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ON SOME SHARP CONDITIONS FOR GENERALIZED ABSOLUTE

CONVERGENCE OF FOURIER SERIES

BORIS GOLUBOV1 AND SERGEY VOLOSIVETS2

Abstract. In the present paper,we give some sufficient conditions for generalized absolute conver-
gence of trigonometric Fourier series in terms of Lp and p-variational best approximations or moduli

of smoothness and prove their sharpness. Similar conditions for an arbitrary orthonormal system in

L2[0, 1] are considered.

1. Introduction

Let Lp, 1 ≤ p < ∞, be the space of 2π-periodic measurable functions with a finite norm ‖f‖p =( 2π∫
0

|f(x)|p dx
)1/p

and for k ∈ N = {1, 2, . . . }, δ ∈ [0, 2π],

ωk(f, δ)p := sup{‖∆k
hf(x)‖p : |h| ≤ δ},

where ∆k
h(f)(x) =

k∑
i=0

(−1)k−i
(
k
i

)
f(x + ih), k ∈ N, is the k-th difference of f with step h. If Tn is

the space of trigonometric polynomials of order at most n, then the n-th best approximation in Lp is
introduced by

En(f)p := inf
tn∈Tn

‖f − tn‖p, n ∈ Z+ = {0, 1, . . . }.

Let f be a 2π-periodic real bounded function, ξ = {x0 < x1 < · · · < xn = x0 + 2π} be a partition

of a period and æpξ(f) :=
( n∑
i=1

|f(xi)− f(xi−1)|p
)1/p

, 1 ≤ p <∞.

By the definition, for 1 < p <∞, we set

ω1−1/p(f, δ) = sup{æpξ(f) : λ(ξ) := max
i

(xi − xi−1) ≤ δ}

and for k ∈ N, k ≥ 2,

ωk−1/p(f, δ) = sup{ω1−1/p(∆
k−1
h f(x), |h|) : |h| ≤ δ}.

For 1 < p <∞, let us introduce the space Vp of all 2π-periodic bounded functions with the property

‖f‖Vp := max(‖f‖∞, ω1−1/p(f, 2π)) <∞
and Cp = {f ∈ Vp : lim

δ→0
ω1−1/p(f, δ) = 0}. Here, ‖f‖∞ = supx∈[0,2π] |f(x)|. The space Vp of functions

of bounded p-variation was introduced for the case p = 2 by Wiener [13], while the space Cp of p-
absolutely continuous functions in another but equivalent form was considered by Young [14]. Both
Vp and Cp are Banach spaces with respect to the norm ‖ · ‖Vp

. The best approximation En(f)Vp
in

the space Cp, 1 < p < ∞, is introduced similarly to En(f)p. The problems of approximation in Cp
and Lp, 1 < p <∞, are closely connected (see [6], [7] and lemmas below).

Let 1 ≤ α <∞. We say that a sequence {γk}∞k=0 belongs to the class A(α) if γk > 0 for all k ∈ Z+

and ( 2n+1−1∑
k=2n

γαk

)1/α

≤ C2n(1/α−1)
2n−1∑

k=−2n−1

γk =: C2n(1/α−1)Γn, (1.1)
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for all n ∈ N. In the case n = 0 we suppose that (1.1) is valid for Γ0 = γ0. This definition due to
Gogoladze and Meskhia [2] generalizes a class introduced by Ul’yanov [9]. The class A(∞) consists of
all positive sequences {γk}∞k=0 such that max

2n≤k<2n+1
γk ≤ C2−nΓn, n ∈ N, γ1 ≤ Cγ0. It is known that

A(α1) ⊂ A(α2) for 1 ≤ α2 < α1 ≤ ∞.
For f ∈ L1, let us consider its Fourier coefficients

ak(f) = π−1
2π∫
0

f(x) cos kx dx, k ∈ Z+, bk(f) = π−1
2π∫
0

f(x) sin kx dx, k ∈ N,

partial Fourier sums Sn(f)(x) = a0(f)/2 +
n∑
k=1

(ak(f) cos kx + bk(f) sin kx), n ∈ Z+, and ρk(f) =

(a2k(f) + b2k(f))1/2, k ∈ Z+.
Let ω(x) be a continuous increasing function on R+ = [0,+∞) such that ω(0) = 0 (in this case we

write ω ∈ Ω). A function ω ∈ Ω belongs to the Bary class B if

∞∑
k=n

k−1ω(k−1) = O(ω(n−1)), n ∈ N,

correspondingly, ω ∈ Ω belongs to the Bary–Stechkin class Bk, k > 0 if

n∑
j=1

jk−1ω(j−1) = O(nkω(n−1)), n ∈ N.

These definitions may be found in [1].
In [2], the following theorems were proved (the case r = s is treated similarly to the proof in [2]).

They generalized the results in the case γk = kβ proved by A. A. Konyushkov [3].

Theorem A. Let 1 < p < ∞, 1/p + 1/q = 1, s = max(q, 2), 0 < r ≤ s, {γk}∞k=0 ∈ A(s/(s − r)). If
f ∈ Lp and the series

∞∑
k=1

k−r/sγkE
r
k(f)p (1.2)

converges, then the series
∞∑
k=1

γkρ
r
k (1.3)

also converges, and for some C > 0,

∞∑
k=2

γkρ
r
k ≤ C

∞∑
k=1

k−r/sγkE
r
k(f)p.

Theorem B. If the conditions of Theorem A hold, but instead of the convergence of series (1.2)

∞∑
k=1

k−r/sγkω
r
l (f, 1/k)p

converges for some l ∈ N, then series (1.3) converges.

Note that Theorem B follows from Theorem A and Lemma 2.3.
The aim of the present paper is to establish the sharpness of Theorems A and B and their

p-variational analogues (see Theorem 3.1). Also, we investigate similar to (1.3) series in the case
of general orthonormal systems and obtain a sharp condition for its convergence.
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2. Auxiliary propositions

The first assertion of Lemma 2.1 is proved in [12], while the second one is established in [6].

Lemma 2.1. Let f ∈ Vp, 1 < p <∞, k ∈ N. Then

1) En(f)Vp
> Cn1/pEn(f)p, n ∈ N, for some C > 0;

2) ωk(f, δ)p ≤ δ1/pωk−1/p(f, δ), δ ∈ [0, 2π].

Lemma 2.2 is due to W.Rudin and H.S.Shapiro (see [4]). For tn(x) =
n∑
k=0

(αk cos kx + βk sin kx),

n ∈ N, we set ξ(tn, r) :=
( n∑
k=0

(|αk|r + |βk|r)
)1/r

.

Lemma 2.2. There exists a sequence {γk}∞k=0 such that γn = ±1 for all n ∈ Z+, and for all N ∈ Z+,
one has ∣∣∣∣ N∑

n=0

γne
int

∣∣∣∣ ≤ 5
√
N + 1.

In particular, |PN (t)| :=
∣∣ N∑
n=0

γn cosnt
∣∣ ≤ 5

√
N + 1 and ξ(PN , r) := (N + 1)1/r, r ≥ 1.

The direct Jackson-Stechkin and inverse Bernstein–Salem–Stechkin approximation theorems in Lp,
1 ≤ p ≤ ∞ (see [8, § 5.1, § 6.1]) are combined in the following

Lemma 2.3. Let 1 ≤ p <∞, k ∈ N, f ∈ Lp. Then

En(f)p ≤ C1ωk(f, 1/(n+ 1))p, n ∈ Z+,

ωk(f, 1/n)p ≤ C2n
−k

n∑
j=0

(j + 1)k−1Ej(f)p, n ∈ N,

for some Ci = Ci(k) > 0, i = 1, 2.

The direct and inverse approximation theorems in Cp were established by A. P. Terekhin. A sketch
of proof of the first inequality of Lemma 2.4 may be found in [6], while for the proof of the second
one we refer the reader to [10].

Lemma 2.4. Let 1 < p <∞, k ∈ N, f ∈ Cp. Then

En(f)Vp
≤ C1ωk−1/p(f, 1/(n+ 1)), n ∈ Z+,

ωk−1/p(f, 1/n) ≤ C2n
−k+1/p

n∑
j=0

(j + 1)k−1/p−1Ej(f)Vp
, n ∈ N,

for some C1 = C1(k) > 0, C2 = C2(k, p) > 0.

Lemma 2.5 may be derived from the results in [7] (see also [11]).

Lemma 2.5. Let 1 ≤ p <∞, tn ∈ Tn, n ∈ N. Then ‖tn‖Vp
≤ C(p)n1/p‖tn‖p.

3. General absolute convergence of trigonometric Fourier series

From Theorems A and B and Lemma 2.1 we easily deduce

Theorem 3.1. Let 1 < p <∞, l ∈ N, 1/p+1/q = 1, s = max(q, 2), 0 < r ≤ s, {γk}∞k=0 ∈ A(s/(s−r)).
If f ∈ Cp and the series

∞∑
k=1

k−r/s−r/pγkE
r
k(f)Vp

or the series
∞∑
k=1

k−r/s−r/pγkω
r
l−1/p(f)

converges, then the series (1.3) also converges.
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Theorems 3.2 and 3.3 show the sharpness of Theorem A in the case 1 < p ≤ 2 under some additional
conditions.

Theorem 3.2. Suppose that 1 < p ≤ 2, 1/p + 1/q = 1, 0 < r ≤ 1, and for {γk}∞k=0 ∈ A(q/(q − r))
and some α ∈ (0, 1) the inequality

(1− α)2−kr/qΓk ≥ 2−r(k−1)/qΓk−1, k ∈ N

holds. If a sequence {εi}∞i=0 decreases to zero and
∞∑
i=1

i−r/qγiε
r
i = ∞, then there exists f ∈ Lp such

that En(f)p ≤ εn, n ∈ N, but the series (1.3) diverges.

Proof. Let Dn(x) = 1/2 +
n∑
k=1

cos kx, n ∈ Z+. It is known that Dn(x) = sin(n + 1/2)x/(2 sin(x/2))

for x 6= 2πk and

‖Dn‖pp ≤ 2

( π/n∫
0

((n+ 1)/2)pdx+

π∫
π/n

((π)/2x)p dx

)
≤ C1n

p−1, n ∈ N. (3.1)

We consider the function

f0(x) = 2−1C
−1/p
1

∞∑
k=1

(ε2k − ε2k+1)(D2k(x)−D2k−1(x))2−k/q.

Then for n ∈ [2k; 2k+1), k ∈ Z+, by (3.1), we obtain

En(f0)p ≤ E2k(f0)p ≤ 2−1
∞∑

j=k+1

(ε2j − ε2j+1)C
−1/p
1 2−j/q‖D2j −D2j−1‖p

≤
∞∑

j=k+1

(ε2j − ε2j+1) = ε2k+1 ≤ εn.

By the Jensen inequality, we have (a− b)r ≥ ar − br for a ≥ b ≥ 0 and 0 < r ≤ 1. Therefore

C2

∞∑
i=1

γi|f̂0(i)|r =

∞∑
k=1

2k−1∑
i=2k−1

γi(ε2k − ε2k+1)r2−kr/q

≥
∞∑
k=1

Γk2−kr/q(εr2k − ε
r
2k+1) =

∞∑
k=1

εr2k(Γk2−kr/q − Γk−12−(k−1)r/q) + Γ0

≥ α
∞∑
k=1

εr2kΓk2−kr/q.

Since A(q/(q − r)) ⊂ A(1), the inequality Γk ≤ C3Γk−1, k ∈ N, holds. Using this inequality, we
have

2k−1∑
i=2k−1

γiε
r
i i
−r/q ≤ C4Γk−12−(k−1)r/qεr2k−1 ,

and from the conditions of Theorem 3.2 we deduce the divergence of the series
∞∑
k=1

εr2kΓk2−kr/q. Thus,

the series
∞∑
i=1

γi|f̂0(i)|r diverges. �

Theorem 3.3. Let 1 < p ≤ 2, 1/p + 1/q = 1, 0 < r ≤ q, {γk}∞k=0 ∈ A(q/(q − r)) and a sequence
{εi}∞i=1 be decreasing to zero. If {εi}∞i=1 satisfies the Bary condition

∞∑
i=k

εi
i

= O(εk), k ∈ N, (3.2)
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and the series
∑∞
i=1 γii

−r/qεri diverges, then there exists f ∈ Lp such that En(f)p = O(εn), n ∈ N,
but series(1.3) diverges.

Proof. From (3.2), by the decreasing of {εi}∞i=1, it follows that

∞∑
i=l

ε2i ≤ ε2l +

∞∑
i=l+1

2

2i∑
j=2i−1+1

1

j
ε2i ≤ ε2l +

∞∑
j=2l+1

εj
j
≤ C1ε2l . (3.3)

Let us consider the function

f0(x) =

∞∑
k=1

ε2k(D2k(x)−D2k−1(x))2−k/q.

Then for n ∈ [2k; 2k+1), k ∈ Z+, (3.1) and (3.3) yields

En(f0)p ≤ E2k(f0)p ≤ ‖f0 − S2k(f0)‖p ≤
∞∑

i=k+1

ε2i2
−i/q‖D2i −D2i−1‖p

≤ C2

∞∑
i=k+1

ε2i ≤ C3ε2k+1 ≤ C4εn.

On the other hand,

∞∑
i=l

γiρ
r
i (f0) =

∞∑
k=1

2k−1∑
i=2k−1

γiε
r
2k2−kr/q =

∞∑
k=1

Γkε
r
2k2−kr/q. (3.4)

Similarly to the proof of Theorem 3.2, under the condition r < q, one can show that from the conditions
of Theorem 3.3 follows the divergence of the right-hand side of (3.4). In case r = q and γ ∈ A(∞),
we see that

2k−1∑
i=2k−1

γiε
q
i i
−1 ≤ 2 max

i∈[2k−1,2k)
γiε

q
2k−1 ≤ C5ε

q
2k−12−(k−1)Γk−1,

whence we obtain the divergence of the right-hand side of (3.4) again. �

Theorem 3.2 is an analogue of Theorem 3 in [2] treating the case 2 ≤ p ≤ ∞ (the continuous
functions f ∈ C2π were considered for p = ∞). Since the condition on Γk in the above-mentioned
Theorem or Theorem 3.2 is too complicated, we give a corresponding analogue of Theorem 3.3.

Theorem 3.4. Let 0 < r ≤ 2, a positive sequence {εk}∞k=0 be decreasing to zero and satisfying the
Bary condition (3.2). Also, we suppose that εn ≤ Cε2n for n ∈ N and {γk}∞k=0 ∈ A(2/(2− r)). If the

series
∞∑
k=1

γkk
−r/2εrk diverges, then there exists f0 ∈ C2π such that En(f0)∞ = O(εn), but the series

(1.3) diverges for f = f0.

Proof. Let us consider the function

f0(x) =

∞∑
k=1

2−k/2ε2k(P2k(x)− P2k−1(x)),

where the polynomials P2k(x) are defined in Lemma 2.2. Then P2k(x)− P2k−1(x) =
2k∑

i=2k−1+1

γi cos ix,

γi = ±1, and |P2k(x)− P2k−1(x)| ≤ 10(2k + 1)1/2 ≤ C12k/2, x ∈ [0, 2π]. For n ∈ [2k, 2k+1), we have

En(f0)∞ ≤ E2k(f0)∞ ≤
∞∑

j=k+1

2−j/2ε2j‖P2j − P2j−1‖∞

≤ C1

∞∑
j=k+1

ε2j ≤ C2ε2k+1 ≤ C2εn.
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On the other hand, for 0 < r < 2,

∞∑
k=1

2k−1∑
j=2k−1

γj2
−kr/2εr2k2k−1 =

∞∑
k=1

Γk2−kr/2εr2k ≥ C4

∞∑
j=1

j−r/2γjε
r
j

by the condition εm ≤ C5εn for n ∈ [m, 2m]. In the case r = 2, we repeat the arguments at the end
of the proof of Theorem 3.3. Thus series (1.3) diverges for f = f0. �

Now we can obtain the sharpness of Theorem B.

Theorem 3.5. Let 1 < p <∞, l ∈ N, 1/p+1/q = 1, s = max(q, 2), 0 < r ≤ s, {γk}∞k=0 ∈ A(s/(s−r)).
If ω ∈ B

⋂
Bl and the series

∑∞
k=1 k

−r/sγkω(k−1) diverges, then there exists f0 ∈ Lp such that
ωl(f0, δ)p ≤ Cω(δ), δ ∈ [0, 2π], and the series (1.3) for f = f0 diverges.

Proof. Let 1 < p ≤ 2. Let us consider εn = ω(1/n), n ∈ N, and the function f0(x) from the proof of
Theorem 3.3. Then En(f0)p ≤ C1ω(1/n), n ∈ N, and analogously, E0(f0)p ≤ ‖f0‖p ≤ C1ω(1). By the
converse approximation theorem in Lp (see Lemma 2.3), we have

ωl(f, 1/n) ≤ C2n
−l

n∑
k=0

(k + 1)l−1ω((k + 1)−1) ≤ C3ω(n−1), n ∈ N,

by the condition ω ∈ Bl. Note that the condition ω ∈ Bl is appropriate to use Theorem 3.3. Since
ω ∈ Bl satisfies the ∆2-condition ω(2t) ≤ C7ω(t), t ∈ [0, π] (see Lemma 3 in [1]), we derive that
ωl(f0, δ) ≤ C5ω(δ), δ ∈ [0, 2π]. By Theorem 3.3, series (1.3) diverges for f = f0. In the case p > 2,
we analogously consider εn = ω(1/n) and the function f0 from the proof of Theorem 3.4. Further, we
proceed as in the case 1 < p ≤ 2. �

The following two theorems are devoted to the sharpness of Theorem 3.1.

Theorem 3.6. Let 1 < p <∞, 1/p+ 1/q = 1, s = max(q, 2), 0 < r ≤ s, {γk}∞k=0 ∈ A(s/(s− r)). If
{εk}∞k=0 decreases to zero, satisfies the Bary condition (3.2), εn ≤ Cε2n for n ∈ N, and the series

∞∑
k=1

γkk
−r/s−r/pεrk

diverges, then there exists f1 ∈ Cp such that En(f1)Vp
= O(εn), n ∈ N, and the series (1.3) diverges

for f = f1.

Proof. In the case 1 < p ≤ 2, similarly to the proof of Theorem 3.3, we consider the function

f1(x) =

∞∑
k=1

2−kε2k(D2k(x)−D2k−1(x)). (3.5)

Then for n ∈ [2k, 2k+1), k ∈ Z+, from (3.1), (3.3) and Lemma 2.5 we deduce

En(f1)Vp ≤ ‖f1 − S2k(f1)‖Vp ≤
∞∑

i=k+1

2−iε2i‖D2k −D2k−1‖Vp

≤ C1

∞∑
i=k+1

ε2i2
−i/q‖D2k −D2k−1‖p ≤ C2

∞∑
i=k+1

ε2i ≤ C3ε2k+1 ≤ C3εn.

On the other hand, by the condition εm ≤ Cεn for n ∈ [m, 2m], m ∈ N, we have

∞∑
i=1

γiρ
r
i (f0) =

∞∑
k=1

2k−1∑
i=2k−1

γi2
−krεr2k ≥ C4

∞∑
i=1

γiε
r
i i
−r =∞.

In the case p > 2, similarly to the proof of Theorem 3.4, let us consider the function

f1(x) =

∞∑
k=1

2−k/2−k/pε2k(P2k(x)− P2k−1(x)),
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where P2k(x) is defined in Lemma 2.2. Then for n ∈ [2k, 2k+1), k ∈ Z+, we have

En(f1)Vp
≤ E2k(f1)Vp

≤
∞∑

j=k+1

2−j/2−j/p‖P2j − P2j−1 ||Vp

≤ C1

∞∑
j=k+1

ε2j2−j/2||P2j − P2j−1 ||p ≤ C4

∞∑
j=k+1

ε2j2−j/2||P2j − P2j−1 ||∞

≤ C5

∞∑
j=k+1

ε2j ≤ C6ε2k+1 ≤ C7εn.

Since lim
n→∞

εn = 0, the last relation and the completeness of Cp imply that f1 ∈ Cp.
On the other hand,

∞∑
j=1

γjρ
r
j(f1) =

∞∑
k=1

2k−1∑
j=2k−1

γj2
−kr/2−kr/pεr2k ≥ C4

∞∑
j=1

j−r/2−r/pγjε
r
j =∞

and the series (1.3) diverges for f = f1. �

Theorem 3.7. Let 1 < p < ∞, 1/p + 1/q = 1, s = max(q, 2), 0 < r ≤ s, {γk}∞k=0 ∈ A(s/(s − r)),

l ∈ N, ω ∈ B ∩ Bl−1/p. If the series
∞∑
k=1

γkk
−r/s−r/pωr(k−1) diverges, then there exists a function

f1 ∈ Cp such that ωl−1/p(f1, δ) ≤ ω(δ), δ ∈ [0, 2π], and the series (1.3) diverges for f = f1.

Proof. Let us consider εk = ω(1/k), k ∈ N and the function f1(x) from (3.5). Then En(f1))Vp
≤

C1ω((n+ 1)−1), n ∈ Z+. By the converse approximation theorem in Cp (see Lemma 2.4) we have

ωl−1/p(f1, 1/n) ≤ C2n
−l+1/p

n∑
k=0

(k + 1)l−1/p−1ω((k + 1)−1) ≤ C3ω(1/n). (3.6)

Since ω ∈ Bl−1/p satisfies the ∆2-condition (see Lemma 3 in [1]), from (3.6) and the monotonicity of
ω we easily deduce the inequality ωl−1/p(f, δ) ≤ C4ω(δ), δ ∈ [0, 2π]. On the other hand, by Theorem

3.6, we have
∞∑
k=1

γkρ
r
k(f1) =∞. �

4. The results for general orthonormal systems

Let {ϕk(x)}∞k=1 be a complete in L2[0, 1] orthonormal system. For f ∈ L2[0, 1] we set

cn(f) =

1∫
0

f(x)ϕn(x) dx, Sϕn (f)(x) =

n∑
k=1

ck(f)ϕk(x),

Eϕn (f)2 = inf
αi∈C

∥∥∥∥∥f −
n∑
k=1

αkϕk

∥∥∥∥∥
L2[0,1]

, n ∈ N.

It is well known that

Eϕn (f)2 = ‖f − Sϕn (f)‖L2[0,1] =

( ∞∑
k=n+1

|ck(f)|2
)1/2

. (4.1)

S. Stechkin [5] established a sharp condition of convergence of the series
∞∑
k=1

|ck(f)|. Using the method

of proof of Theorem A in [2] and the first equality in (4.1), one can easily obtain

Theorem 4.1. Let 0 < r < 2, {γk}∞k=0 ∈ A(2/(2− r)), f ∈ L2[0, 1] and the series

∞∑
k=1

k−r/2γk(Eϕk (f)2)r
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converge. Then we have

∞∑
k=2

γk|ck(f)|r ≤ C
∞∑
k=1

k−r/2γk(Eϕk (f)2)r <∞.

The following counterpart of Theorem 3.3 shows the sharpness of Theorem 4.1.

Theorem 4.2. Suppose that {εi}∞i=1 decreases to zero and satisfies the Bary condition (3.2),
0 < r < 2, {γk}∞k=0 ∈ A(2/(2− r)). If the series

∞∑
i=1

γii
−r/2εri

diverges, then there exists f0 ∈ L2[0, 1] such that Eϕn (f0)2 ≤ Cεn, n ∈ N, but the series

∞∑
k=1

γk|ck(f)|r

diverges.

Proof. Let us consider Dirichlet kernels Dϕ
n(x) =

n∑
k=1

ϕk(x). Since {ϕk(x)}∞k=1 is orthonormal on [0, 1],

we have

‖Dϕ
n‖L2[0,1] = n1/2, ‖Dϕ

n −Dϕ
m‖L2[0,1] = (n−m)1/2, n,m ∈ N, n ≥ m. (4.2)

Just as in the proof of Theorem 3.3, we consider

f0(x) =

∞∑
k=1

ε2k(Dϕ
2k

(x)−Dϕ
2k−1(x))2−k/2.

Using (4.2) and (3.3), we find for n ∈ [2k, 2k+1), k ∈ Z+, that

Eϕn (f0)2 ≤ Eϕ2k(f0)2 = ‖f0 − S2k(f0)‖L2[0,1]

≤
∞∑

i=k+1

ε2i2
−i/2‖Dϕ

2i −D
ϕ
2i−1‖L2[0,1] ≤

∞∑
i=k+1

ε2i ≤ C1ε2k+1 ≤ C1εn.

On the other hand,
∞∑
i=1

γi|ci(f0)|r ≥
∞∑
k=1

2k∑
i=2k−1+1

γiε
r
2k2−kr/2.

As in the proof of Theorem 3.2, we have

2k∑
i=2k−1+1

γiε
r
i i
−r/2 ≤ C2Γk−12−(k−1)r/2εr2k−1

and from the embedding A(2/(2− r)) ⊂ A(1), we can see that Γk ≤ C3Γk−1, k ∈ N. Thus we obtain

∞∑
i=1

γi|ci(f0)|r ≥
∞∑
k=1

Γk−12−kr/2εr2k ≥ C
−1
3

∞∑
k=1

Γk2−kr/2εr2k

≥ (C2C3)−1
∞∑
k=1

2k∑
i=2k−1+1

γiε
r
i i
−r/2 =∞. �
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14. L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), no. 1,
251–282.

15. A. Zygmund, Trigonometric Series. Cambridge Univ. Press, New York, 1959.

(Received 30.04.2021)

1Moscow Institute of Physics and Technology (State University), 9 Institutskaya Str., Dolgoprudnyi,
Moscow region, Russian Federation

2Department of Mechanics and Mathematics, Saratov State Unversity, 83 Astrakhanskaya Str., Sara-
tov, 410012, Russian Federation

E-mail address: golubovboris1939@gmail.com

E-mail address: volosivetsss@mail.ru


