OSCILLATORY PROPERTIES OF SOLUTIONS OF HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

ZAZA SOKHADZE

Abstract. Oscillatory properties of solutions of the functional differential equation

$$u^{(n)}(t) = f(u)(t)$$

and its particular cases

$$u^{(n)}(t) = g(t, u(\tau_1(t)), \dots, u(\tau_m(t))),$$

$$u^{(n)}(t) = \sum_{k=1}^m g_k(t) \ln (1 + |u(\tau_k(t))|) \operatorname{sgn}(u(\tau_k(t)))$$

are investigated. Here, f is an operator acting from the space $C([a, +\infty[)$ to the space $L_{\text{loc}}(\mathbb{R}_+)$, $a \leq 0, g: \mathbb{R}_+ \times \mathbb{R}^m \to \mathbb{R}$ is a function satisfying the local Carathéodory conditions,

$$g_k \in L_{\mathrm{loc}}(\mathbb{R}_+) \ (k=1,\ldots,m),$$

and
$$\tau_k : \mathbb{R}_+ \to \mathbb{R} \ (k = 1, ..., m)$$
 are continuous functions such that

$$\tau_k(t) \le t$$
 for $t \in \mathbb{R}_+$, $\lim_{n \to +\infty} \tau_k(t) = +\infty$ $(k = 1, \dots, m)$.

We investigate oscillatory properties of solutions of the functional differential equation

$$u^{(n)}(t) = f(u)(t)$$
(1)

and its particular cases

$$u^{(n)}(t) = g(t, u(\tau_1(t)), \dots, u(\tau_m(t))),$$
(2)

$$u^{(n)}(t) = \sum_{k=1}^{m} g_k(t) \ln\left(1 + |u(\tau_k(t))|\right) \operatorname{sgn}(u(\tau_k(t))).$$
(3)

Here, f is an operator acting from the space $C([a, +\infty[)$ to the space $L_{loc}(\mathbb{R}_+), a \leq 0, g : \mathbb{R}_+ \times \mathbb{R}^m \to \mathbb{R}$ is a function satisfying the local Carathéodory conditions,

$$g_k \in L_{\text{loc}}(\mathbb{R}_+) \ (k=1,\ldots,m),$$

and $\tau_k : \mathbb{R}_+ \to \mathbb{R} \ (k = 1, \dots, m)$ are continuous functions such that

$$\tau_k(t) \le t \text{ for } t \in \mathbb{R}_+, \quad \lim_{n \to +\infty} \tau_k(t) = +\infty \quad (k = 1, \dots, m).$$
 (4)

We use the following notation and definitions.

$$p_0(t) \equiv 1, \quad p_k(t) \equiv t^k \ (k = 1, 2, \dots).$$

If k is a natural number, then N_k^0 is the set of those $i \in \{1, ..., k\}$ for which i + k is even. \mathbb{R} is the set of real numbers, $\mathbb{R}_+ = [0, +\infty[$.

 $C([a, +\infty[)$ is the space of continuous functions $u: [a, +\infty[\to \mathbb{R}.$

If $u \in C([a, +\infty[) \text{ and } a_0 \ge a, \text{ then }$

$$x(a_0; u)(t) = \begin{cases} u(t) & \text{for } t \ge a_0, \\ u(a_0) & \text{for } t < a_0, \end{cases}$$
$$v(u)(t) = \max\{|u(s)|: a \le s \le t\} \text{ for } t > a_0\}$$

²⁰²⁰ Mathematics Subject Classification. 34B05, 34K10.

Key words and phrases. Volterra operator; Kneser solution; Oscillatory.

Z. SOKHADZE

 $L_{\text{loc}}(\mathbb{R}_+)$ is the space of functions $\nu : \mathbb{R}_+ \to \mathbb{R}$, Lebesgue integrable on every finite interval contained in \mathbb{R}_+ .

An operator $f_0 : C([a, +\infty[) \to L_{loc}(\mathbb{R}_+))$ is said to be a **Volterra operator** if for any t > a and $u_i \in C([a, +\infty[) (k = 1, 2, ...))$ satisfying the condition

$$u_1(s) = u_2(s)$$
 for $s \in [0, t]$,

we have

$$f_0(u_1)(s) = f_0(u_2)(s)$$
 for almost all $s \in [0, t]$.

An operator $f_0: C([a, +\infty[) \to L_{loc}(\mathbb{R}_+))$ is said to be **continuous** if for any $u \in C([a, +\infty[)])$ and any sequence $u_k \in C([a, +\infty[)])$ (k = 1, 2, ...), satisfying the condition

$$\lim_{k \to +\infty} v(u_k - u)(t) = 0 \text{ for } t \ge a_k$$

the equality

$$\lim_{k \to +\infty} \int_{0}^{t} |f_{0}(u_{k})(s) - f_{0}(u)(s)| \, ds = 0 \text{ for } t > 0$$

holds.

Everywhere below, it is assumed that $f: C([a, +\infty[) \to L_{loc}(\mathbb{R}_+))$ is a continuous Volterra operator.

Let $t_0 \ge 0$. An (n-1)-times continuously differentiable function $u : [t_0, +\infty[\to \mathbb{R} \text{ is said to be} a$ **solution of equation** $(1) if <math>u^{(n-1)}$ is absolutely continuous on every finite interval contained in $[t_0, +\infty[$, and there exists a continuous function $u_0 : [a, t_0] \to \mathbb{R}$ such that almost everywhere on $[t_0, +\infty[$ equality (1) is fulfilled, where

$$u(t) = u_0(t)$$
 for $a \le t \le t_0$.

A solution u of equation (1) defined on some interval $[t_0, +\infty] \subset \mathbb{R}_+$ is said to be **proper** if it does not identically equal to zero in any neighbourhood of $+\infty$.

A proper solution $u : [t_0, +\infty[\rightarrow \mathbb{R} \text{ is said to be oscillatory if it changes sign in any neighbourhood of <math>+\infty$, and it is said to be a Kneser solution if on some interval $[t_1, +\infty[\subset [t_0, +\infty[$ it satisfies the inequalities

$$(-1)^{i}u^{(i)}(t)u(t) > 0 \ (i = 1, \dots, n-1).$$

Equation (1) has **Property** A_0 if every its proper solution for n even is oscillatory and for n odd either is oscillatory, or is a Kneser solution.

Equation (1) has **Property** B_0 if every its proper solution for *n* even is either oscillatory, or is a Kneser solution, or satisfies the condition

$$\lim_{t \to +\infty} |u^{(n-2)}(t)| = +\infty, \tag{5}$$

and for n odd is either oscillatory, or satisfies condition (5).

Unlike Properties A and B, whose notions in the oscillation theory have been introduced by V. A. Kondrat'ev [11] and I. Kiguradze [6], Properties A_0 and B_0 do not assume that Kneser solutions of the equation under consideration are vanishing at infinity, and the unbounded solutions satisfy the harder than (5) condition

$$\lim_{t \to +\infty} |u^{(n-1)}(t)| = +\infty$$

We have found integral conditions under which equation (1) has, respectively, Properties A_0 and B_0 . In contrast to the well-known earlier results (see, e.g., [1–5, 7–10, 12–14] and references therein), the proven by us general oscillation theorems yield the necessary and sufficient conditions for equation (3) to have Properties A_0 and B_0 in the case where g_k (k = 1, ..., m) are of the constant sign functions of the same sign.

We investigate oscillatory properties of equation (1) in the case where the operator f is monotone, or more precisely, when f satisfies one of the following two conditions:

 $(M_{-}): f(0)(t) \equiv 0$, and for any numbers $t_1 \geq 0$, $t_2 > t_1$, $t_0 \in [t_1, t_2]$ and functions $u_i \in C(\mathbb{R}_+)$ (i = 1, 2), satisfying the conditions

$$u_1(t_0) \neq 0, \quad u_i(t)u_1(t_0) \ge 0 \quad (i = 1, 2), \quad u_1(t) \le u_2(t) \text{ for } t_1 \le t \le t_2$$
 (6)

almost everywhere on $[t_1, t_2]$, the inequality

$$f(\chi(t_1; u_1))(t) \ge f(\chi(t_1; u_2))(t)$$

is fulfilled.

 $(M_+): f(0)(t) \equiv 0$, and for any numbers $t_1 \geq 0$, $t_2 > t_1$, $t_0 \in [t_1, t_2]$ and functions $u_i \in C(\mathbb{R}_+)$ (i = 1, 2), satisfying condition (6), almost everywhere on $[t_1, t_2]$, the inequality

$$f(\chi(t_1; u_1))(t) \le f(\chi(t_1; u_2))(t)$$

is fulfilled.

Theorem 1. If the operator f satisfies condition (M_{-}) and

$$\int_{0}^{+\infty} t^{n-i-1} |f(xp_{i-1})(t)| dt = -\infty \text{ for } x \neq 0, \ i \in N_{n-1}^{0},$$
(7)

then equation (1) has Property A_0 .

Theorem 2. If the operator f satisfies condition (M_+) and

$$\int_{0}^{+\infty} t^{n-i-1} |f(xp_{i-1})(t)| dt = +\infty \text{ for } x \neq 0, \ i \in N_{n-1}^{0},$$
(8)

then equation (1) has Property B_0 .

Conditions (7) and (8) in Theorems 1 and 2 are unimprovable. In particular, the following theorems hold.

Theorem 3. Let the operator f satisfy condition (M_{-}) , and for any $x \neq 0$, there exist the numbers $t_x \geq 0$ and $\delta(x) > 0$ such that

$$t^{n-i-2}|f(xp_{i-1})(t)| \ge \delta(x)|f(xp_{n-1})(t)|$$
 for $t \ge t_x$, $i \in N_{n-1}^0$.

Then for equation (1) to have Property A_0 , it is necessary and sufficient that equalities (7) be satisfied.

Theorem 4. Let $n \ge 3$, the operator f satisfy condition (M_{-}) , and for any $x \ne 0$, there exist the numbers $t_x \ge 0$ and $\delta(x) > 0$ such that

$$t^{n-i-2}|f(xp_{i-1})(t)| \ge \delta(x)|f(xp_{n-2})(t)|$$
 for $t \ge t_x$, $i \in N_{n-2}^0$

Then for equation (1) to have Property B_0 , it is necessary and sufficient that equalities (8) be fulfilled.

Everywhere below, when discussing equations (2) and (3), we assume that the functions τ_i (i = 1, ..., n) satisfy condition (4).

We investigate equation (2) in the case where the function g satisfies one of the following two conditions:

$$g(t, 0, \dots, 0) = 0,$$

$$g(t, x_1, \dots, x_m) \ge g(t, y_1, \dots, y_m) \text{ for } t > 0, \ x_i x_1 > 0, \ y_i x_1 > 0, \ x_i \le y_i \ (i = 1, \dots, m)$$

$$(9)$$

and

$$g(t,0,\ldots,0)=0,$$

 $g(t, x_1, \dots, x_m) \le g(t, y_1, \dots, y_m)$ for t > 0, $x_i x_1 > 0$, $y_i x_1 > 0$, $x_i \le y_i$ $(i = 1, \dots, m)$. (10)

Theorems 1 and 3 imply the following corollaries.

Corollary 1. If the function g satisfies condition (9) and

$$\int_{0}^{+\infty} t^{n-i-1} \left| g(t, x | \tau_1(t) |^{i-1}, \dots, x | \tau_m(t) |^{i-1}) \right| dt = +\infty \text{ for } x \neq 0, \ i \in N_{n-1}^0, \tag{11}$$

then equation (2) has Property A_0 .

Corollary 2. Let the function g satisfy condition (9), and for any $x \neq 0$, there exist the numbers $t_x > 0$ and $\delta(x) > 0$ such that

$$t^{n-i-1} \left| g(t, x | \tau_1(t) |^{i-1}, \dots, x | \tau_m(t) |^{i-1}) \right|$$

$$\geq \delta((x) \left| g(t, x | \tau_1(t) |^{n-1}, \dots, x | \tau_m(t) |^{n-1}) \right| \text{ for } t > t_x, \ i \in N_{n-1}^0.$$

Then for equation (2) to have Property A_0 , it is necessary and sufficient that equalities (11) be fulfilled.

Theorems 3 and 4 for equation (2) take the following forms.

Corollary 3. If the function g satisfies condition (10) and

$$\int_{0}^{+\infty} t^{n-i-1} \left| g(t, x | \tau_1(t) |^{i-1}, \dots, x | \tau_m(t) |^{i-1}) \right| dt = +\infty \quad \text{for } x \neq 0, \quad i \in N_{n-2}^0, \tag{12}$$

then equation (2) has Property B_0 .

Corollary 4. Let $n \ge 3$, the function g satisfy condition (10), and for any $x \ne 0$, there exist the numbers $t_x > 0$ and $\delta(x) \ne 0$ such that

$$t^{n-i-2} \left| g(t, x | \tau_1(t) |^{i-1}, \dots, x | \tau_m(t) |^{i-1}) \right|$$

$$\geq \delta((x) \left| g(t, x | \tau_1(t) |^{n-2}, \dots, x | \tau_m(t) |^{n-2}) \right| \text{ for } t > t_x, \ i \in N_{n-2}^0$$

Then for equation (2) to have Property B_0 , it is necessary and sufficient that equalities (12) be fulfilled.

Finally, let us consider equation (3). Corollaries 2 and 3 result in the following corollaries.

Corollary 5. If n > 2 and

$$g_k(t) \le 0 \text{ for } t > 0 \ (k = 1, \dots, m),$$

then for equation (3) to have Property A_0 , it is necessary and sufficient that the equality

$$\int_{0}^{+\infty} \left(\sum_{k=1}^{m} g_k(t) \ln \left(1 + |\tau_k(t)| \right) \right) dt = -\infty$$

be fulfilled.

Corollary 6. If n > 3 and

$$g_k(t) \ge 0 \text{ for } t > 0 \ (k = 1, \dots, m),$$

then for equation (3) to have Property B_0 , it is necessary and sufficient that the equality

$$\int_{0}^{+\infty} t\left(\sum_{k=1}^{m} g_k(t) \ln\left(1 + |\tau_k(t)|\right)\right) dt = +\infty$$

be fulfilled.

References

- 1. R. P. Agarwal, M. Bohner, W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, 267. Marcel Dekker, Inc., New York, 2004.
- R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations. Springer Science & Business Media, Dordrecht, 2013.
- L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation Theory for Functional-Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, 190. Marcel Dekker, Inc., New York, 1995.
- J. R. Graef, R. Koplatadze, G. Kvinikadze, Nonlinear functional differential equations with Properties A and B. J. Math. Anal. Appl. 306 (2005), no. 1, 136–160.
- D. V. Izyumova, I. T. Kiguradze, Oscillatory properties of a class of differential equations with deviating argument. (Russian) Differentsial'nye Uravneniya 21 (1985), no. 4, 588–596; translation in Differ. Equations 21 (1985), 384–391.
- I. Kiguradze, On oscillatory solutions of nonlinear ordinary differential equations. (Russian) Proc. of 5-th Intern. Conf. on Nonlinear Oscillations, 1, Kiev, 1970, 293–298.
- 7. I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.
- I. T. Kiguradze, T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Springer Science & Business Media, Dordrecht, 2012.
- I. T. Kiguradze, I. P. Stavroulakis, On the existence of proper oscillating solutions of advanced differential equations. (Russian) Differ. Uravn. 34 (1998), no. 6, 751–757; translation in Differential Equations 34 (1998), no. 6, 748–754;
- I. Kiguradze, I. P. Stavroulakis, On the oscillation of solutions of higher order Emden-Fowler advanced differential equations. Appl. Anal. 70 (1998), no. 1-2, 97–112.
- 11. V. A. Kondrat'ev, Oscillatory properties of solutions of the equation $y^{(n)} + p(x)y = 0$. (Russian) Trudy Moskov. Mat. Obshch. 10 1961 419–436.
- 12. R. Koplatadze, On oscillatory properties of solutions of functional-differential equations. Mem. Differential Equations Math. Phys. 3 (1994), 179 pp.
- 13. R. G. Koplatadze, T. A. Chanturia, Oscillation Properties of Differential Equations with Deviating Argument. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1977.
- 14. G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments. Monographs and Textbooks in Pure and Applied Mathematics, 110. Marcel Dekker, Inc., New York, 1987.

(Received 08.12.2021)

Akaki Tsereteli State University, 59 Tamar Mepe Str., Kutaisi 4600, Georgia E-mail address: z.soxadze@gmail.com