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ROUGH SEMI-CONTINUOUS SET-VALUED MAPS

FATMA GECİT AKÇAY AND SALIH AYTAR

Abstract. In this paper, we introduce the concepts of rough semi-continuity and rough continuity

of set-valued maps. Then we investigate the question whether these concepts may be characterized
differently or not.

1. Introduction

The concept of a set-valued map is needed in the solution of problems in sciences such as control
theory, economics, business administration / management and biology. In 1982, Neubrunn [7] gave
two definitions of the semi-continuity of a set-valued map and proved some results by using these
definitions. Moreover, some differences between the classical results for semi-continuous single-valued
functions and those for set-valued maps were shown by some examples. In the same year, Hou
[4] presented different upper semi-continuity properties of set-valued maps and elaborated their
interrelatedness. In 2005, Labuda [6] proved that the active boundary of F (x0) is the smallest compact
kernel of F at x0, if x0 is a q−point of a regular space X, Y is a Hausdorff space whose relatively
countably compact subsets are relatively compact and F : X ⇒ Y is an upper semi-continuous set-
valued map. Then Kanıbir and Reilly [5] introduced two kinds of generalized continuity for set-valued
maps.

On the other hand, the idea of rough continuity of the functions on normed spaces was introduced
by Phu [8] in 2002 as follows. A mapping f : X → Y is said to be continuous provided x′ → x always
implies f(x′)→ f(x), where the two latter arrows denote the classical convergence in the corresponding
spaces. Replacing the classical convergence by the rough convergence, we obtain the so-called rough
continuity, or rX − rY−continuity, where rX and rY denote the convergence degrees in X and Y ,

respectively. For rX = 0, f is called 0 − rY−continuous if x′ → x always implies f(x′)
rY→ f(x). By

definition, x′
rX→ x means that x → BrX (x) = {z ∈ X : dX(z, x) ≤ rX}, i.e., the classical (ordinary)

convergence of x′ to the ball BrX (x). Hence, for rX ≥ rY = 0, f is called rX−0−continuous if x′
rX→ x

implies f(x′)
rY→ f(BrX (x)). For rX = rY = 0, the rX − rY−continuity is just the classical continuity.

Moreover, Phu [8] proved that if the space Y is finite-dimensional, then all the linear operators
f : X → Y are r−continuous at each point of X.

The aim of this paper is to extend the definition of rough continuity for the classical functions to set-
valued maps. By this new definition, we will be able to observe the differences between discontinuous
set-valued maps, and grade these discontinuities. In order words, although the conditions violating the
upper semi-continuity or lower semi-continuity for certain maps may be disregarded with a roughness
degree, such a situation is out of the question for certain maps. In this way, we will be able to
classify discontinuous maps via certain definitions based on the roughness, instead of defining them as
just discontinuous. Thus we will be able to put forward the differences between these discontinuous
set-valued maps.

2. Preliminaries

In this section, we briefly recall some of the basic notions in the theory of set-valued analysis and
refer to [1–3,9] for more details.
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Let X and Y be topological spaces. A map that assigns each x ∈ X to a subset of Y is called a
set-valued map. The graph of a set-valued map F from X to Y is defined by

Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)} .

Also, the domain of F is defined by

Dom(F ) := {x ∈ X : F (x) 6= ∅} .

The inverse image of the set M (⊂ Y ) is defined by

F−1(M) := {x : F (x) ∩M 6= ∅} ,

while the core of the set M (⊂ Y ) is defined by

F+1(M) := {x : F (x) ⊂M} .

The concept of an upper semi-continuous is defined as: “A set-valued map F : X ⇒ Y is called
upper semi-continuous at x ∈ Dom(F ) if and only if for any neighbourhood V of F (x), there exists a
δ > 0 such that for all x′ ∈ B◦(x, δ) = {x′ ∈ X : d(x, x′) < δ} , we have F (x′) ⊂ V . It is said to be
upper semi-continuous (usc) if and only if it is upper semi-continuous at any point of Dom(F )” [1].

Similarly, “A set-valued map F : X ⇒ Y is called lower semi-continuous at x ∈ Dom(F ) if and
only if for any y ∈ F (x) and for any sequence of elements xn ∈ Dom(F ) converging to x, there exists
a sequence of elements yn ∈ F (xn) converging to y. It is said to be lower semi-continuous (lsc) if it
is lower semi-continuous at every point of Dom(F )” [1].

3. Rough Semi-continuity of Set-valued Maps

First, we give the definitions of rough usc and rough lsc of a set-valued map.

Definition 3.1 (r − usc). A set-valued map F : X ⇒ Y is said to be r−upper semi-continuous
(r−usc) at x ∈ Dom(F ) if and only if for the closed ball B(V, r) of any neighbourhood V of F (x),
∃δ > 0 such that F (x′) ⊂ B(V, r) for all x′ ∈ B◦(x, δ).

Definition 3.2 (r− lsc). A set-valued map F : X ⇒ Y is called r−lower semi-continuous (r−lsc) at
x ∈ Dom(F ) if and only if for any y ∈ F (x) and any sequence of elements xn convergent to x, there

exists a sequence of elements yn ∈ F (xn) r−convergent to y, i.e., yn
r→ y.

Example 3.1. Let F : R ⇒ R be defined by

F (x) =

{
[−1, 1], x 6= 0

{0} , x = 0.

This set-valued map F (x) is not usc at x = 0, but it is r−usc for some r.

First, we show that the map F is 1−usc at x = 0. Let ε > 0 be given. We have to find a δ > 0 such
that F (x′) ⊂ B ((−ε, ε), 1) for all x′ ∈ B◦(x, δ). Hence we get B ((−ε, ε) , 1) = [−1 − ε, 1 + ε]. Thus
we have F (x′) ⊂ B ((−ε, ε) , 1) for all x′ ∈ (−δ, δ), where we can choose δ as an arbitrary number.

Now we show that the map F is not 1
2−usc at x = 0. We have B

(
(−ε, ε) , 1

2

)
= [− 1

2 − ε,
1
2 + ε].

Take ε = 1
3 . Then we have F (x′) = [−1, 1] 6⊂

[
− 5

6 ,
5
6

]
for each x′ ∈ B◦(0, δ)− {0} and each δ > 0.

Remark 3.1. If the closed ball B(V, r) satisfying F (x) ⊂ B(V, r) was taken instead of the closed ball
B(V, r) of any neighbourhood V such that F (x) ⊂ V , the desired definition of r−usc would not be
obtained. As is shown in the example above, let B(V, r) = B((1− ε, 1 + ε) , 1) = [−ε, 2 + ε] such that
F (x) ⊂ B(V, r) at x = 0, for r = 1. We have F (x′) 6⊂ [−ε, 2 + ε] for x′ 6= 0 ∈ (−δ, δ) .

Example 3.2. Define a map F : R ⇒ R by

F (x) =

{
{0} , x 6= 0

[−1, 1], x = 0.

This map is not lsc at x = 0, but the map F is r−lsc for some r.
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Now we show that this map is 1−lsc at x = 0. That is, we have to find a sequence {yn} such that

yn ∈ F (xn), yn
r→ y for any sequence xn → 0 and y ∈ F (0). Take y ∈ F (0) = [−1, 1] . Let {xn} be a

sequence which converges to 0. If xn = 0 for all n ∈ N, then we choose y = yn ∈ [−1, 1] , hence we get

yn → y, therefore we have yn
r→ y. Otherwise, if xn 6= 0 for all n ∈ N, then we choose yn = 0 ∈ {0}

for all n ∈ N. Hence we get yn
1→ y. Then the map F is 1−lsc at x = 0.

Now we show that the map F is not 1
2−lsc at x = 0. Let V = (1− δ, 1 + δ) such that F (0)∩V 6= ∅

for F (0) = [−1, 1], B(V, 1
2 ) =

[
1
2 − δ,

3
2 + δ

]
. For x′ ∈ (−δ, δ), define F (x′) =

{
{0} , x′ 6= 0

[−1, 1], x′ = 0.

Therefore F (x′) ∩ B(V, 1
2 ) = {0} ∩

[
1
2 − δ,

3
2 + δ

]
= ∅ for x′ 6= 0. Thus the map F is not 1

2−lsc at
x = 0.

Remark 3.2. If the closed ball B(V, r) satisfying F (x)∩B(V, r) 6= ∅ was taken instead of the closed
ball B(V, r) of any neighbourhood V such that F (x) ∩ V 6= ∅, the desired definition of r−lsc would
not be obtained. As is shown in the example above, let B(V, r) = B((2, 3) , 1) = [1, 4] such that
F (x) ∩B(V, r) 6= ∅ at x = 0, for r = 1. We have F (x′) ∩ [1, 4] = ∅ for x′ 6= 0 ∈ (−δ, δ) .

Now we give an r−usc criterion for a set-valued map. For this criteria we inspire the Geletu’s [3]
usc definition. In order words, the following statement (iii) is the rough generalization of Geletu’s
definition.

Proposition 3.1. Let X, Y be metric spaces. For an F : X ⇒ Y, the following statements are
equivalent:

(i) F is r−usc at x, i.e., for the closed ball B(V, r) of any neighbourhood V of F (x), there exists
a neighborhood U of x such that F (x′) ⊂ B(V, r) for every x′ ∈ U .

(ii) Let {xn} be a sequence such that xn → x, and let B(V, r) be the closed ball of any neighbourhood
set V (⊂ Y ) such that F (x) ⊂ V. Then there exists an N ≥ 1 such that F (xn) ⊂ B(V, r) for any n ≥ N.

(iii) For the closed ball B(V, r) of any neighbourhood V of F (x), there exists a δ > 0 such that
F (x′) ⊂ B(V, r) for any x′ ∈ BX(x, δ).

Proof. (i)⇒ (ii) In this case, for the closed ball B(V, r) of any open set V ⊂ Y such that F (x) ⊂ V ,
there exists a neighbourhood U of x such that F (x′) ⊂ B(V, r) for any x′ ∈ U (i.e., U ⊂ F+(B(V, r))).
Since xn → x, for this neighbourhood U of x, there exists an NU ≥ 1 such that xn ∈ U for any n ≥ NU .
Therefore we have F (xn) ⊂ B(V, r) for any n ≥ NU .

(ii) ⇒ (iii) On the contrary, assume that statement (iii) does not hold. Hence there exists a
neighbourhood V of F (x) and an x′ ∈ B◦(x, δ) such that F (x′) 6⊂ B(V, r) for any δ > 0. Let δ = 1

n .

Let us choose xn = x′ ∈ B◦(x, 1
n ) such that F (x′) 6⊂ B(V, r). Construction of this sequence contradicts

statement (ii). Consequently, this contradiction completes the proof.
(iii) ⇒ (i) Suppose that the map F is not r−usc at x. Then there exists an open set V such

that F (x) ⊂ V. In this case, for every neighbourhood U of x, there exists an x′ ∈ U such that
F (x′) 6⊂ B(V, r). We say that there exists a δ > 0 such that B◦(x, δ) ⊂ U. The last inclusion
contradicts the fact that F (x′) ⊂ B(V, r). �

Similarly to Proposition 3.1, we give an r−lsc criterion. The following statement (iii) is the rough
generalization of Geletu’s [3] lsc definition.

Proposition 3.2. Let X, Y be metric spaces. For an F : X ⇒ Y, the following statements are
equivalent:

(i) If {xn} is any sequence such that xn → x and B(V, r) is the closed ball of any neighbourhood
V ⊂ Y with F (x)∩ V 6= ∅, then there exists an N ≥ 1 such that F (xn)∩B(V, r) 6= ∅ for any n ≥ N.

(ii) F is r−lsc at x, i.e., if {xn} is any sequence such that xn → x and y ∈ F (x) is arbitrary, then

there exists a sequence {yn} with yn ∈ F (xn) such that yn
r→ y.

(iii) For the closed ball B(V, r) of any neighbourhood V with F (x) ∩ V 6= ∅, there exists a neigh-
bourhood U of x such that F (x′) ∩B(V, r) 6= ∅ for any x′ ∈ U, i.e., U ⊂ F−1 (B(V, r)) .

Proof. (i) ⇒ (ii) Let xn → x and y ∈ F (x). Moreover, let ε > 0 and B◦(y, ε) ∩ F (x) 6= ∅. By (i),
∃N : F (xn) ∩B(B◦(y, ε), r) 6= ∅, ∀n ≥ N . This implies that there exists yn ∈ F (xn) ∩B(B◦(y, ε), r)
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for any n ≥ N . For n ∈ {1, . . . , N − 1}, choosing yn ∈ F (xn), we have a sequence {yn} such that

yn ∈ F (xn) and yn
r→ y.

(ii) ⇒ (iii) Assume that the map F is not r−lsc at the point x ∈ X. Then there exists a V ⊂ Y
such that F (x) ∩ V 6= ∅, and for any neighbourhood U of x there exists an x′ ∈ U such that
F (x) ∩B(V, r) = ∅. Let U = B◦(x, 1

n ). Hence we have

∀n ∈ N, ∃xn ∈ B◦
(
x,

1

n

)
: F (xn) ∩B(V, r) = ∅.

This implies that if y ∈ F (xn)∩V , then there exist no sequence {yn} such that y ∈ F (xn) and yn
r→ y.

This contradicts statement (ii).
(iii) ⇒ (i) Assume that for the closed ball B(V, r) of any neighbourhood V with F (x) ∩ V 6= ∅,

there exists a neighbourhood U of x such that ∀x′ ∈ U, F (x′) ∩B(V, r) 6= ∅. For any {xn} such that
xn → x, ∃NU > 1 : xn ∈ U (any neighborhood U of x), ∀n ≥ NU . Take NU = N, then we have
F (xn) ∩B(V, r) 6= ∅, ∀n ≥ N . �

Proposition 3.3. Let F : X ⇒ Y and Dom(F ) = X. Then the following statements are equivalent:
(i) F is r−usc.
(ii) For the closed ball B(V, r) of each neighbourhood V ⊂ Y such that F (x) ⊂ V , F+1(B(V, r)) is

an open set in X.

Proof. (i)⇒ (ii) Let x ∈ F+1(B(V, r)) and F be r−usc at x. By definition, for the closed ball B(V, r)
of any neighbourhood V of F (x), there exists a neighbourhood U of x such that F (x′) ⊂ B(V, r),
∀x′ ∈ U, i.e. U ⊂ F+1 (B(V, r)). Since F is r−usc at x ∈ F+(B(V, r)), there exists a neighbourhood
U of x such that U ⊂ F+1(B(V, r)). Consequently, F+1(B(V, r)) is an open set.

(ii)⇒ (i) Assume that for the closed ball B(V, r) of each V ⊂ Y such that F (x) ⊂ V , F+1(B(V, r))
is an open set in X. For x ∈ X with F (x) ⊂ V, x ∈ F+1(B(V, r)). Since F+1(B(V, r)) is an open
set, there exists an U of x such that U ⊂ F+1(B(V, r)), i.e. for x′ ∈ U , F (x′) ⊂ B(V, r). Thus F is
r−usc. �

Remark 3.3. In Proposition 3.3 (ii), if the condition F (x) ⊂ V is removed, then the equivalence
may not hold. In Example 3.1, if we choose V = (1 + ε, 1 − ε), then B(V, 1) = [2 + ε,−ε] and
F+1(B(V, 1)) = {0} is a closed set.

Remark 3.4. It is not true that F is r−usc if and only if F−1(B(V, r)) is a closed set in X for the
closed ball B(V, r) of an open set V ⊂ Y . In Example 3.1, take W = [2, 1 + ε]. Hence B(W, 1) = [3, ε]
and F−1(B(W, 1)) = R−{0} is an open set. Conversely, although the map F is 1−usc, F+1(B(W, 1))
is not a closed set.

Proposition 3.4. Let F : X ⇒ Y and Dom(F ) = X. Then the following statements are equivalent:
(i) F is r−lsc.
(ii) For closed ball B(V, r) of each neigborhood V ⊂ Y with F (x) ∩ V 6= ∅, F−1(B(V, r)) is an

open set in X.

Proof. (i)⇒ (ii) Let x ∈ F−1(B(V, r)). For the closed ball B(V, r) of any neighbourhood V such that
F (x) ∩ V 6= ∅, there exists a neighbourhood U of x such that

F (x′) ∩B(V, r) 6= ∅, ∀x′ ∈ U, i.e., U ⊂ F−1 (B(V, r)) .

Since F is r−lsc at any point x, then there exists a neighbourhood U of x such that U ⊂ F−1(B(V, r)).
At least a neighbourhood of any point of F−1(B(V, r)) is included in F−1(B(V, r)). Consequently,
F−1(B(V, r)) is an open set.

(ii)⇒ (i) Assume that for the closed ball B(V, r) of each V ⊂ Y with F (x)∩ V 6= ∅, F−1(B(V, r))
is an open set in X. For x ∈ F−1(B(V, r)), there exists a neighbourhood U of x such that x ∈
U ⊂ F−1(B(V, r)). For B(V, r) with F (x) ∩ V 6= ∅, there exists a neighbourhood U of x such that
F (x′) ∩B(V, r) 6= ∅, x′ ∈ U . �
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Remark 3.5. (ii) In Proposition 3.4 (ii), if the condition F (x) ∩ V 6= ∅ is removed, then the
equivalence may not hold. In Example 3.2, if we choose V = ( 3

2 , 2), then B(V, 1) =
[

1
2 , 3
]

and

F−1(B(V, 1)) = {0} is a closed set.

Remark 3.6. It is not true that F is r−lsc if and only if for the closed ball B(V, r) of an open set
V ⊂ Y , F−1(B(V, r)) is a closed set in X. In Example 3.2, if we take W = [1

2 , 1], then B(W, 1) =

[− 1
2 , 2] and F+1(B(W, 1)) = R − {0} is an open set. Conversely, although F is 1−lsc, F+1(B(W, 1))

is not a closed set.
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