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AN APPLICATION OF A WIDER CLASS OF INCREASING SEQUENCES

HÜSEYİN BOR1∗ AND RAM NARAYAN MOHAPATRA2

Abstract. In this paper, we have proved a general theorem dealing with the ϕ−|C,α|k summability

factors of infinite series by using a wider class of power increasing sequences. Some new results are

also obtained and some previous results are recovered.

1. Introduction

A positive sequence (Xn) is said to be almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants M and N such that Mcn ≤ Xn ≤ Ncn (see [2]). A positive
sequence X = (Xn) is said to be a quasi-f-power increasing sequence, if there exists a constant
K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm holds for n ≥ m ≥ 1, where f = (fn) = [nσ(log n)γ ,
γ ≥ 0, 0 < σ < 1] (see [22]). If we take γ=0, then we obtain a quasi-σ-power increasing sequence
(see [20]). Let (ϕn) be a sequence of complex numbers and let

∑
an be a given infinite series with

partial sums (sn). We denote by tαn the nth Cesàro mean of order α (α > −1) of the sequence (nan),
that is (see [17]),

tαn =
1

Aαn

n∑
v=1

Aα−1n−vvav, (1)

where

Aαn =

(
n+ α

n

)
' nα

Γ(α+ 1)
, α > −1, Aα0 = 1 and Aα−n = 0 for n > 0.

The series
∑
an is said to be summable ϕ− |C,α|k, k ≥ 1, if (see [1])

∞∑
n=1

1

nk
|ϕntαn|

k
<∞.

In the special case, when ϕn = n1−1/k (resp., ϕn = nδ+1−1/k), the ϕ − |C,α|k summability is the
same as |C,α|k (see [18]) (resp., |C,α; δ|k (see [19])) summability.

2. Known Result

Recently, some new theorems dealing with the absolute Cesàro summability factors of infinite series
have been proved(see [3–15]). Among them, in [12], the following theorem has been proved.

Theorem A. Let 0 < α ≤ 1. Let (Xn) be an almost increasing sequence and let there be sequences
(βn) and (λn) such that

| ∆λn |≤ βn, (2)

βn → 0 as n→∞, (3)
∞∑
n=1

n | ∆βn | Xn <∞, (4)

| λn | Xn = O(1) as n→∞. (5)
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If there exists an ε > 0 such that the sequence (nε−k |ϕn|k) is non-increasing and if the sequence
(ωαn) defined by (see [21])

ωαn =

{
|tαn| (α = 1)

max1≤v≤n |tαv | (0 < α < 1)

satisfies the condition
m∑
n=1

(| ϕn | wαn)k

nkXn
k−1 = O(Xm) as m→∞, (6)

then the series
∑
anλn is ϕ− | C,α |k summable, where k ≥ 1 and (1 + αk + ε− k) > 1.

3. Main Result

The aim of this paper is to generalize Theorem A to a wider class of increasing sequences by using
a quasi-f-power increasing sequence instead of an almost increasing sequence. Now, we prove the
following more general theorem.

Theorem. Let 0 < α ≤ 1 and let (Xn) be a quasi-f-power increasing sequence. If the sequences (βn)
and (λn) satisfy conditions (2), (3), (4), (5) of Theorem A and if there exists an ε > 0 such that the

sequence (nε−k |ϕn|k) is non-increasing and condition (6) holds, then the series
∑
anλn is ϕ−| C,α |k

summable, where k ≥ 1 and (1 + αk + ε− k) > 1.

4. Lemmas

We need the following lemmas for the proof of our theorem.

Lemma 1 ([16]). If 0 < α ≤ 1 and 1 ≤ v ≤ n, then∣∣∣∣ v∑
p=1

Aα−1n−pap

∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣ m∑
p=1

Aα−1m−pap

∣∣∣∣.
Lemma 2 ([4]). Under the conditions on (Xn), (βn), and (λn) as expressed in the statement of the
theorem, we have the following

∞∑
n=1

βnXn <∞,

nXnβn = O(1).

5. Proof of the Theorem

Let (Tαn ) be the nth (C,α) mean, with 0 < α ≤ 1, of the sequence (nanλn). Then by (1), we have

Tαn =
1

Aαn

n∑
v=1

Aα−1n−vvavλv.

First, applying Abel’s transformation and then using Lemma 1, we have

Tαn =
1

Aαn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1n−ppap +
λn
Aαn

n∑
v=1

Aα−1n−vvav,

| Tαn |≤
1

Aαn

n−1∑
v=1

| ∆λv ||
v∑
p=1

Aα−1n−ppap | +
| λn |
Aαn

∣∣∣∣ n∑
v=1

Aα−1n−vvav

∣∣∣∣
≤ 1

Aαn

n−1∑
v=1

Aαvω
α
v | ∆λv | + | λn | ωαn = Tαn,1 + Tαn,2.
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To complete the proof of the theorem by using Minkowski’s inequality for k > 1, it suffices to show
that

∞∑
n=1

1

nk
| ϕnTαn,r |k<∞, for r = 1, 2.

For k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, we get

m+1∑
n=2

1

nk
| ϕnTαn,1 |k≤

m+1∑
n=2

n−k(Aαn)−k|ϕn|k
{ n−1∑
v=1

Aαvω
α
v βv

}k−1

≤
m+1∑
n=2

1

n
(Aαn)−k|ϕn|k

n−1∑
v=1

(Aαv )k(ωαv )kβkv ×
{

1

n

n−1∑
v=1

1

}k−1

=O(1)

m+1∑
n=2

|ϕn|k

n1+αk

n−1∑
v=1

vαk(ωαv )kβkv = O(1)

m+1∑
n=2

|ϕn|k

n1+αk

n−1∑
v=1

vαk(ωαv )kβkv

=O(1)

m∑
v=1

vαk(ωαv )kβvβ
k−1
v

m+1∑
n=v+1

nε−k|ϕn|k

n1+αk+ε−k

=O(1)

m∑
v=1

vαk(ωαv )kβv
vε−k|ϕv|k

vk−1Xk−1
v

∞∫
v

dx

x1+αk+ε−k

=O(1)

m∑
v=1

vβv
(ωαv |ϕv|)k

vkXk−1
v

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(ωαr |ϕr|)k

rkXk−1
r

+O(1)mβm

m∑
v=1

(ωαv |ϕv|)k

vkXk−1
v

= O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

=O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m→∞,

by the hypotheses of the theorem and Lemma 2. Again, by using (5), we have
m∑
n=1

1

nk
| ϕnTαn,2 |k=

m∑
n=1

n−k |ϕn|k |λn| |λn|k−1 (ωαn)k = O(1)

m∑
n=1

|λn|
(| ϕn | wαn)k

nkXn
k−1

=O(1)

m−1∑
n=1

∆ |λn|
n∑
v=1

(| ϕv | wαv )k

vkXv
k−1 +O(1) |λm|

m∑
n=1

(| ϕn | wαn)k

nkXn
k−1

=O(1)

m−1∑
n=1

|∆λn|Xn +O(1) |λm|Xm

=O(1)

m−1∑
n=1

βnXn +O(1) |λm|Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

6. Conclusions

If we take ε = 1 and ϕn = n1−1/k (resp., ε = 1 and ϕn = nδ+1−1/k), then we obtain two new
results dealing with the | C,α |k (resp., | C,α; δ |k) summability factors. Also, if we take (Xn) as a
positive non-decreasing sequence, then we obtain a theorem of Bor (see [3]) under weaker conditions.
Furthermore, if we take (Xn) as an almost increasing sequence, then we obtain Theorem A. Finally,
if we take γ = 0, we obtain a new result dealing with an application of quasi-σ-power increasing
sequences.
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