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AN INITIAL-BOUNDARY VALUE PROBLEM FOR SYSTEMS OF LINEAR

PARTIAL DIFFERENTIAL EQUATIONS WITH A DIFFERENTIAL OPERATOR

OF GEGENBAUER TYPE

TAHIR S. GADJIEV1, VAGIF S. GULIYEV2 AND ELMAN J. IBRAGIMOV3

Abstract. This article discusses the initial boundary value problem for the systems of linear par-

abolic equations. The system is written in a matrix form. Its elements are polynomials with the

Gegenbauer operator having the same order. The class of functions is located in which a way that
the problem under consideration is correct, i.e., there is only a unique solution that depends on the

initial function. Explicit formulas for solving the problem are given, while the method of generalized

functions is developed by Gelfand and Shilov.

1. Introduction and Statement of the Problem

As is known from the classical analysis, various integral transforms are one of the important methods
in solving a number of problems of mathematical analysis and differential equations. The fact is that
in studying the initial boundary value problems for systems of parabolic equations, it is required to
find a class of functions in which the problem is correct, that is the class in which the system has a
solution involved in this class for each t ≥ 0 and satisfying the initial and boundary conditions. In
this class, the solution should be unique and depend continuously on the initial function.

To solve these problems, in [5], the Fourier transform method, and in [14], the Fourier–Bessel
transform method were used. The prescribed conditions on the class of functions ensure the existence
and uniqueness of solutions. In [11], the conditions for the well-posedness of the Cauchy problem are
given under the assumption that the initial functions are bounded. This is an assumption was not
connected with the essence of the problem, but only by using the Fourier method. It is known that,
for example, for hyperbolic equations, the existence and the uniqueness of the solution to the Cauchy
problem takes place without any restrictions on the growth of the initial function at infinity, since the
values of the solution in point depend only on those of the initial function inside the corresponding
cone of characteristics.

For the heat-conducting equation, the natural area, as is shown in [13], ensuring the existence and
uniqueness of the solution of the Cauchy problem is the class of functions that, for each t ≥ 0 and for

|x| → ∞ grow more slowly than ex
2

. This result was extended by O. A. Ladyzhenskaya [10] to any
parabolic equation and then by S. D. Eidel’man [4] to any parabolic system. Thus, to apply the Fourier
method to the questions dealing with the initial boundary value problem for certain equations, it is
necessary to construct the theory of the Fourier transform for the corresponding classes of functions.
A rigorous substantiation of the Fourier transform for slowing down of growing functions was carried
out by Bochner [1] and later by Carleman [2] by using somewhat different method. L. Schwartz in
his book [12] treating sequentially the zero of the Fourier transform as a functional, gave a systematic
structure of the theory, essential for slowly growing functions.

I. M. Gelfand and G. E. Shilov in [5] constructed the Fourier transform of functions that grow
as fast as desired. With this transform, the uniqueness of the solution of the Cauchy problem for
equations with partial derivatives with coefficients depends only on time. This was the solution to the
problem posed in [11]. The basis of the theorem of uniqueness is essentially the Phragmén–Lindelöf
theorem.
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Consideration of generalized functions over arbitrary spaces of basic functions allows us to solve
the issues related to the uniqueness, but solved the problem.

The range of these issues and the results in this direction are covered in detail in [5].
In this article, to solve the problem, we use the method of generalized functions developed in [5]

in combination with the Gegenbauer transform method introduced in [6], which play the same role as
the Fourier transform method in [5].

We consider the following system of linear differential equations:

∂u(x, t)

∂t
= P (G, t)u(x, t), (1.1)

where 1 ≤ x <∞, t ≥ 0, u(x, t) = {u1(x, t), . . . , um(x, t)} is a vector function and P (G, t) is a matrix
of dimension m×m, whose entries are polynomials of the Gegenbauer operator G (see [3])

G = (x2 − 1)
d2

dx2
+ (2λ+ 1)x

d

dx
, 1 < x <∞, 0 < λ <

1

2

of the same order P ≥ 0. The coefficients of the operator G and its powers can be either constant or
continuously depend on the time. The initial and boundary conditions for system (1.1)

u(x, 0) = u0(x),
∂u(x, t)

∂x

∣∣∣
x=1

= 0. (1.2)

It is required to find a class of functions in which problem (1.1)–(1.2) is correct, that is, a class in
which system (1.1) has a solution u(x, t) included in this class for every t ≥ 0 and satisfying conditions
(1.2). In this class, the solution should be unique and continuously depend on the initial function
u0(x).

In obtaining explicit formulas for solving the problem (1.1)–(1.2), the generalized shift operator
(GSO, in short) associated with the Gegenbauer operator G considered in [6] is of importance.

The results of this article are presented according to the following scheme. In Section 2, we present
some properties of the Gegenbauer transforms and the generalized shift operator.

Section 3 studies Gegenbauer’s transformations in the class of generalized functions.
Section 4 is devoted to proving the existence and uniqueness of the solution to the problem posed

and finding an explicit formula for the resulting solution.

2. The Gegenbauer Transform and its Properties

A function ϕ(x) is called a main function if it is infinitely differentiable, even and satisfies the

estimate |Dqϕ(x)| ≤ Cqr
(1+x2)r . The G operator can be applied to the main functions as many times as

desired, and the estimate

|Gqϕ(x)| ≤ Cqr
(1 + x2)r

,

where q ≥ 0 and r ≤ 0 are arbitrary integers, Cqr are the constants, independent of x. By SG
we denote the space of all basic functions. Note that the even functions from the space S of basic
functions, introduced in the paper [5], form the space SG of main functions under consideration. The
S - linear space and the convergence of a sequence of functions to zero in SG is defined in the same
way as in [5]. Thus SG ≡ S.

In [6], for the main functions, the direct FP , FQ and the inverse F−1
P , F−1

Q Gegenbauer transforms
were defined by the following formulas:

FP f(t)→ f̂P (α) =

∞∫
1

f(t)Pλα (t)dmλ(t),

FQf(t)→ f̂Q(α) =

∞∫
1

f(t)Qλα(t)dmλ(t),
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F−1
P f̂P (α)→ f(x) =Cλ

∞∫
1

f̂P (α))Qλα(x)dmλ(α),

F−1
Q f̂Q(α)→ f(x) =Cλ

∞∫
1

f̂Q(α))Pλα (x)dmλ(α),

where dmλ(x) = (x2 − 1)λ−
1
2 dx, and

Cλ =
2

3
2−λΓ( 1

2 )F (λ+ 1)Γ( 1
2 − λ)Γ( 3+2λ

4 )[Γ(λ+ 1
2 )Γ( 5−2λ

4 ) cosπλ]−1

2F1(1, 1
2 − λ; 5−2λ

4 ; 1
2 )−2 F1(t, 1

2 − λ; 5−2λ
4 ; 1

2 )

is a normalizing factor, and 2F1(a; b; c;x) is a Gaussian hypergeometric function (see [7]). Here,
Pλα (x) and Qλα(x) are linearly independent solutions of the Gegenbauer equation (see [3])

(x2 − 1)y′′ + (2λ+ 1)xy′ − α(α+ 2λ)y = 0.

In [6], it is proved that for any f ∈ S,

FPF
−1
P f = f = F−1

P FP f,

and also

FQF
−1
Q f = f = F−1

Q FQf,

therefore the direct and inverse Gegenbauer transforms are mutually inverse automorphisms of the
space S, i.e., Š = Ŝ = S. Here, F−1

P S = Š, FPS = Ŝ.
The multiplier (see [5]) for the space S is any infinitely differentiable function f that, together with

its all derivatives, increases as x→∞ no faster than some power x.
In [6], the concept of generalized convolution of two functions from S to [1,∞) is defined as

(f ∗ g)(x) =

∞∫
1

g(t)Aλt f(x)dmλ(t),

generated by the generalized shift operator

Aλt f(x) =
Γ(λ+ 1

2 )

Γ( 1
2 )Γ(λ)

π∫
0

f(xt−
√
x2 − 1

√
t2 − 1 cosϕ)(sinϕ)2λ−1dϕ,

associated with the Gegenbauer differential operator G.
The propertries of Gegenbauer’s GSO are listed in [6]. We will give only those of them that we will

need in the future.
1. Aλt P

λ
α (x) = Pλα (t)Qλα(x), AλtQ

λ
α(x) = Cλα(x)Qλα(x),

where Qλα(x) = Γ(2λ)Γ(α+1)
Γ(α+2λ) Cλα(x),

2. Self-adjointness. For f, g ∈ S
∞∫
1

g(t)Aλt f(x)dmλ(t) =
∞∫
1

f(t)Aλt g(x)dmλ(t),

3. Aλt f(x) = Aλxf(t) is a symmetry,

4.
(̂
Aλt
)
P

(α) = Aλt f̂P (α) = f̂P (α)Qλα(t) for ∀f ∈ L1,λ,

5. (̂f ∗ g)P (α) = f̂P (α) ĝQ(α) and (̂f ∗ g)Q(α) = f̂Q(α) ĝQ(α)
for any f, g ∈ S, where f ∗ g is the convolution of functions which is defined above.

3. Gegenbauer Transform of Generalized Functions

The generalized function, as is customary, is a linear continuous functional defined on the space S
of basic functions.
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Functionals of the type of the function are linear continuous functionals acting on an arbitrary
function ϕ ∈ S by the formula

〈T, ϕ〉 =

∞∫
1

T (x)ϕ(x)dmλ(x). (3.1)

We say that a locally summable function f defines a principal functional in S if it grows as x→∞
no faster than some fixed power x, i.e., it has a polynomial growht. Then for ∀ϕ ∈ S,

〈f, ϕ〉 =

∞∫
1

f(x)ϕ(x)dmλ(x).

Theorem 3.1. If the functions T1(x) and T2(x) define principal functionals 〈T1, ϕ〉 and 〈T2, ϕ〉 differ
from each other on the set of positive measures, the functionals 〈T1, ϕ〉 and 〈T2, ϕ〉 are different, i.e.,
there is a function ϕ0 ∈ S such that 〈T1, ϕ0〉 6= 〈T2, ϕ0〉. Conversely, if the functionals 〈T1, ϕ〉 and
〈T2, ϕ〉 are different, then the functions T1 and T2 differ on a set of positive measure.

Proof. Let there be given the functions T1 and T2 defining the functionals 〈T1, ϕ〉 and 〈T2, ϕ〉 and
coinciding on each function ϕ ∈ S. Then the difference T = T1 − T2 also determines the main
functional, which is identically zero:

〈T, ϕ〉 =

∞∫
1

T (x)ϕ(x)dmλ(x) = 0 for all ϕ ∈ S.

Let us show that the function T vanishes almost everywhere, whence the required statement will
follow. We denote by Lp,λ[1,∞) ≡ Lp([1,∞), dmλ), 1 ≤ p ≤ ∞ the class of measurable functions with
a finite norm

‖f‖p,λ =

( ∞∫
1

|f(x)|pdmλ(x)

) 1
p

, 1 ≤ p <∞,

‖f‖∞,λ = ‖f‖∞ = ess sup
x∈[1,∞)

|f(x)|, p =∞.

Since the product of functions from S belongs also to S, for any sequence ϕn ∈ S, we have

∞∫
1

T (x)ϕ(x)ϕn(x)dx = 0, (3.2)

and since S is everywhere dense in Lp,λ (see [9, Theorem 4.2]), therefore at least Tϕ ∈ L2,λ and there
is a sequence ϕn ∈ S such that lim

n→∞
‖Tϕ−ϕn‖L2,λ

= 0. Then passing to the limit in (3.2) as n→∞,

we get
∞∫

1

|T (x)ϕ(x)|2dmλ(x) = 0,

whence it follows that the product Tϕ is almost always zero. Since ϕ is any function from S which,
in particular, can be considered as nonzero in a predetermined domain, the function T is almost
everywhere zero, which was to be stated.

The converse statement of Theorem 3.1 is obvious, since the functions T1 and T2 coincide almost
everywhere and lead to equal values of the functionals 〈T1, ϕ〉 and 〈T2, ϕ〉 for each function ϕ ∈ S. �

Theorem 3.1 allows us to identify principal functionals like the function T with the functions
T themselves. In addition, multiplication of generalized functions by a number and by a function
(multiplier) is defined as in [5].



AN INITIAL BOUNDARY VALUE PROBLEM FOR SYSTEMS 349

In the class S, the Gegenbauer transform and the operator G are symmetric in the certain sense
(see [8]),

∞∫
1

f(α)ĝP (α)dmλ(α) =

∞∫
1

f̂P (α)g(α)dmλ(α),

∞∫
1

(Gf)(x)g(x)dmλ(x) =

∞∫
1

f(x)(Gg)(x)dmλ(x).

Therefore we naturally extend f̂P (α) and G to the space S′ of generalized functions as follows: for

∀T ∈ S′ and ψ ∈ S, we set 〈T̂P , ψ〉 = 〈T, ψ̂2〉 and 〈GT,ψ〉 = 〈T,Gψ〉.
In [6], it has been proved that the Gegenbauer transform f̂P (α) of a generalized function f is a

generalized function, that is, if f ∈ S′, then f̂P (α) ∈ S′ and therefore the following properties hold
for the functions ϕ,ψ ∈ S′:

1. ̂(ϕ+ ψ)P (α) = ϕ̂P (α) + ψ̂P (α),

2. (̂αϕ)P (α) = αϕ̂P (α),

3. If ϕn → ϕ, then (̂ϕn)P (α)→ (̂ϕ)P (α),

4. ̂(P (G)ϕ)P (α) = P (̂Gϕ)P (α) = P (α(α+ 2λ))ϕ̂P (α),

5. GPλα (x) = α(α+ 2λ)Pλα (x)⇒ P (G)(Pλα (x)) = P (α(α+ 2λ))Pλα (x).

P (G)f̂P (α) = P (G)

∞∫
1

f(x)Pλα (x)(x2 − 1)λ−
1
2 dx

=

∞∫
1

f(x)P (α(α+ 2λ))Pλα (x)(x2 − 1)λ−
1
2 dx = (P (α(α+ 2λ))f̂P (α).

Further (see [6]), (̂Grf)P (x) = (α(α+ 2λ))rf̂P (x). For r = 1,

(̂Gf)P (x) = (α(α+ 2λ))f̂P (x)

⇒ (P̂ (G)f)P (xα) = P (α(α+ 2λ))f̂P (α).

The convolution of the functions f and g by R+ = [0,∞) is given in the equality (see [6])

(f ∗ g)(x) =

∞∫
1

g(t)Atf(x)dmλ(t),

moreover, if f, g ∈ S, then f ∗ g ∈ S, as well.
In [6], it is proved that if f ∈ S′ and g ∈ S, then their convolution f ∗ g ∈ S′.
In case f ∈ S′ and g ∈ S, their convolution f ∗ g is defined by the formula

(f ∗ g)(x) = 〈f,Axg〉, x ∈ R+.

The convolution f ∗ g of the generalized function f with the main function g is given by the equality

〈f ∗ g, h〉 = 〈f, g ∗ h〉, f ∈ S′, g, h ∈ S,
which at this location has the following properties (see [6]):

1) if f ∈ S′, and g ∈ S, then f ∗ g = g ∗ f ,

2) (̂f ∗ g)P (α) = f̂P (α)ĝQ(α),

3) if f ∈ S′, and g, h ∈ S, then (f ∗ g) ∗ h = f ∗ (g ∗ h),

4) Gr(f ∗ g) = (Grf) ∗ g = f ∗ (Grg),

5) f ∗ g = F−1
P (f̂P (x)ĝQ(x)).
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Let T1 and T2 be of functional type functions with the usual convolution. Then

〈T1 ∗ T2, ϕ〉 =

∞∫
1

( ∞∫
1

AtT1(x)T2(t)dmλ(t)

)
ϕ(x)dmλ(x)

=

∞∫
1

( ∞∫
1

AtT1(x)ϕ(x)dmλ(x)

)
T2(t)dmλ(t)

=

∞∫
1

( ∞∫
1

T1(x)Atϕ(x)dmλ(x)

)
T2(t)dmλ(t) = 〈T2, T1 ∗Atϕ〉.

A functional T is called a convolution in the space S of basic functions if for f ∈ S,

〈T,Atf〉 = g(t) ∈ S.

If T1 is a convolution in S and T2 ∈ S′1, then the convolution T1 ∗ T2 is defined by the formula

〈T1 ∗ T2, ϕ = T2, T
′
1 ∗Atϕ〉,

where T ′1 is the matrix, transposed to T1.

Theorem 3.2. If a generalized function T is a multiplier in the space S of basic functions, then its
Gegenbauer transform F−1TP is a convolution in the same space.

Proof. Since T is a multiplier in S, for any function ϕ ∈ S, ϕT ∈ S. Then the generalized function T

defines the main functional by formula (3.1). Therefore, as mentioned above, T̂P ∈ S′, and we have

〈F−1
P T,AtFPϕ〉 = 〈F−1

P T, FP (Atϕ)〉

= 〈F−1
P T, (FPϕ)Qλα〉 = 〈T, ϕ ·Qλα〉

=

∞∫
1

T (t)ϕ(t)Qλα(t)dmλ(t) = FQ(Tϕ) ∈ Ŝ = S. �

By Property 5, we have f̂P = T1 ⇒ f = F−1
P T1; ĝQ = T2 ⇒ g = F−1

Q T2. Then we obtain

F−1
P (T1 · T2) = F−1

P T1 ∗ F−1
Q T2.

4. Initial Boundary Value Problem

To solve the initial boundary value problem (1.1)–(1.2), consider system (1.1) as a system of
relatively generalized vector functions u(x, t) acting over the space of basic functions S. Using the
Gegenbauer transform, we can go from (1.1)–(1.2) to the system

dv(α(α+ 2λ), t)

dt
= P (α(α+ 2λ), t) v(α(α+ 2λ), t)

and the initial condition

v(α(α+ 2λ), 0) = v0(α(α+ 2λ)) = (u0)∧P (α),

the boundary condition dv(α(α+2λ),t)
dα

∣∣∣
α(α+2λ)=1

= 0 is fulfilled due to the fact that

Pλα (1) =
Γ(α+ 2λ) cosπλ

2α+2λΓ(λ)Γ(α2 + 1)Γ(α+1
2 )

.
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Let Q(α(α+ 2λ), 0, t) be the matrix of the normal fundamental system of solutions of system (1.1):

Q(α(α+ 2λ), 0, t) =

∥∥∥∥∥∥∥∥∥∥∥∥

v
(1)
1 (α(α+ 2λ), 0, t) . . . v

(m)
1 (α(α+ 2λ), 0, t)

v
(1)
2 (α(α+ 2λ), 0, t) . . . v

(m)
2 (α(α+ 2λ), 0, t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v
(1)
m (α(α+ 2λ), 0, t) . . . v

(m)
m (α(α+ 2λ), 0, t)

∥∥∥∥∥∥∥∥∥∥∥∥
.

Here, v(j)(α(α+ 2λ), 0, t) =
{
v

(j)
1 (α(α+ 2λ), 0, t), . . . , v

(1)
m (α(α+ 2λ), 0, t)

}
is the solution satisfy-

ing the initial condition v
(j)
k (α(α+ 2λ), 0, t)

∣∣∣
t=0

= δjk, and δjk is the Kronecker symbol. Together with

each of its columns and the entire matrix Q(α(α+ 2λ), 0, t) it satisfies the equation

dQ(α(α+ 2λ), 0, t)

dt
= P (α(α+ 2λ), t)Q(α(α+ 2λ), 0, t)

and, by the construction, the initial conditions are satisfied

Q(α(α+ 2λ), 0, t) = E,

where E is the identity matrix. This is also due to the fact that there are linearly independent solutions
Pλα (x) and Qλα(x). Then the solution of the system (1.1)–(1.2) can be written in the form

v(α(α+ 2λ), 0, t) = Q(α(α+ 2λ), 0, t) · (̂u0)P (α)

and for the case of one equation (m = 1), Q(α(α+ 2λ), 0, t) transforms into the function

Q(α(α+ 2λ), 0, t) = e

t∫
0

P (α(α+2λ),t)dt
.

Let T [m][S] be the collection of all vector functions ϕ(x) = {ϕ1(x), . . . , ϕm(x)} with components
taken from S (see [5]). As in [5], the following theorems hold.

Theorem 4.1. If in the space S of basic functions ϕ(S) the elements of the matrix Q(α(α+ 2λ), 0, t)
are the multipliers for any t ≥ 0, then the system (1.1) has a solution for any initial generalized vector
of the function (u0)∧P (α) ∈ T [m][S],

v(α(α+ 2λ), t) = Q(α(α+ 2λ), 0, t) · (̂u0)P (α)

and this solution continuously depends on the initial vector of the function (̂u0)P (α) in the sense of

continuity, established for the space T [m][S].

Theorem 4.2. If in the space S of basic functions ϕ(S) the elements of the matrix Q(α(α+ 2λ), 0, t)
are the multipliers for any t, 0 ≤ t ≤ t0, then system (1.1)–(1.2) may have only a unique solution in
the class T [m][S].

Note 4.1. In these theorems, to solve the problem, we interpret equation (1.1) as an equation for a
generaized vector function depending on t as a parameter and belonging to α for some space T [m][S].

The solution to the problem (1.1)–(1.2) under the conditions of Theorem 4.1 can be obtained
on the basis of Theorem 3.2. However, Theorem 4.1 puts restrictions on the growth of the matrix
Q(α(α+ 2λ), 0, t) as α→∞. Indeed, for the matrix Q(α(α+ 2λ), 0, t) to be a multiplier in the space
S of basic functions, it is necessary that it and all its derivatives grow on the real axis no faster than
some polynomial

|DqQ(α(α+ 2λ), 0, t)| ≤ C(1 + α2)k, (4.1)

where k > 0 is fixed and q > 0 is arbitrary.
If condition (4.1) is satisfied for a system, then this system is called regular.
For regular systems F−1

P Q(α(α+ 2λ), 0, t) there is, according to Theorem 3.2, a convolution in the

space T̂P [S] = T [ŜP ] = T [S] and the convolution formula

u(x, t) = F−1
P v(α(α+ 2λ), t) = F−1

P [Q(α(α+ 2λ), 0, t)(̂u0)P (α)]
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= F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x)

holds. Thus

u(x, t) = F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x). (4.2)

Formula (4.2) gives a solution to problem (1.1)–(1.2) for arbitrary systems of the form (1.1).
Based on Theorems 4.1 and 4.2, we can formulate the following theorems defining the class of initial

data in which the solution to problem (1.1)–(1.2) exists and is unique.

Theorem 4.3. If the vector function u0(x) satisfies the inequality

|u0(x)| ≤ C1(1 + x2)k, (4.3)

where k > 0 is an arbitrary integer, then the solution to problem (1.1)–(1.2) exists in the class of
generalized vector functions u(x, t), which for each t ≥ 0 belongs to the space T [S].

Theorem 4.4. If the vector function u0(x) satisfies inequality (4.3), then the solution to problem
(1.1)–(1.2) is always unique in class of generalized vector functions T [S].

Remark 4.2. The results of Theorems 4.1–4.4 are also true for systems of a more general form

∂u(x, t)

∂t
= P (G1, G2, . . . , Gn, t)u(x, t)

with the initial and boundary conditions

u(x, 0) = u0(x),
∂u(x, t)

∂x

∣∣∣∣
x=1

= 0,

where Gi = (x2
i − 1) ∂2

∂x2
i

+ (2λ+ 1)xi
∂
∂xi

, (i = 1, 2, . . . , n).

However, this remark does not imply that the solution of problem (1.1)–(1.2) for arbitrary regular
systems of the form (1.1) will be an ordinary function. The latter is true, for example, for parabolic
systems of the following form.

System (1.1) will be called parabolic if the matrix Q(α(α + 2λ), 0, t), defined above, satisfies the
inequality

|Q(α(α+ 2λ), 0, t)| ≤ C1e
−|α|2q , (4.4)

for arbitrary t, t0 ≤ t ≤ T, t0 ≥ 0, where q is the highest degree of the Gegenbauer operators in system
(1.1). We represent the matrix P (G, t) on the right-hand side of system (1.1) in the form

P (G, t) = P1(G, t) + P2(G, t),

where P1(G, t) is the matrix whose elements contain the highest powers of the Gegenbauer operator,
P2(G, t) is the matrix of the remaining terms. Using the theorem of I. G. Petrovsky [11], we can assert
that for condition (4.4) to be satisfied, it is sufficient that the real parts of all roots of the matrix
λE − P2(α(α+ 2λ), t) are negative numbers for α(α+ 2λ) = 2.

Since the elements of matrix Q(α(α + 2λ), 0, t) are integer analytic functions of α(α + 2λ) and
condition (4.4) holds, Q(α(α + 2λ), 0, t) belongs to S and, therefore it is a multiplier in the space S.
Thus F−1

P Q(α(α + 2λ), 0, t) is a convolution in S. Since F−1
P Q(α(α + 2λ), 0, t) ∈ S, we can get the

convolution F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x) which gives a solution to problem (1.1)–(1.2) written as an

ordinary integral

〈F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x), ϕ〉

=

∞∫
1

u0(y)

( ∞∫
1

F−1
P Q(α(α+ 2λ), 0, t)(x)Aλyϕ(x)dµλ(x)

)
dµλ(y)

=

∞∫
1

ϕ(x)

( ∞∫
1

AλyF
−1
P Q(α(α+ 2λ), 0, t)(x)u0(y)dµλ(y)

)
dµλ(x)
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=

∞∫
1

(
F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x)

)
ϕ(x)dµλ(x).

So, the convolution F−1
P Q(α(α+2λ), 0, t)∗u0(x) acts on an arbitrary function ϕ ∈ S as a functional

like an ordinary function F−1
P Q(α(α + 2λ), 0, t) ∗ u0(x). Therefore, by Theorem 3.2, F−1

P Q(α(α +
2λ), 0, t) ∗ u0(x) is an ordinary function, and the following formula

u(x, t) = F−1
P Q(α(α+ 2λ), 0, t) ∗ u0(x)

=

∞∫
1

AλyF
−1
P Q(α(α+ 2λ), 0, t)(x)u0(y)dµλ(y)

holds.
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