AN APPLICATION OF A WIDER CLASS OF INCREASING SEQUENCES

HÜSEYín BOR ${ }^{1 *}$ AND RAM NARAYAN MOHAPATRA ${ }^{2}$

Abstract

In this paper, we have proved a general theorem dealing with the $\varphi-|C, \alpha|_{k}$ summability factors of infinite series by using a wider class of power increasing sequences. Some new results are also obtained and some previous results are recovered.

1. Introduction

A positive sequence $\left(X_{n}\right)$ is said to be almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq X_{n} \leq N c_{n}$ (see [2]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ holds for $n \geq m \geq 1$, where $f=\left(f_{n}\right)=\left[n^{\sigma}(\log n)^{\gamma}\right.$, $\gamma \geq 0,0<\sigma<1$] (see [22]). If we take $\gamma=0$, then we obtain a quasi- σ-power increasing sequence (see [20]). Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by t_{n}^{α} the nth Cesàro mean of order $\alpha(\alpha>-1)$ of the sequence $\left(n a_{n}\right)$, that is (see [17]),

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}, \quad \alpha>-1, \quad A_{0}^{\alpha}=1 \text { and } A_{-n}^{\alpha}=0 \text { for } n>0
$$

The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha|_{k}, k \geq 1$, if (see [1])

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} t_{n}^{\alpha}\right|^{k}<\infty
$$

In the special case, when $\varphi_{n}=n^{1-1 / k}$ (resp., $\varphi_{n}=n^{\delta+1-1 / k}$), the $\varphi-|C, \alpha|_{k}$ summability is the same as $|C, \alpha|_{k}$ (see [18]) (resp., $|C, \alpha ; \delta|_{k}$ (see [19])) summability.

2. Known Result

Recently, some new theorems dealing with the absolute Cesàro summability factors of infinite series have been proved(see [3-15]). Among them, in [12], the following theorem has been proved.

Theorem A. Let $0<\alpha \leq 1$. Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{2}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{3}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{4}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty . \tag{5}
\end{gather*}
$$

[^0]If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\omega_{n}^{\alpha}\right)$ defined by (see [21])

$$
\omega_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right| & (\alpha=1) \\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right| & (0<\alpha<1)\end{cases}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is $\varphi-|C, \alpha|_{k}$ summable, where $k \geq 1$ and $(1+\alpha k+\epsilon-k)>1$.

3. Main Result

The aim of this paper is to generalize Theorem A to a wider class of increasing sequences by using a quasi-f-power increasing sequence instead of an almost increasing sequence. Now, we prove the following more general theorem.

Theorem. Let $0<\alpha \leq 1$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ satisfy conditions (2), (3), (4), (5) of Theorem A and if there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and condition (6) holds, then the series $\sum a_{n} \lambda_{n}$ is $\varphi-|C, \alpha|_{k}$ summable, where $k \geq 1$ and $(1+\alpha k+\epsilon-k)>1$.

4. LEMMAS

We need the following lemmas for the proof of our theorem.
Lemma 1 ([16]). If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=1}^{m} A_{m-p}^{\alpha-1} a_{p}\right|
$$

Lemma 2 ([4]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$, and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \\
& n X_{n} \beta_{n}=O(1)
\end{aligned}
$$

5. Proof of the Theorem

Let $\left(T_{n}^{\alpha}\right)$ be the nth (C, α) mean, with $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then by (1), we have

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v}
$$

First, applying Abel's transformation and then using Lemma 1, we have

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \\
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} \omega_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \omega_{n}^{\alpha}=T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha} .
\end{aligned}
$$

To complete the proof of the theorem by using Minkowski's inequality for $k>1$, it suffices to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

For $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 1}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} \omega_{v}^{\alpha} \beta_{v}\right\}^{k-1} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{n}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k} \sum_{v=1}^{n-1}\left(A_{v}^{\alpha}\right)^{k}\left(\omega_{v}^{\alpha}\right)^{k} \beta_{v}^{k} \times\left\{\frac{1}{n} \sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(\omega_{v}^{\alpha}\right)^{k} \beta_{v}^{k}=O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(\omega_{v}^{\alpha}\right)^{k} \beta_{v}^{k} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(\omega_{v}^{\alpha}\right)^{k} \beta_{v} \beta_{v}^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k+\epsilon-k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(\omega_{v}^{\alpha}\right)^{k} \beta_{v} \frac{v^{\epsilon-k}\left|\varphi_{v}\right|^{k}}{v^{k-1} X_{v}^{k-1}} \int_{v}^{\infty} \frac{d x}{x^{1+\alpha k+\epsilon-k}} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left(\omega_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}}=O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left(\omega_{r}^{\alpha}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}} \\
& +O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left(\omega_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}}=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. Again, by using (5), we have

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 2}^{\alpha}\right|^{k} & =\sum_{n=1}^{m} n^{-k}\left|\varphi_{n}\right|^{k}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1}\left(\omega_{n}^{\alpha}\right)^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}{ }^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left(\left|\varphi_{v}\right| w_{v}^{\alpha}\right)^{k}}{v^{k} X_{v}{ }^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}{ }^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

6. Conclusions

If we take $\epsilon=1$ and $\varphi_{n}=n^{1-1 / k}$ (resp., $\epsilon=1$ and $\varphi_{n}=n^{\delta+1-1 / k}$), then we obtain two new results dealing with the $|C, \alpha|_{k}$ (resp., $|C, \alpha ; \delta|_{k}$) summability factors. Also, if we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, then we obtain a theorem of Bor (see [3]) under weaker conditions. Furthermore, if we take $\left(X_{n}\right)$ as an almost increasing sequence, then we obtain Theorem A. Finally, if we take $\gamma=0$, we obtain a new result dealing with an application of quasi- σ-power increasing sequences.

References

1. M. Balci, Absolute φ-summability factors. Comm. Fac. Sci. Univ. Ankara Sér. A A_{1} Math. 29 (1980), no. 8, 63-68 (1981).
2. N. K. Bari, S. B. Stekin, Best approximations and differential properties of two conjugate functions. (Russian) Trudy Moskov. Mat. Ob. 5 (1956), 483-522.
3. H. Bor, Factors for generalized absolute Cesro summability methods. Publ. Math. Debrecen 43 (1993), no. 3-4, 297-302.
4. H. Bor, A new application of generalized power increasing sequences. Filomat 26 (2012), no. 3, 631-635.
5. H. Bor, R. N. Mohapatra, A new result on generalized absolute Cesàro summability. Inter. J. Anal. Appl. 11 (2016), no. 1, 40-42.
6. H. Bor, A new note on generalized absolute Cesro summability factors. Filomat 32 (2018), no. 9, 3093-3096.
7. H. Bor, On applications of quasi-monotone sequences and quasi power increasing sequences. Numer. Funct. Anal. Optim. 40 (2019), no. 4, 484-489.
8. H. Bor, On generalized absolute Cesro summability of factored infinite series. Appl. Math. E-Notes 19 (2019), 22-26.
9. H. Bor, A new application of quasi-f-power increasing sequences to factored infinite series. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 2, 77-80.
10. H. Bor, A new factor theorem for generalized absolute Cesro summability methods. Trans. A. Razmadze Math. Inst. 174 (2020), no. 1, 29-32.
11. H. Bor, A new theorem on generalized absolute Cesro summability factors. J. Appl. Math. Inform. 38 (2020), no. 5-6, 483-487.
12. H. Bor, A new study on generalized absolute Cesro summability methods. Quaest. Math. 43 (2020), no. 10, 14291434.
13. H. Bor, A new study on absolute Cesàro summability factors. Facta Univ. Ser. Math. Inform. 35 (2020), $1199-1204$.
14. H. Bor, A new factor theorem on generalized absolute Cesro summability. Quaest. Math. 44 (2021), no. 5, $653-658$.
15. H. Bor, Generalized absolute Cesàro summability of factored infinite series. J. Appl. Math. Inform. (2022).
16. L. S. Bosanquet, A mean value theorem. J. London Math. Soc. 16 (1941), 146-148.
17. E. Cesàro, Sur la multiplication des séries. Bull. Sci. Math. 14 (1890), 114-120.
18. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113-141.
19. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357-387.
20. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, $791-796$.
21. T. Pati, The summability factors of infinite series. Duke Math. J. 21 (1954), 271-283.
22. W. T. Sulaiman, Extension on absolute summability factors of infinite series. J. Math. Anal. Appl. 322 (2006), no. $2,1224-1230$.
(Received 01.04.2021)
${ }^{1}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
${ }^{2}$ Dept. Math., University of Central Florida, Orlando, FL 32816, USA
E-mail address: hbor33@gmail.com
E-mail address: ram.mohapatra@ucf.edu

[^0]: 2020 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05.
 Key words and phrases. Cesàro mean; Absolute summability; Almost increasing sequence; Quasi-f-power increasing sequence; Infinite series; Hölder's inequality; Minkowski's inequality.
 *Corresponding author.

