> ∈ [H

1
2 (S2)]9.

Taking into account the boundary and boundary-transmission conditions of the contact problem
(TD)τ , for the vector-functions g(1), g(2) and h(2) we obtain the following system of equations:

g
(2)
j + rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = Q
(2)
j on S1, j = 5, 9, (6.1)

g
(1)
j − g

(2)
j − rS1 [V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(1)
j on S1, j = 1, 4, (6.2)

[(
− 1

2
I4 +K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

+ rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(2)
j on S1, j = 1, 4, (6.3)

rS2 [V
(2)
S1

(H
(2)
S1

)−1g(2)] + h(2) = p(2) on S2, (6.4)

where rsj (j = 1, 2) is the restriction operator on the surface Sj (j = 1, 2).
Let us change positions of equations (6.1) and (6.2) of system (6.1)–(6.4) and multiply equation

(6.1) by −1, i.e., rewrite system (6.1)–(6.4) in the form of the following equivalent system of equations:

g
(1)
j − g

(2)
j − rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(1)
j on S1, j = 1, 4, (6.5)

− g(2)
j − rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = −Q(2)
j on S1, j = 5, 9, (6.6)

[(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

+ rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(2)
j on S1, j = 1, 4, (6.7)

rS2 [V
(2)
S1

(H
(2)
S1

)−1g(2)] + h(2) = p(2) on S2. (6.8)
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The operator corresponding to system (6.5)–(6.8) has the following matrix form:

N :=



I9×4 −I9 −rS1

[V
(2)
S2

(H
(2)
S2

)−1]9×9

A
(1)
S1

[A
(2)
S1

]4×9 rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1]4×9

[0]9×4 rS2 [V
(2)
S1

(H
(2)
S1

)−1]9×9 I9




22×22

,

where

A
(1)
S1

:=
(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1, A
(2)
S1

:=
(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1

are the Poincaré–Steklov type operators. These operators are strongly elliptic pseudodifferential op-
erators of order 1, and

I9×4 :=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0




>

.

The operator

N : X → Y

is bounded, where

X : = [H
1
2 (S1)]13 × [H

1
2 (S2)]9,

Y : = [H
1
2 (S1)]9 × [H−

1
2 (S1)]4 × [H

1
2 (S2)]9.

The following theorem holds.

Theorem 6.1. The operator

N : X → Y

is invertible.

Proof. First, we show that the operator N : X → Y is Fredholm with index zero. Indeed, obviously,
the operators

rS1 [V
(2)
S2

(H
(2)
S2

)−1]9×9 : [H
1
2 (S2)]9 → [H

1
2 (S1)]9,

rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1]4×9 : [H
1
2 (S2)]9 → [H−

1
2 (S1)]4,

rS2
[V

(2)
S1

(H
(2)
S1

)−1]9×9 : [H
1
2 (S1)]9 → [H

1
2 (S2)]9

are compact, since S1 ∩ S2 = ∅.
Now, let us consider the operator

N1 :=



I9×4 −I9 [0]9×9

A
(1)
S1

[A
(2)
S1

]4×9 [0]4×9

[0]9×4 [0]9×9 I9




22×22

,

where the operator

N −N1 : X → Y

is compact.
Write corresponding system of the operator N1 as follows:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (6.9)

− g̃ (2)
j = F̃j on S1, j = 5, 9, (6.10)

[A
(1)
S1

g̃ (1)]j + [A
(2)
S1

g̃ (2)]j = f̃
(2)
j on S1, j = 1, 4, (6.11)

h̃ (2) = p̃ (2) on S2. (6.12)

System (6.9)–(6.12) is equivalent to the following system:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (6.13)
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− g̃ (2)
j = F̃j on S1, j = 5, 9, (6.14)

(A
(1)
S1

+ A
(2)
S1

)g̃
(1)
j = Ψ on S1, (6.15)

h̃ (2) = p̃ (2) on S2. (6.16)

where

A
(2)
S1

:=
[
A

(2)
S1,pq

]
4×4

, p, q = 1, 4,

and Ψ = (ψ1, . . . , ψ4)>,

ψj = f̃
(2)
j + [A

(2)
S1

(f̃
(1)
1 , . . . , f̃

(1)
4 , F̃5, . . . , F̃9)>]j , j = 1, 4. (6.17)

The operator corresponding to system (6.13)–(6.16), has the following form

N2 :=




I9×4 −I9 [0]9×9

A
(1)
S1

+ A
(2)
S1

[0]4×9 [0]4×9

[0]9×4 [0]9×9 I9




22×22

.

Obviously, the operator

N2 : X → Y

is bounded.
Consider the composition

N3 := N2 ◦Q,

where

Q :=




[0]4×9 I4 [0]4×9

I9 [0]9×4 [0]9×9

[0]9×9 [0]9×4 I9




22×22

.

Obviously, the operator

Q : X →X

is invertible.
The operator N3 has the form

N3 :=



−I9 I9×4 [0]9×9

[0]4×9 A
(1)
S1

+ A
(2)
S1

[0]4×9

[0]9×9 [0]9×4 I9




22×22

.

To show that the operator

N : X → Y

is Fredholm with zero index, it suffices to show that the operator

N3 : X → Y

is Fredholm with zero index.
Indeed, since the operator N3 is triangular diagonal, it suffices to show that the following Lemma

holds.

Lemma 6.2. The operator

A
(1)
S1

+ A
(2)
S1

: [H
1
2 (S1)]4 → [H−

1
2 (S1)]4

is Fredholm with zero index.

Proof. Using Green’s formula and Korn’s inequality (see [10]), for an arbitrary vector-function U (1) ∈
[H1(Ω1)]4 which is a solution of the homogeneous differential equation in Ω1

A(1)(∂x, τ)U (1) = 0 in Ω1,

we get

Re〈{T (1)U (1)}+, {U (1)}+〉S1
≥ c1‖U (1)‖2[H1(Ω1)]4 − c2‖U (1)‖2[L2(Ω1)]4 . (6.18)
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Here and below, the constants ci > 0. Substituting U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in (6.18) and applying
the trace theorem, we obtain

Re〈A (1)
S1

g(1), g(1)〉S1 ≥ c1‖V (1)
S1

(H
(1)
S1

)−1g(1)‖2[H1(Ω1)]4 − c2‖V
(1)
S1

(H
(1)
S1

)−1g(1)‖2[L2(Ω1)]4

≥ c3‖g(1)‖2
[H

1
2 (S1)]4

− c2‖V (1)
S1

(H
(1)
S1

)−1g(1)‖2[L2(Ω1)]4 . (6.19)

Now, using the boundedness of the single layer potential

‖V (1)
S1

(H
(1)
S1

)−1g(1)‖[L2(Ω1)]4 ≤ c4‖g(1)‖
[H− 1

2 (S1)]4
,

from (6.19), we obtain the coercivity of the operator A
(1)
S1

:

Re〈A (1)
S1

g(1), g(1)〉S1
≥ c3‖g(1)‖2

[H
1
2 (S1)]4

− c5‖g(1)‖2
[H− 1

2 (S1)]4
∀g(1) ∈ [H

1
2 (S1)]4. (6.20)

Similarly, we can obtain the coercivity of the operator A
(2)
S1

.

Indeed, using Green’s formula and Korn’s inequality, for an arbitrary vector-function U (2) ∈
[H1(Ω2)]9, which is a solution of the homogeneous equation

A(2)(∂x, τ)U (2) = 0 in Ω2

and {U (2)}+ = 0 on S2, we get

Re〈{T (2)U (2)}+, {U (2)}+〉S1
≥ c6‖U (2)‖2[H1(Ω2)]9 − c7‖U (2)‖2[L2(Ω2)]9 . (6.21)

Substituting U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) in (6.21), we obtain

Re〈A (2)
S1

g(2), g(2)〉S1
≥ c6‖V (2)

S1
(H

(2)
S1

)−1g(2)‖2[H1(Ω2)]9 − c7‖V
(2)
S1

(H
(2)
S1

)−1g(2)‖2[L2(Ω2)]9 . (6.22)

Using the boundedness of the single layer potential

‖V (2)
S1

(H
(2)
S1

)−1g(2)‖ ≤ c8‖g(2)‖
[H− 1

2 (S1)]9

and the trace theorem, from (6.22), we get

Re〈A (2)
S1

g(2), g(2)〉S1 ≥ c9‖g(2)‖2
[H

1
2 (S1)]9

− c10‖g(2)‖2
[H− 1

2 (S1)]9
∀g(2) ∈ [H

1
2 (S1)]9. (6.23)

Now, substitute g(2) = (g(1), 0, 0, 0, 0, 0)> in (6.23), where g(1) = (g
(1)
1 , g

(1)
2 , g

(1)
3 , g

(1)
4 )>, then (6.23)

can be rewritten as follows:

Re〈A (2)
S1
g(1), g(1)〉S1 ≥ c9‖g(1)‖2

[H
1
2 (S1)]4

− c10‖g(1)‖2
[H− 1

2 (S1)]4
. (6.24)

Adding inequalities (6.20) and (6.24), we get

Re〈(A (1)
1 + A

(2)
S1
g(1), g(1)〉S1 ≥ c11‖g(1)‖2

[H
1
2 (S1)]4

− c12‖g(1)‖2
[H− 1

2 (S1)]4
∀g(1) ∈ [H

1
2 (S1)]4,

i.e., the operator

A
(1)

1 + A
(2)
S1

: [H
1
2 (S1)]4 → [H−

1
2 (S1)]4

is coercive, and therefore it is Fredholm with zero index (see [13,16]). Thus we obtain the validity of
Lemma 6.2. �

It follows from Lemma 6.2 that the operator

N3 : X → Y

is Fredholm with zero index. Then the operators

N2, N1 : X → Y

are also Fredholm with zero index, and hence the operator

N : X → Y

is Fredholm with zero index.
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Now we show that the operator
N : X → Y

is invertible.
It can be easily shown that the invertibility of the operator N follows from the uniqueness of

solutions of the boundary-transmission problem (TD)τ . Indeed, let (g(1), g(2), h(2))> be a solution of
the homogeneous equation

N (g(1), g(2), h(2))> = 0.

We construct the following potentials:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1), (6.25)

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2). (6.26)

Since (g(1), g(2), h(2))> is a solution of the homogeneous system (6.5)–(6.8), it is clear that (U (1), U (2))
will be a solution of the homogeneous boundary-transmission problem (TD)τ . Then from the unique-
ness theorem of problem (TD)τ , it follows that

U (1) ≡ 0 in Ω1,

U (2) ≡ 0 in Ω2.

Since the single layer potentials are continuous in space R3, we have

{U (1)}+ = {U (1)}− on S1

and

{U (2)}+ = {U (2)}− on S1 ∪ S2,

hence

{U (1)}− = 0 on S1,

{U (2)}− = 0 on S1 ∪ S2.

Therefore we find that the vector functions U (1) and U (2) satisfy the following Dirichlet problems:{
A(1)(∂x, τ)U (1) = 0 in R3 \ Ω1,

{U (1)}− = 0 in S1,

and {
A(2)(∂x, τ)U (2) = 0 in R3 \ Ω2,

{U (2)}− = 0 in S1 ∪ S2.

From the uniqueness of the solutions of the Dirichlet problem it follows that these problems have only
trivial solution, i.e.,

U (1) ≡ 0 in R3 \ Ω1,

U (2) ≡ 0 in R3 \ Ω2,

thus

U (1) ≡ 0 in R3,

U (2) ≡ 0 in R3.

Now, applying the jump formulas of the potentials (6.25) and (6.26), we get

{T (1)U (1)}− − {T (1)U (1)}+ = g(1) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = g(2) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = h(2) = 0 on S2.

Therefore we obtain
Ker N = {0},
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and since the index of the operator N equals zero, we have

Ker N ∗ = {0}.
This implies that N is surjection. Thus we find that the operator

N : X → Y

is invertible, and Theorem 6.1 is proved. �

The invertibility of the operator N implies the unique solvability of systems (6.1)–(6.4), (6.5)–(6.8)
and hence we obtain the unique solvability of the Dirichlet boundary-transmission problem (TD)τ .

Theorem 6.3. Let S1, S2 ∈ C∞, τ = σ+iω, σ > σ0 > 0, ω ∈ R, and f
(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S1),

j = 1, 4, Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, p(2) ∈ [H

1
2 (S2)]9. Then the Dirichlet boundary-transmission

problem (TD)τ has a unique solution

(U (1), U (2)) ∈ [H1(Ω1)]4 × [H1(Ω2)]9,

which is represented as follows:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1, (6.27)

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2, (6.28)

where g(1), g(2), h(2) are solutions of the uniquely solvable system (6.1)–(6.4).

The following regularity theorem holds.

Theorem 6.4. Let S1, S2 ∈ Cm,a, 0 < β < α ≤ 1, m ≥ 2, m ∈ N, and

f
(1)
j ∈ Ck,β(S1), f

(2)
j ∈ Ck−1,β(S1), j = 1, 4,

Q
(2)
j ∈ Ck,β(S1), j = 5, 9, p(2) ∈ [Ck,β(S2)]9, k = 1,m− 1.

Then the Dirichlet boundary-transmission problem (TD)τ has a unique solution

(U (1), U (2)) ∈ [Ck,β(Ω1)]4 × [Ck,β(Ω2)]9,

which is represented as single layer potentials (6.27), (6.28), where

g(1) ∈ [Ck,β(S1)]4, g(2) ∈ [Ck,β(S1)]9, h(2) ∈ [Ck,β(S2)]9

are solutions of the uniquely solvable system (6.1)–(6.4) .

Proof. Since the operators

A
(1)
S1

+ A
(2)
S1

: [H
1
2 (S1)]4 → [H−

1
2 (S1)]4,

A
(1)
S1

+ A
(2)
S1

: [Ck,β(S1)]4 → [Ck−1,β(S1)]4

are first order strongly elliptic and have a common regularizer, we have (see [1, §10])

dim Ker(A
(1)
S1

+ A
(2)
S1

) = dim CoKer(A
(1)
S1

+ A
(2)
S1

).

This means that the operator

A
(1)
S1

+ A
(2)
S1

: [Ck,β(S1)]4 → [Ck−1,β(S1)]4

is Fredholm with zero index. Therefore the operator

N : [Ck,β(S1)]13 × [Ck,β(S2)]9 → [Ck,β(S1)]9 × [Ck−1,β(S1)]4 × [Ck,β(S1)]9

will also be Fredholm with zero index. The invertibility of the operator N and the unique solvability
of systems (6.1)–(6.4) in the space [Ck,β(S1)]13 × [Ck,β(S2)]9 can be shown similarly to the case of
Sobolev spaces.

Now, if we use the boundedness of single layer potentials, invertibility and Fredholm properties
of the corresponding boundary operators (see Theorem 6.5 and Theorem 6.6 below), then from the
representation formulas of solutions (6.27) and (6.28), we obtain the regularity of solutions of the
boundary-transmission problem (TD)τ in the class [Ck,β(Ω1)]4 × [Ck,β(Ω2)]9. �
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In the proof of Theorem 6.4 we have used the following theorems (see [5], [15], [1]).

Theorem 6.5. Let S1, S2 ∈ Cm,α, 0 < β < α ≤ 1, k = 1,m− 1, m ≥ 2, m ∈ N. Then the single
layer potentials

V
(1)
S1

: [Ck,β(S1)]4 → [Ck+1,β(Ω1)]4,

V
(2)
S1

: [Ck,β(S1)]9 → [Ck+1,β(Ω2)]9,

V
(2)
S2

: [Ck,β(S2)]9 → [Ck+1,β(Ω2)]9

are bounded.

Theorem 6.6. Let S1, S2 ∈ Cm,α, 0 < β < α ≤ 1, k = 1,m− 1, m ≥ 2, m ∈ N. Then the boundary
integral operators

H
(1)
S1

: [Ck,β(S1)]4 → [Ck+1,β(S1)]4,

H
(2)
S1

: [Ck,β(S1)]9 → [Ck+1,β(S1)]9,

H
(2)
S2

: [Ck,β(S2)]9 → [Ck+1,β(S2)]9

are invertible, while the operators

−1

2
I4 + K

(1)
S1

: [Ck,β(S1)]4 → [Ck,β(S1)]4,

−1

2
I9 + K

(2)
S1

: [Ck,β(S1)]9 → [Ck,β(S1)]9,

−1

2
I9 + K

(2)
S2

: [Ck,β(S2)]9 → [Ck,β(S2)]9

are Fredholm with zero index.

It follows from Theorem 6.6 that the operators

A
(1)
S1

: [Ck,β(S1)]4 → [Ck−1,β(S1)]4,

A
(2)
S1

: [Ck,β(S2)]9 → [Ck−1,β(S1)]9,

A
(2)
S2

: [Ck,β(S2)]9 → [Ck−1,β(S2)]9

are Fredholm operators with zero index.
The following corollary holds.

Corollary 6.7. Let S1, S2 ∈ C∞ and f
(1)
j ∈ C∞(S1), f

(2)
j ∈ C∞(S1), j = 1, 4, Q

(2)
j ∈ C∞(S1),

j = 5, 9, p(2) ∈ [C∞(S2)]9. Then the unique solution (U (1), U (2)) of the Dirichlet problem (TD)τ
belongs to the class [C∞(Ω1)]4 × [C∞(Ω2)]9, i.e.

(U (1), U (2)) ∈ [C∞(Ω1)]4 × [C∞(Ω2)]9.

7. Existence of Solutions to the Neumann Boundary-transmission Problem (TN)τ of
Pseudo-oscillations

We seek for a solution of the Neumann boundary-transmission problem (TN)τ in the form of the
following single layer potentials:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1,

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2,

where the unknown densities g(1), g(2) and h(2) belong to the Sobolev spaces, g(1) = (g
(1)
1 , . . . , g

(1)
4 )> ∈

[H
1
2 (S1)]4, g(2) = (g

(2)
1 , . . . , g

(2)
9 )> ∈ [H

1
2 (S1)]9, h(2) = (h

(2)
1 , . . . , h

(2)
9 )> ∈ [H

1
2 (S2)]9.

Taking into account the boundary and boundary-transmission conditions of problem (TN)τ , we
obtain the following system of equations with respect to the vector functions g(1), g(2) and h(2):

g
(2)
j + rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = Q
(2)
j on S1 j = 5, 9, (7.1)
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g
(1)
j − g

(2)
j − rS1 [V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(1)
j on S1, j = 1, 4, (7.2)

[(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

+ rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(2)
j on S1, j = 1, 4, (7.3)

rS2 [T (2)VS1(H
(2)
S1

)−1g(2)] +
(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1h(2) = q(2) on S2, (7.4)

where rsj (j = 1, 2) is the restriction operator on the surface Sj (j = 1, 2).
Let us change positions of equations (7.1) and (7.2) of system (7.1)–(7.4) and multiply equation

(7.1) by −1, i.e., we rewrite system (7.1)–(7.4) in the form of the following equivalent system of
equations:

g
(1)
j − g

(2)
j − rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(1)
j on S1, j = 1, 4, (7.5)

− g(2)
j − rS1 [V

(2)
S2

(H
(2)
S2

)−1h(2)]j = −Q(2)
j on S1, j = 5, 9, (7.6)

[(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

+ rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(2)
j on S1, j = 1, 4, (7.7)

rS2 [T (2)VS1(H
(2)
S1

)−1g(2)] +
(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1h(2) = q(2) on S2. (7.8)

The operator corresponding to system (7.5)–(7.8), has the following matrix form:

M :=



I9×4 −I9 −rS1

[V
(2)
S2

(H
(2)
S2

)−1]9×9

A
(1)
S1

[A
(2)
S1

]4×9 rS1 [T (2)V
(2)
S2

(H
(2)
S2

)−1]4×9

[0]9×4 rS2
[T (2)VS1

(H
(2)
S1

)−1]9×9 A
(2)
S2




22×22

,

where

A
(1)
S1

:=
(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1, A
(2)
S1

:=
(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1,

A
(2)
S2

:=
(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1

are the Poincaré–Steklov type operators.
The operator M is bounded in the spaces

M : X → Z ,

where

X := [H
1
2 (S1)]13 × [H

1
2 (S2)]9,

Z := [H
1
2 (S1)]9 × [H−

1
2 (S1)]4 × [H−

1
2 (S2)]9.

The following theorem holds.

Theorem 7.1. The operator

M : X → Z

is invertible.

Proof. First, we show that the operator

M : X → Z

is Fredholm with index zero. Indeed, obviously, the operators

rS1
[V

(2)
S2

(H
(2)
S2

)−1]9×9 : [H
1
2 (S2)]9 → [H

1
2 (S1)]9,

rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1]4×9 : [H
1
2 (S2)]9 → [H−

1
2 (S1)]4,

rS2 [T (2)V
(2)
S1

(H
(2)
S1

)−1]9×9 : [H
1
2 (S1)]9 → [H−

1
2 (S2)]9
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are compact, because of S1 ∩ S2 = ∅.
Now, let us consider the operator

M1 :=



I9×4 −I9 [0]9×9

A
(1)
S1

[A
(2)
S1

]4×9 [0]4×9

[0]9×4 [0]9×9 A
(2)
S2




22×22

,

where the operator
M −M1 : X → Z

is compact.
Write the corresponding system of the operator M1 as follows:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (7.9)

− g̃ (2)
j = F̃j on S1, j = 5, 9, (7.10)

[A
(1)
S1

g̃ (1)]j + [A
(2)
S1

g̃ (2)]j = f̃
(2)
j on S1, j = 1, 4, (7.11)

A
(2)
S2

h̃ (2) = q̃ (2) on S2. (7.12)

System (7.9)–(7.12) is equivalent to the following system:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (7.13)

− g̃ (2)
j = F̃j on S1, j = 5, 9, (7.14)

(A
(1)
S1

+ A
(2)
S1

)g̃
(1)
j = Ψ on S1, (7.15)

A
(2)
S2

h̃ (2) = q̃ (2) on S2, (7.16)

where

A
(2)

S1
:= [A

(2)
S1,pq

]4×4, p, q = 1, 4,

and Ψ is defined by (6.17).
The operator corresponding to system (7.13)–(7.16) has the following form:

M2 :=




I9×4 −I9 [0]9×9

A
(1)
S1

+ A
(2)
S1

[0]4×9 [0]4×9

[0]9×4 [0]9×9 A
(2)
S2




22×22

.

Obviously, the operator
M2 : X → Z

is bounded.
Consider the composition

M3 = M2 ◦Q,

where the operator
Q : X →X

is invertible (see Section 6).
The operator M3 has the form

M3 :=



−I9 I9×4 [0]9×9

[0]4×9 A
(1)
S1

+ A
(2)
S1

[0]4×9

[0]9×9 [0]9×4 A
(2)
S2




22×22

.

To show that the operator
M : X → Z

is Fredholm with zero index, it suffices to show that the operator

M3 : X → Z

is Fredholm with zero index.
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Indeed, since the operator M3 is triangular diagonal, it suffices to show that the operators standing
on the diagonal are Fredholm with zero index.

As we know, the operator (see Lemma 6.2)

A
(1)
S1

+ A
(2)
S1

: [H
1
2 (S1)]4 → [H−

1
2 (S1)]4

is Fredholm with zero index.
It is also known that the operator

A
(2)
S2

: [H
1
2 (S2)]9 → [H−

1
2 (S2)]9

is Fredholm with zero index (see [5]). Therefore we obtain that the operator

M3 : X → Z

is Fredholm with zero index. Then the operators

M2,M1 : X → Z

will also be Fredholm with zero index, from which we derive that the operator

M : X → Z

is Fredholm with zero index.
It can be easily shown that the invertibility of the operator M follows from the uniqueness of

solutions of the boundary-transmission problem (TN)τ . Indeed, let (g(1), g(2), h(2))> be a solution of
the homogeneous equation

M (g(1), g(2), h(2))> = 0. (7.17)

We construct the following potentials:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1), (7.18)

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2). (7.19)

Since (g(1), g(2), h(2))> is a solution of the homogeneous system (7.5)–(7.8), it is clear that (U (1), U (2))
will be a solution of the homogeneous boundary-transmission problem (TN)τ . Then from the unique-
ness theorem of problem (TN)τ it follows that

U (1) ≡ 0 in Ω1, (7.20)

U (2) ≡ 0 in Ω2. (7.21)

Since the single layer potentials are continuous in space R3, we have

{U (1)}+ = {U (1)}− on S1,

{U (2)}+ = {U (2)}− on S1 ∪ S2,

whence it follows that

{U (1)}− = 0 on S1,

{U (2)}− = 0 in S1 ∪ S2.

Therefore we obtain that the vector functions U (1) and U (2) satisfy the following Dirichlet problems:
{

(A(1)(∂x, τ)U (1) = 0 in R3 \ Ω1,

{U (1)}− = 0 on S1,

and {
A (2)(∂x, τ)U (2) = 0 in R3 \ Ω2,

{U (2)}− = 0 on S1 ∪ S2.

From the uniqueness of solutions of the Dirichlet problem it follows that these Dirichlet problems
have only trivial solution, i.e.,

U (1) ≡ 0 in R3 \ Ω1,
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U (2) ≡ 0 in R3 \ Ω2.

Then from (7.20) and (7.21), we get

U (1) ≡ 0 in R3,

U (2) ≡ 0 in R3.

Now, applying the jump formulas of potentials (7.18) and (7.19), we obtain

{T (1)U (1)}− − {T (1)U (1)}+ = g(1) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = g(2) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = h(2) = 0 on S2.

Therefore we derive
Ker M = {0},

and since the index of the operator M equals zero, we have

Ker M ∗ = {0}.
From this it follows that M is a surjection. Thus we obtain that the operator

M : X → Z

is invertible, and Theorem 7.1 is proved. �

The invertibility of the operator M implies the unique solvability of systems (7.1)–(7.4), (7.5)–
(7.8) and hence we obtain the unique solvability of the Neumann type boundary-transmission problem
(TN)τ .

Thus we obtain the existence and uniqueness theorem of the Neumann type boundary-transmission
problem (TN)τ .

Theorem 7.2. Let S1, S2 ∈ C∞, τ = σ + iω, σ > σ0 > 0, ω ∈ R, and

f
(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S1), j = 1, 4,

Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, q(2) ∈ [H−

1
2 (S2)]9.

Then the Neumann boundary-transmission problem (TN)τ has a unique solution

(U (1), U (2)) ∈ [H1(Ω1)]4 × [H1(Ω2)]9,

which is represented as follows:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1, (7.22)

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2, (7.23)

where g(1), g(2), h(2) are the unique solutions of system (7.1)–(7.4).

The following regularity theorem is proved in the same way as in the case of the Dirichlet boundary-
transmission problem (TD)τ .

Theorem 7.3. Let S1, S2 ∈ Cm,α, 0 < β < α ≤ 1, k = 1,m− 1, m ≥ 2, m ∈ N, and

f
(1)
j ∈ Ck,β(S1), f

(2)
j ∈ Ck−1,β(S1), j = 1, 4,

Q
(2)
j ∈ Ck,β(S1), j = 5, 9, q(2) ∈ [Ck−1,β(S2))]9, k = 1,m− 1.

Then problem (TN)τ has a unique solution

(U (1), U (2)) ∈ [Ck,β(Ω1)]4 × [Ck,β(Ω2)]9,

which is represented as single layer potentials (7.22), (7.23), where

g(1) ∈ [Ck,β(S1)]4, g(2) ∈ [Ck,β(S1)]9, h(2) ∈ [Ck,β(S2)]9

are solutions of the uniquely solvable system (7.1)–(7.4).
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Corollary 7.4. Let the following conditions:

S1, S2 ∈ C∞, f
(1)
j ∈ C∞(S1), f

(2)
j ∈ C∞(S1), j = 1, 4,

Q
(2)
j ∈ C∞(S1), j = 5, 9, q(2) ∈ [C∞(S2)]9,

be fulfilled, then the unique solution to problem (TN)τ is infinitly differentiable, i.e.

(U (1), U (2)) ∈ [C∞(Ω1)]4 × [C∞(Ω2)]9.

8. Existence of Solution to the Mixed Boundary-transmission Problem (TM)τ of
Pseudo-oscillations

We are looking for a solution to the mixed boundary-transmission problem (TM)τ in the form of
the following single layer potentials:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1,

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2,

where the unknown densities g(1), g(2) and h(2) belong to the following Sobolev spaces:

g(1) = (g
(1)
1 , . . . , g

(1)
4 )> ∈ [H

1
2 (S1)]4, g(2) = (g

(2)
1 , . . . , g

(2)
9 )> ∈ [H

1
2 (S1)]9,

h(2) = (h
(2)
1 , . . . , h

(2)
9 )> ∈ [H

1
2 (S2)]9.

Taking into account the boundary and boundary-transmission conditions of the mixed problem (TM)τ ,
we obtain the following system of equations with respect to the vector functions g(1), g(2) and h(2):

g
(2)
j + rS1 [V

(2)
S2

(H
(2)
S2

)−1h(2)]j = Q
(2)
j on S1 j = 5, 9, (8.1)

g
(1)
j − g

(2)
j − rS1

[V
(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(1)
j on S1, j = 1, 4, (8.2)

[(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

+ rS1 [T (2)V
(2)
S2

(H
(2)
S2

)−1h(2)]j = f
(2)
j on S1, j = 1, 4, (8.3)

r
S

(D)
2

[V
(2)
S1

(H
(2)
S1

)−1g(2)] + r
S

(D)
2
h(2) = p

(D)
2 on S

(D)
2 , (8.4)

r
S

(N)
2

[T (2)V
(2)
S1

(H
(2)
S1

)−1g(2)] + r
S

(N)
2

(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1h(2) = q
(N)
2 on S

(N)
2 . (8.5)

Equation (8.4) can be rewritten as follows:

rS2
VS1

(H
(2)
S1

)−1g(2) + h(2) = Φ
(2)
0 + h

(2)
0 on S2, (8.6)

where Φ
(2)
0 ∈ [H

1
2 (S2)]9 is a fixed extension of the Dirichlet condition, the vector function p

(D)
2 ∈

[H
1
2 (S

(D)
2 )]9 over the entire surface S2, and

h
(2)
0 ∈ [H̃

1
2 (S

(N)
2 )]9, supph

(2)
0 ⊂ S(N)

2 .

Let us determine h(2) from equations (8.6) in the following way:

h(2) = Φ
(2)
0 + h

(2)
0 − rS2

[V
(2)
S1

(H
(2)
S1

)−1g(2)]

and insert it into equations (8.1), (8.2), (8.3), and (8.5) of system (8.1)–(8.5). At the same time, we
change the places of equations (8.1) and (8.2), and multiply equation (8.1) by −1. In this case, we get

the following equivalent system of equations with respect to the vector functions g(1), g(2) and h
(2)
0 :

g
(1)
j − g

(2)
j + rS1

[V
(2)
S2

(H
(2)
S2

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1g(2))]j

− rS1
[V

(2)
S2

(H
(2)
S2

)−1h
(2)
0 ]j = f̃

(1)
j on S1 j = 1, 4, (8.7)

− g(2)
j + rS1

[V
(2)
S2

(H
(2)
S2

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1g(2))]j

− rS1
[V

(2)
S2

(H
(2)
S2

)−1h
(2)
0 ]j = Q̃

(2)
j on S1, j = 5, 9, (8.8)



22 O. CHKADUA AND A. TOLORAIA

[(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1g(1)
]
j

+
[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1g(2)
]
j

− rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1g(2))]j

+ rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1h
(2)
0 ]j = f̃

(2)
j on S1, j = 1, 4, (8.9)

r
S

(N)
2

[T (2)V
(2)
S1

(H
(2)
S1

)−1g(2)]− r
S

(N)
2

[(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1g(2))
]

+ r
S

(N)
2

(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1h
(2)
0 = q̃

(N)
2 on S

(N)
2 , (8.10)

where

f̃
(1)
j : = f

(1)
j + rS1

[V
(2)
S2

(H
(2)
S2

)−1Φ
(2)
0 ], j = 1, 4,

Q̃
(2)
j : = −Q(2)

j + rS1
[V

(2)
S2

(H
(2)
S2

)−1Φ
(2)
0 ]j , j = 5, 9,

f̃
(2)
j : = f

(2)
j − rS1

[T (2)V
(2)
S2

(H
(2)
S2

)−1Φ0]j , j = 1, 4,

q̃
(N)
2 : = q

(N)
2 − r

S
(N)
2

(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1Φ
(2)
0 .

The operator corresponding to system (8.7)–(8.10), has the form

P :=



I9×4 −I9 + B −rS1

[V
(2)
S2

(H
(2)
S2

)−1]9×9

A
(1)
S1

[A
(2)
S1

]4×9 + C rS1 [T (2)V
(2)
S2

(H
(2)
S2

)−1]4×9

[0]9×4 D r
S

(N)
2

A
(2)
S2




22×22

,

where

A
(1)
S1

: =
(
− 1

2
I4 + K

(1)
S1

)
(H

(1)
S1

)−1,

A
(2)
S1

: =
(
− 1

2
I9 + K

(2)
S1

)
(H

(2)
S1

)−1,

A
(2)
S2

: =
(
− 1

2
I9 + K

(2)
S2

)
(H

(2)
S2

)−1,

B : = rS1
[V

(2)
S2

(H
(2)
S2

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1)]9×9,

C : = −rS1
[T (2)V

(2)
S2

(H
(2)
S2

)−1(rS2
V

(2)
S1

(H
(2)
S1

)−1)]4×9,

D : = r
S

(N)
2

[T (2)V
(2)
S1

(H
(2)
S1

)−1]9×9 − rS(N)
2

[
A

(2)
S1

(
rS2

V
(2)
S1

(H
(2)
S1

)−1
)]

9×9
.

The operator

P : X1 → Y1

is bounded, where

X1 : = [H
1
2 (S1)]13 × [H̃

1
2 (S

(N)
2 )]9,

Y1 : = [H
1
2 (S1)]9 × [H−

1
2 (S1)]4 × [H−

1
2 (S

(N)
2 )]9.

The following theorem holds.

Theorem 8.1. The operator

P : X1 → Y1

is invertible.

Proof. First, we show that the operator

P : X1 → Y1

is Fredholm with zero index.



BOUNDARY-TRANSMISSION PROBLEMS OF THE THERMO-PIEZO-ELECTRICITY 23

Indeed, obviously, the operators

rS1 [V
(2)
S2

(H
(2)
S2

)−1]9×9 : [H̃
1
2 (S

(N)
2 )]9 → [H

1
2 (S1)]9,

rS1 [T (2)V
(2)
S2

(H
(2)
S2

)−1]4×9 : [H̃
1
2 (S

(N)
2 )]9 → [H−

1
2 (S1)]4,

B : [H
1
2 (S1)]9 → [H

1
2 (S1)]9,

C : [H
1
2 (S1)]9 → [H−

1
2 (S1)]4,

D : [H
1
2 (S1)]9 → [H−

1
2 (S

(N)
2 )]9

are compact, since S1 ∩ S2 = ∅.
Now, we consider the operator

P1 :=



I9×4 −I9 [0]9×9

A
(1)
S1

[A
(2)
S1

]4×9 [0]4×9

[0]9×4 [0]9×9 r
S

(N)
2

A
(2)
S2


 ,

where the operator

P −P1 : X1 → Y1

is compact. If we show that the operator

P1 : X1 → Y1

is Fredholm with zero index, then the operator

P : X1 → Y1

will be Fredholm with zero index.
Write the system corresponding to the operator P1 as follows:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (8.11)

− g̃ (2)
j = F̃j on S1, j = 5, 9, (8.12)

[A
(1)
S1

g̃ (1)]j + [A
(2)
S1

g̃ (2)]j = f̃
(2)
j on S1, j = 1, 4, (8.13)

r
S

(N)
2

A
(2)
S2

h̃0 = q̃
(N)
2 on S

(N)
2 . (8.14)

System (8.11)–(8.14) is equivalent to the following system:

g̃
(1)
j − g̃

(2)
j = f̃

(1)
j on S1, j = 1, 4, (8.15)

− g̃ (2)
j = F̃j on S1, j = 5, 9, (8.16)

(A
(1)
S1

+ A
(2)
S1

)g̃ (1) = Ψ on S1, (8.17)

r
S

(N)
2

A
(2)
S2

h̃
(2)
0 = q̃

(N)
2 on S

(N)
2 , (8.18)

where

A
(2)
S1

:=
[
A

(2)
S1,ji

]
4×4

, j, i = 1, 4, Ψ = (ψ1, ψ2, ψ3, ψ4)T ,

ψj := f̃
(2)
j +

4∑

i=1

A
(2)
S1,ji

f̃
(1)
i +

9∑

i=5

A
(2)
S1,ji

F̃i, j = 1, 4.

The operator corresponding to system (8.15)–(8.18), has the form

P2 :=




I9×4 −I9 [0]9×9

A
(1)
S1

+ A
(2)
S1

[0]4×9 [0]4×9

[0]9×4 [0]9×9 r
S

(N)
2

A
(2)
S2




22×22

.

Evidently, the operator

P2 : X1 → Y1
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is bounded.
Consider the composition

P3 := P2 ◦Q,

where the operator
Q : X1 →X1

is invertible (see Section 6).
The operator P3 has the form

P3 :=



−I9 I9×4 [0]9×9

[0]4×9 A
(1)
S1

+ A
(2)
S1

[0]4×9

[0]9×9 [0]9×4 r
S

(N)
2

A
(2)
S2




22×22

.

To show that the operator
P : X1 → Y1

is Fredholm with zero index, it suffices to show that the operator

P3 : X1 → Y1

is Fredholm with zero index.
Since the operator P3 is triangular diagonal, it suffices to show that the operators standing on the

diagonal are Fredholm with zero index.
As we know, from Lemma 6.2 it follows that the operator

A
(1)
S1

+ A
(2)
S1

: [H
1
2 (s1)]4 → [H−

1
2 (s1)]4

is Fredholm with zero index, while the Poincaré–Steklov type operator

r
S

(N)
2

A
(2)
S2

: [H̃
1
2 (S

(N))
2 ]9 → [H−

1
2 (S

(N)
2 )]9

is invertible (see [5, Theorem 7.7]). Hence the operator

P3 : X1 → Y1

is Fredholm with zero index. Then the operators

P1,P2 : X1 → Y1

will also be Fredholm with zero index. Therefore the operator

P : X1 → Y1

is Fredholm with zero index.
Now we show that the operator

P : X1 → Y1

is invertible.
The invertibility of the operator P is derived from the uniqueness of the solution of the boundary-

transmission problem (TM)τ .

Indeed, let (g(1), g(2), h
(2)
0 ) ∈X1 be a solution of the homogeneous equation

P(g(1), g(2), h
(2)
0 )> = 0. (8.19)

We construct the following potentials:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1), (8.20)

U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h
(2)
0 . (8.21)

Since (g(1), g(2), h
(2)
0 )> is a solution of the homogeneous equation (8.19), i.e., of the homogeneous

system (8.7)–(8.10), it is clear that (U (1), U (2)) will be a solution of the homogeneous boundary-
transmission problem (TM)τ . Then from the uniqueness theorem of problem (TM)τ there follows
that

U (1) ≡ 0 in Ω1, (8.22)
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U (2) ≡ 0 in Ω2. (8.23)

Since the single layer potentials are continuous in space R3, we have

{U (1)}+ = {U (1)}− = 0 on S1,

{U (2)}+ = {U (2)}− = 0 on S1 ∪ S2.

Hence the vector functions U (1) and U (2) satisfy the following Dirichlet problems:
{
A(1)(∂x, τ)U (1) = 0 in R3 \ Ω1,

{U (1)}− = 0 on S1,

and {
A(2)(∂x, τ)U (2) = 0 in R3 \ Ω2,

{U (2)}− = 0 on S1 ∪ S2.

From the uniqueness of solutions of the Dirichlet problem it follows that these problems have only
trivial solution, i.e.,

U (1) ≡ 0 in R3 \ Ω1,

U (2) ≡ 0 in R3 \ Ω2.

Hence from (8.22) and (8.23), we get

U (1) ≡ 0 in R3,

U (2) ≡ 0 in R3.

Then applying the jump formulas of potentials (8.20) and (8.21), we get

{T (1)U (1)}− − {T (1)U (1)}+ = g(1) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = g(2) = 0 on S1,

{T (2)U (2)}− − {T (2)U (2)}+ = h
(2)
0 = 0 on S2.

Therefore we obtain

Ker P = {0}
and, since ind P = 0, we have

Ker P∗ = {0}.
Thus the operator

P : X1 → Y1

is invertible, and Theorem 8.1 is proved. �

The invertibility of the operator P implies the unique solvability of systems (8.7)–(8.10) and
(8.1)–(8.5). Consequently, we obtain the unique solvability of the mixed type boundary-transmission
problem (TM)τ .

Thus we obtain the existence and uniqueness theorem of the mixed type boundary-transmission
problem (TM)τ .

Theorem 8.2. Let S1, S2 ∈ C∞, τ = σ + iω, σ > σ0 > 0, ω ∈ R, and

f
(1)
j ∈ H 1

2 (S1), f
(2)
j ∈ H− 1

2 (S2), j = 1, 4,

Q
(2)
j ∈ H

1
2 (S1), j = 5, 9, p

(D)
2 ∈ [H

1
2 (S

(D)
2 )]9, q

(N)
2 ∈ [H−

1
2 (S

(N)
2 ]9.

Then the mixed boundary-transmission problem (TM)τ has a unique solution

(U (1), U (2)) ∈ [H1(Ω1)]4 × [H1(Ω2)]9,

which is presented in the following form:

U (1) = V
(1)
S1

(H
(1)
S1

)−1g(1) in Ω1,
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U (2) = V
(2)
S1

(H
(2)
S1

)−1g(2) + V
(2)
S2

(H
(2)
S2

)−1h(2) in Ω2,

where g(1), g(2), h(2) are the unique solutions of system (8.1)–(8.5).

Let us introduce the notation

d :=
c b

(2)
0 + p λ

(2)
1 + q ν

(2)
2

2γ(2)
,

where

c :=
1

2
(b

(2)
0 b11 + λ

(2)
1 b21 + ν

(2)
2 b31), p :=

1

2
(b

(2)
0 b12 + λ

(2)
1 b22 + ν

(2)
2 b32),

q :=
1

2
(b

(2)
0 b13 + λ

(2)
1 b23 + ν

(2)
2 b33),

[bjk]3×3 :=



a

(2)
0 −λ(2)

2 ν
(2)
1

λ
(2)
2 χ(2) ν

(2)
3

ν
(2)
1 −ν(2)

3 k(2)




−1

.

The following regularity theorem holds.

Theorem 8.3. Suppose S1, S2 ∈ C∞ and

f
(1)
j ∈ C∞(S1), f

(2)
j ∈ C∞(S1), j = 1, 4,

Q
(2)
j ∈ C∞(S1), j = 5, 9, p

(D)
2 ∈ [C∞(S

(D)
2 )]9, q

(N)
2 ∈ [C∞(S

(N)
2 )]9.

Then

1) If d < 0, then the unique solution (U (1), U (2)) to the mixed boundary-transmission problem
(TM)τ belongs to [C∞(Ω1)]4 × [Cγ1(Ω2)]9, i.e.

(U (1), U (2)) ∈ [C∞(Ω1)]4 × [Cγ1(Ω2)]9,

where γ1 = 1
2 − 1

π arctg 2
√
−d, γ1 depends on the material constants, does not depend on

the geometry of the exceptional line `m = ∂S
(D)
2 = ∂S

(N)
2 and may take any values from the

interval (0, 1
2 ).

2) If d ≥ 0, then the unique solution to the corresponding boundary-transmission problem (TM)τ

(U (1), U (2)) ∈ [C∞(Ω1)]4 × [C
1
2 (Ω2)]9.

Proof of this theorem follows from the work [5] (see Section 9), where the asymptotic properties
and the smoothness of solutions of mixed problem are studied near the change of boundary conditions,
i.e., near the line `m (cf. [2, 3]). Note that the smoothness of the vector function U (2) is finite in a
neighborhood of `m, but taking into account the data conditions of the Theorem 8.3, outside this
neighborhood it is infinitely differentiable, i.e., belongs to the class C∞.
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