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DETERMINATION OF THE INFLUENCE OF FLUID WITHDRAWAL FROM

THE TRANSPORT LINE AND CONNECTIONS TO IT ON THE

HYDRODYNAMICS OF FLUID MOTION IN THE RESERVOIR-PIPELINE

SYSTEM

NURLANA A. AGAYEVA

Abstract. A hydrodynamic model of the process of fluid motion in the reservoir-pipeline system

in the case of fluid withdrawal and connections to it was constructed and the related equations were
solved. An analytic expression was obtained to determine the influence of connections and fluid

withdrawal from the transport line on the dynamics of pressure in the bottom hole and reservoir

productivity

1. Introduction

In practice, the cases of connections or fluid withdrawals from the existing oil transportation line
are not uncommon. They show significant influence on the already steady state of a well, get them
out of this state and negatively affect the productivity of the reservoir. To determine this transitional
mode on the well operation, it is necessary to consider the process of fluid motion in the reservoir-
pipeline system. So far, little attention has been paid to this issue, and therefore it has remained little
studied.

So, for example, in [1], the fluid motion in the reservoir-well system was considered, and the influence
of the fluid motion in the transport line on the hydrodynamics of a fluid flow in this system was given
as the influence of pressure on the wellhead determined experimentally.

The influence of connections and fluid withdrawal from a separately taken line on the hydrodynamics
of the fluid flow in this line was studied in [7].

The problem of construction of integral mathematical models of filtration of fluid in reservoirs and
the flow of gas-fluid mixtures in oil gathering pipeline networks for the stationary case of their motion
was considered in [2].

The work [10] is devoted to the physical and mathematical formalization of the development and
software implementation of computational algorithms for modeling non-stationary three-phase flows
in the conjugated reservoir-well– ESP system. Therefore, modeling and study of the influence of the
fluid withdrawal from the transport line and connections to it on the hydrodynamics of fluid motion
in the reservoir-pipeline system have great theoretical and practical importance.

2. Problem Statement and Methods for Solving it

The fluid motion occurs in the conjugated reservoir – pipeline system of the transport line.

2.1. Fluid filtration. First, we consider flat-radial filtration of homogeneous fluid in a uniform reser-
voir (Figure 1).

Here, the filtration equation is of the form [9]

∂2∆P

∂r2
+

1

r

∂∆P

∂r
=

1

χ

∂∆P

∂t
, rc ≤ r ≤ Rk; t > 0, (2.1)

where ∆P = Pk − P ; χ = k
µβ∗ .
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The initial and boundary conditions

∆P |r=Rk = 0, t > 0, (2.2)

∆P |r=rc = Pk − Pc(t), t > 0. (2.3)

The solution of equation (2.1) for the boundary condition has the form [9]

∆P =
ln
(
Rk
r

)
ln
(
Rk
rc

)∆Pcy − π∆Pc1

∞∑
ν=1

J0

(
xν

Rk
rc

)
J0 (xν)

J2
0

(
xν

Rk
rc

)
− J2

0 (xν)

[
J0

(
xν

r

rc

)
Y0

(
xν
Rk
rc

)

−Y0

(
xν

r

rc

)
J0

(
xν
Rk
rc

)]
exp

(
− x2

ν χ t

r2
c

)
. (2.4)

∆Pc1 = Pc(0)− Pc1 , ∆Pcy = Pk − Pc(0), (2.5)

where Pc1 is the fixed pressure in the bottom hole after its change.
Then from formula (2.5), allowing for the expression (2.4), we get

∆P0 =
ln
(
Rk
r

)
ln
(
Rk
rc

)∆Pcy
∆Pc1

− π
∞∑
ν=1

A(xν)U
(
xν

r

rc

)
exp

(
−x

2
ν χ t

r2
c

)
. (2.6)

∆P0 =
∆P

∆Pc1
,

where xν are the roots of the transcendental equation

Y0 (xν) J0

(
xν
Rk
rc

)
− J0 (xν)Y0

(
xν
Rk
rc

)
= 0,

A
(
xν
Rk
rc

)
=

J0

(
xν

Rk
rc

)
J0 (xν)

J2
0

(
xν

Rk
rc

)
− J2

0 (xν)
, (2.7)

U
(
xν

r

rc

)
=
[
J0

(
xν

r

rc

)
Y0

(
xν
Rk
rc

)
− Y0

(
xν

r

rc

)
J0

(
xν
Rk
rc

)]
. (2.8)

The solution of equation (2.1) under the boundary condition (2.3) may be implemented by the
method of the Duhamel integral [11]

∆P (r, t) = f(0)P0(t) +

t∫
0

ḟ(τ)∆P0[r; (t− τ)]dτ, (2.9)

f(t) = Pk − Pc(t). (2.10)

Then from expression (2.9), allowing for formulas (2.6) and (2.10), we get

∆P (r, t) = (Pk − Pc(0))

(
ln
(
Rk
r

)
ln
(
Rk
rc

)∆Pcy
∆Pc1

− π
∞∑
ν=1

A(xν)U
(
xν

r

rc

)
exp

(
− x2

ν χ t

r2
c

))

−
t∫

0

Ṗc(τ)π

∞∑
ν=1

(
ln
(
Rk
r

)
ln
(
Rk
rc

)∆Pcy
∆Pc1

− π
∞∑
ν=1

A(xν)U
(
xν

r

rc

))
exp

(
− x2

ν χ( t− τ)

r2
c

)
dτ. (2.11)

The fluid rate at the moment t through the lateral surface of the well of radius rc is determined by
the formula

Q|r=rc = −2πrch
k

µ

∂∆P

∂r

∣∣∣∣
r=rc

. (2.12)
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Substituting expression (2.11) in formula (2.12), we get

Q|r=rc = 2πh
k

µ
(Pk − Pc(0))

(
1

ln
(
Rk
rc

)∆Pcy
∆Pc1

− 2B(xν) exp (−bνt)
)

−2πh
k

µ

t∫
0

Ṗc(τ)

(
1

ln
(
Rk
rc

)∆Pcy
∆Pc1

− 2B(xν) exp (−bνt)
)
dτ, (2.13)

where

B (xν) =
J2

0

(
xν

Rk
rc

)
J2

0 (xν)− J2
0

(
xν

Rk
rc

) , bν =
(x2

ν χ

r2
c

)
. (2.14)

Applying the Laplace transform, with regard to the convolution theorem, from expression (2.13),
we get

Q̄|r=rc = 2πh
k

µ
(Pk − Pc(0))

1

ln
(
Rk
rc

)∆Pcy
∆Pc1

1

s
− 4πh

k

µ
B(xν)

(Pk − Pc(0))

s+ bν

−2πh
k

µ

1

ln
(
Rk
rc

)∆Pcy
∆Pc1

(
P̄c −

Pc(0)

s

)
+ 4πh

k

µ
B(xν)

( sP̄c
s+ bν

− Pc(0)

s+ bν

)
. (2.15)

2.2. The motion of fluid through a lifting pipes column. We now consider the fluid motion in
the lifting pipes column. Accepting fluid as capillary compressible homogeneous for the equation of
fluid motion in the pipe and the continuity equation, we have [4, 6, 8]

−∂P
∂x

=
∂Q1

∂t
+ 2aQ1,

− 1

c2
∂P

∂t
=
∂Q1

∂x
,

(2.16)

where c2 = ∂P
∂ρ ; c is a speed of sound in the fluid, Q1 = ρu is mass fluid flow rate per unit area of pipe,

ρ is fluid density, u is fluid flow rate averaged in the cross-section of the pipe, a is a drag coefficient
per unit area of its cross-section.

Differentiating both sides of the first equation at time t and the second equation with respect to
the equation with respect to x and subtracting them term by term, we get

∂2Q1

∂t2
= c2

∂2Q1

∂x2
− 2a

∂Q1

∂t
. (2.17)

Expression (2.17) can be represented as

∂2u

∂t2
= c2

∂2u

∂x2
− 2a

∂u

∂t
. (2.18)

We consider the fluid motion in the pipe as the sum of two motions: the transportable motion of a fluid
column ue and the relative motion of the cross sections of a fluid column ur from its compressibility

u = ue + ur, (2.19)

Substituting expressions (2.19) in equation (2.18), by virtue of its linearity, we get

d2ue
dt2

+ 2a
due
dt

=
Ṗc − Ṗy

lρ
, (2.20)

∂2ur
∂t2

= c2
∂2ur
∂x2

− 2a
∂ur
∂t

+
Ṗy − Ṗc

lρ
. (2.21)
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The initial and boundary conditions are represented as follows:

ue|t=0 =
G0

f
, 0 < x < l, (2.22)

due
dt

∣∣∣
t=0

= 0, 0 < x < l, (2.23)

ur|t=0 = 0, 0 < x < l, (2.24)

∂ur
∂t

∣∣∣
t=0

= 0, 0 < x < l, (2.25)

∂ur
∂x

∣∣∣
x=l

= 0, t > 0, (2.26)

ur|x=0 = 0, t > 0, (2.27)

fu|x=0 = −2πk

µ
rch

∂∆P

∂r
|r=rc , t > 0. (2.28)

Applying the Laplace transform and taking into account convolution theorems, allowing for the
initial conditions (2.22) and (2.23), from equation (2.20), we get

ue (t) =
G0

f
+

1

lρ

t∫
0

Pc (τ) e−2a(t−τ)dτ − 1

lρ

t∫
0

Py (τ) e−2a(t−τ)dτ

+
Py (0)− Pc1 (0)

lρ

( 1

2a
− 1

2a
e−2at

)
. (2.29)

Allowing for the initial and boundary conditions (2.24) and (2.27), we look for a solution of equation
(2.21) in the form

ur =

n∑
i=1

ϕi (t)
(

1− cos
iπx

l

)
, (2.30)

where ϕi (t) is an unknown function depending on time t and l is the length of the pipe. Substituting
expression (2.30) in equation (2.21), multiplying both sides of the obtained expression by

(
1− cos iπxl

)
and integrating it from 0 to l, we get the following equation:

ϕ̈i (t) + 2aϕ̇i (t) +
c2π2i2

3l2
ϕi (t)− 2

3ρl

·
P y (t) +

2

3ρl

·
P c (t) = 0. (2.31)

Applying the Laplace transform, convolution and conversion theorems with regard to the initial con-
ditions (2.24) and (2.25), from equation (2.31), we get

ϕi = − 2a11

3lρb11

[ t∫
0

Py (τ) e−a11(t−τ) sin(b11(t− τ))dτ

−
t∫

0

Pc (τ) e−a11(t−τ) sin(b11(t− τ))dτ

]
+

2

3lρ

[ t∫
0

Py (τ) e−a11(t−τ) cos(b11(t− τ))dτ

−
t∫

0

Pc (τ) e−a11(t−τ) cos(b11(t− τ))dτ

]
+

2(Pc (0)− Py (0))

3lρ

(e−a11t sin(b11t)

b11

)
, (2.32)

where a11 and b11 are real and imaginary parts of the root of the equation

s2 + 2as+
c2π2i2

l2
= 0. (2.33)
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Substituting expression (2.32) in formula (2.30), we get

ur =

n∑
i=1

(
− 2a11

3lρb11

[ t∫
0

Py (τ) e−a11(t−τ) sin(b11(t− τ))dτ

−
t∫

0

Pc (τ) e−a11(t−τ) sin(b11(t− τ))dτ

]
+

2

3lρ

[ t∫
0

Py (τ) e−a11(t−τ) cos(b11(t− τ))dτ

−
t∫

0

Pc (τ) e−a11(t−τ) cos(b11(t− τ))dτ

]

+
2(Pc (0)− Py (0))

3lρ

(e−a11t sin(b11t)

b11

))(
1− cos

iπx

l

)
. (2.34)

The fluid flow rate

Q1 = fu = f(ue + ur). (2.35)

Substituting expressions (2.29) and (2.34) in formula (2.35), we get the fluid flow rate in the vertical
pipe,

Q1 = f

(
G0

f
+

1

lρ

t∫
0

Pc (τ) e−2a(t−τ)dτ − 1

lρ

t∫
0

Py (τ) e−2a(t−τ)dτ

+
Py (0)− Pc (0)

lρ

( 1

2a
− 1

2a
e−2at

)
+

n∑
i=1

(
− 2a11

3lρb11

[ t∫
0

Py (τ) e−a11(t−τ) sin(b11(t− τ))dτ −
t∫

0

Pc (τ) e−a11(t−τ) sin(b11(t− τ))dτ

]

+
2

3lρ

[ t∫
0

Py (τ) e−a11(t−τ) cos(b11(t− τ))dτ −
t∫

0

Pc (τ) e−a11(t−τ) cos(b11(t− τ))dτ

]

+
2(Pc (0)− Py (0))

3lρ

(e−a11t sin(b11t)

b11

))(
1− cos

iπx

l

))
. (2.36)

Applying the Laplace transform, from expression (2.36), we get

Q1 = f

[
G0

fs
+

1

ρl

P c
s+ 2a

− 1

ρl

P y
s+ 2a

+
1

2al

(Py(0)− Pc(0))

ρs
− 1

2al

(Py(0)− Pc(0))

ρ(s+ 2a)

+

n∑
i=1

(
1− cos

iπx

l

)(−2a11

3lρ

P y
(s+ a11)2 + b211

+
2

3lρ

P y(s+ a11)

(s+ a11)2 + b211

− 2

3lρ

P c(s+ a11)

(s+ a11)2 + b211

+
2a11

3lρ

P c
(s+ a11)2 + b211

+
1

3lρ

(Pc(0)− Py (0))

(s+ a11)2 + b211

)]
. (2.37)

Based on the continuity condition (2.28),

Q|r=rc = Q1|x=0 . (2.38)

Substituting expressions (2.15) and (2.37) in formula (2.38) with regard to only one term of the
series in the first approximation, we get the following Volterra type integral equation from which we
determine Pc(t),

2πh
k

µ
(Pk − Pc(0))

1

ln
(
Rk
rc

)∆Pcy
∆Pc1

1

s
− 4πh

k

µ
B(xν)

(Pk − Pc(0))

s+ bν
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−2πh
k

µ

1

ln
(
Rk
rc

)∆Pcy
∆Pc1

(
P̄c −

Pc(0)

s

)
+ 4πh

k

µ
B(xν)

( sP̄c
s+ bν

− Pc(0)

s+ bν

)

= f

[
G0

fs
+

1

ρl

P c
s+ 2a

− 1

ρl

P y
s+ 2a

+
1

2al

(Py(0)− Pc (0))

ρs
−

− 1

2al

(Py(0)− Pc (0))

ρ(s+ 2a)
+

n∑
i=1

(
1− cos

iπx

l

)(−2a11

3lρ

P y
(s+ a11)2 + b211

+
2

3lρ

P y(s+ a11)

(s+ a11)2 + b211

− 2

3lρ

P c(s+ a11)

(s+ a11)2 + b211

+
2a11

3lρ

P c
(s+ a11)2 + b211

+
1

3lρ

(Pc(0)− Py (0))

(s+ a11)2 + b211

)]
. (2.39)

Applying the Laplace transform and taking into account the conversion and convolution theorems
[3, 5], from equation (2.39), we have

Pc(t) =
1

A3η1η2(η1 − η2)

(
ρlG0(2bνa(η1 − η2) + –eη1tη2(η1 + bν)(η1 + 2a)

−eη2tη1(η2 + bν)(η2 + 2a))
)
− f

A3(η1 − η2)

( t∫
0

Py(τ)eη1(t−τ)dτ(η1 + bν)

−
t∫

0

Py(τ)eη2(t−τ)dτ)(η2 + bν

)
+
fPy(0)

2aA3

1

η1η2(η1 − η2)
(2bνa(η1 − η2) + eη1tη2(η1 + bν)(η1 + 2a)

−eη2tη1(η2 + bν)(η2 + 2a))− fPc(0)

2aA3

1

η1η2(η1 − η2)
(2bνa(η1 − η2) + –eη1tη2(η1 + bν)(η1 + 2a)

−eη2tη1(η2 + bν)(η2 + 2a))− fPy(0)

2aA3

1

(η1 − η2)
(−eη1t(η1 + bν)− eη2t(η2 + bν))

+
fPc(0)

2aA3

1

(η1 − η2)
(−eη1t(η1 + bν)− eη2t(η2 + bν))

−A2ρlPk
A3

1

η1η2(η1 − η2)
(2bνa(η1 − η2) + eη1tη2(η1 + bν)(η1 + 2a)

−eη2tη1(η2 + bν)(η2 + 2a)) +
A1ρlPk
A3

1

(η1 − η2)
(eη1t(η1 + 2a)− eη2t(η2 + 2a)), (2.40)

where A1 = 4πkhB(xν)
µ , A2 = 2πkh

µ ln
(
Rk
rc

) ∆Pcy
∆Pc1

, A3 = ρl(A1 −A2),

A4 = ρl(2aA1 − 2aA2 −A2bν)− f, A5 = 2aA2ρlbν + bνf,

η1, η2 are the roots of the equation s2 + A4

A3
s+ A5

A3
= 0.

2.3. The fluid motion in a trunk pipeline. Let at some moment of time, a pipeline with flow G
be connected to the trunk oil line and fluid with flow G1 be withdrawn. Then the fluid motion in the
trunk pipeline has the form

∂2P

∂t2
= c2

∂2P

∂x2
− 2a1

∂P

∂t
− 2a1c

2G

f1
δ(x1 − l2) +

2a1c
2G1

f1
δ(x1 − l3), (2.41)

where G and G1 are the mass flow rates in the inlet and outlet pipes, respectively, l2, l3 are the
distances from the wellhead to the inlet and outlet pipes to the trunk line.

The initial and boundary conditions

∂P

∂t

∣∣∣
t=0

= −c2 G
f1
δ (x1 − l2) +

c2G1

f1
δ(x1 − l3), 0 ≤ x ≤ l, (2.42)

P (x, 0)|t=0 = Py(0)− 2a1Q20x1, 0 ≤ x ≤ l, (2.43)

P |x1=0 = Py(t), t > 0, (2.44)
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P |x1=l1 = P2 = const, t > 0. (2.45)

Allowing for conditions (2.44) and (2.45), we look for a solution of equation (2.41) in the form:

P = Py(t)− Py(t)− P2

l1
x+

n∑
i=1

ϕ1i (t)
(

sin
iπx1

l1

)
, (2.46)

where ϕ1i (t) is an unknown function depending on time t and l1 is the length of the pipeline.
Substituting expression (2.46) in formula (2.41) with regard to the initial conditions (2.42), (2.43),

in the case P2 = const, we get

Q2|x1=0 = Q20e
−2a1t +

1

l1

t∫
0

Py (τ) exp [−2a1 (t− τ)] dτ

−
n∑
i=1

( iπ
l1

) t∫
0

ϕ1i (τ) exp [−2a1 (t− τ)] dτ − P2

2a1l1
(1− exp (−2a1t)) , (2.47)

where

ϕ1i =
ϕ2(0)

ξ1 − ξ2
(exp(ξ1t)(2a1 + ξ1)− exp(ξ2t)(2a1 + ξ2)) + ϕ̇2(0)

exp(ξ1t)− exp(ξ2t)

ξ1 − ξ2

−
n∑
i=1

2

πi

(
Py(t) +

ξ1(2a1 + ξ1)
∫ t

0
Py(τ) exp(ξ1(t− τ))dτ

ξ1 − ξ2

−
ξ2(2a1 + ξ2)

∫ t
0
Py(τ) exp(ξ2(t− τ))dτ

ξ1 − ξ2

)
+

n∑
i=1

2Py(0)

πi(ξ1 − ξ2)
(exp(ξ1t)(2a1 + ξ1)

− exp(ξ2t)(2a1 + ξ2)) +

n∑
i=1

2Ṗy(0)

πi(ξ1 − ξ2)
(exp(ξ1t)− exp(ξ2t))

4a1c
2

l1

[G1

f1
sin
(πl3i
l1

)
− G

f1
sin
(πl2i
l1

)]ξ2(exp(ξ1t)− 1)− ξ1(exp(ξ2t)− 1)

ξ1ξ2(ξ1 − ξ2)
, (2.48)

ξ1 and ξ2 are the roots of the equation s2 + 2a1s+ c2π2i2

l21
= 0.

From the continuity condition at the wellhead, allowing for expressions (2.36) and (2.47), we get

f1

(
Q20e

−2a1t +
1

l1

t∫
0

Py (τ) exp [−2a1 (t− τ)] dτ−
n∑
i=1

( iπ
l1

) t∫
0

ϕ1i (τ) exp [−2a1 (t− τ)] dτ

− P2

2a1l1
(1− exp (−2a1t))

)
= f

(
G0

f
+

1

lρ

t∫
0

Pc (τ)e−2a(t−τ)dτ

− 1

lρ

t∫
0

Py (τ)e−2a(t−τ)dτ +
Py (0)− Pc (0)

lρ

( 1

2a
− 1

2a
e−2at

)

+

n∑
i=1

2

(
− 2a11

3lρb11

[ t∫
0

Py (τ)e−a11(t−τ) sin(b11(t− τ))dτ −
t∫

0

Pc (τ)e−a11(t−τ) sin(b11(t− τ))dτ

]

+
2

3lρ

[ t∫
0

Py (τ)e−a11(t−τ) cos(b11(t− τ))dτ −
t∫

0

Pc (τ)e−a11(t−τ) cos(b11(t− τ))dτ

]

+
2(Pc (0)− Py (0))

3lρ

(e−a11t sin(b11t)

b11

))
. (2.49)
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Applying the Laplace transform, from the expression (2.49), we get

f

[
G0

fs
+

1

ρl

P c
s+ 2a

− 1

ρl

P y
s+ 2a

− 1

2al

(Py(0)− Pc (0))

ρ(s+ 2a)

+
1

2al

(Py(0)− Pc (0))
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− 1

2al
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ρs
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2
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3lρb11

P y
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+
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3lρ

P y(s+ a11)

(s+ a11)2 + b211

− 2

3lρ
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(s+ a11)2 + b211

+
2a11

3lρ

P c
(s+ a11)2 + b211

+
2(Pc(0)− Pc (0))

3lρ

1

(s+ a11)2 + b211

)]
= f1

(
Q20

s+ 2a1
+

P y
l1(s+ 2a1)

−
n∑
i=1

( iπ
l1

) ϕ1i

(s+ 2a1)
− P2

l1s(s+ 2a1)

)
. (2.50)

Applying the Laplace transform and taking into account convolution and conversion theorems, from
expression (2.50), with regard to (2.40), we get the numerical values of the system parameters:

c = c1 = 1000m · s−1; µ = 10−3Pa · s; h = 5m; k = 10−13m2; ρ = 860 kq ·m−3;

l = 2000m; l1 = 20000m; Pc(0) = 24 · 106Pa; P0 = 106Pa; Py(0) = 2 · 106Pa; Pk(0) = 27 · 106Pa;

Patm = 105Pa; Rk = 100m; π = 3, 14; a = 10−3s−1; a1 = 10−3s−1; m = 0.2;

d = 6 · 10−2m; d1 = 20 · 10−2m; rc = 7.5 · 10−2m; B(xν) = 0.114.

For G1 = 0, G 6= 0,

Py = 2.43926 · 106 + 24609.16665 exp(−0.000205t)− 2.08532 · 106 exp(−0.06458t)

+ 2.99813 · 106 exp(−0.2271t) + 9.87432 · 105 exp(−0.8846t)

−2.14414 · 106 exp(−0.1065t) cos(1.8448t)

+1.16565 · 106 exp(−0.1065t) sin(1.8448t)− 13727.9 exp(−0.001t) cos(1.5699t)

+60799.101 exp(−0.001t) sin(1.5699t). (2.51)

For G = 0, G1 6= 0,

Py = 8.87766 · 105 + 7738.2871 exp(−0.000205t)

+4.61163 · 105 exp(−0.06479t) + 2.28325 · 105 exp(−0.70704t)

+41225.044 exp(−0.15729t) cos(1.93743t)+

+3.74652 · 105 exp(−0.15729t) sin(1.93743t)

+4.53997 · 105 exp(−0.00322t) cos(0.11441t)

+1.51945 · 106 exp(−0.00322t) sin(0.11441t). (2.52)

Now, from expression (2.40), with regard to formulas (2.51), (2.52) and the above numerical values
of the parameters, we get an expression to determine the change of pressure Pc(t) depending on the
time t at the bottom hole.

When G1 = 0, G 6= 0,

Pc = 2.40329 · 107 + 5.96764 · 109 exp(−0.000205 t)

+2.22954 · 106 exp(−0.06458 t)− 3.85275 · 106 exp(−0.2271 t)

−5.96761 · 109 exp(−0.000205 t)− 6.93203 · 106 exp(−0.8846 t)

+40387.8203 exp(−0.1065 t) cos(1.8448 t)

−1.22229 · 106 exp(−0.1065 t) sin(1.8448 t) + 32133.57 exp(−0.001 t) cos(1.5699 t)
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−12056.345 exp(−0.001 t) sin(1.5699 t) + 1.01194 · 107 exp(−1.0319 t). (2.53)

When G = 0, G1 6= 0,

Pc = 2.28836 · 107 + 4.67149 · 105 exp(−0.006479 t)

+5.99364 · 106 exp(−0.70704 t)− 22957.82302 exp(−0.00020507 t)

−5.41526 · 106 exp(−0.68715 t) + 39515.63194 exp(−0.00020516 t)

+1.56454 · 106 exp(−0.00323 t) sin(0.114408 t)

+1.95962 · 105 exp(−0.00323 t) cos(0.114408 t)

−1.20315 · 105 exp(−0.15729 t) cos(1.93743 t)

+47574.81815 exp(−0.15729 t) cos(1.93743 t). (2.54)

Numerical calculations were carried out by formulas (2.51), (2.52) and (2.53), (2.54).
The results of numerical calculations were represented in Figures 2, 3, 4 and 5. As can be seen

from Figure 2, when connected to the trunk pipeline, at the initial stage of the wellhead pressure
pulsates with large amplitude, and then after certain time it damps and stabilizes. The same picture
is observed for pressure at the bottom hole with the difference that pressure stabilizes more rapidly.
These changes are reflected on the well production rate.

The results of calculation on determining the wellhead Py(t) and bottom hole pressure Pc(t) in the
case of fluid withdrawal from the trunk pipe are represented in Figures 4 and 5. As can be seen in
Figures 4 and 5, when withdrawing fluid from the transport line, wellhead and bottom hole pressure
also pulsate around the stationary state with damping amplitude. First, they become greater than
stationary pressure, then after certain time, they damp and stabilize. This takes out the wells from
the stationary state and negatively affects its productivity.

3. Conclusion

A hydrodynamic model of the process of non-stationary motion of fluid in a reservoir-pipeline
system under connections and withdrawal of fluid from the acting transport line was structured. The
reservoir per unit time were obtained. Numerical calculations were carried out for practical values of
the system parameters. Analytical expressions to determine the dynamics of pressures at the wellhead
and the bottom hole and also the fluid flow
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Figure 1.

Figure 2.

Denotation

P is pressure at any point of the reservoir, Pa; Pk is pressure on reservoir’s contour, Pa; Pc is
pressure at the bottom hole , Pa; ϕi, ϕ1i are unknown time-dependent functions; f is the area of the
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Figure 3.

Figure 4.

Figure 5.

cross-section of the lifting column, m2; f1 is the area of the cross-section of the transport pipeline ,
m2; h is reservoir’s power , m; a, a1 is drag coefficient, s−1; P0 is initial pressure in the well, Pa; Pc1
is the final value of the pressure at the bottom hole after its change Pc(0), Pa, r

Rk
is non-dimensional
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quantity, Rk is the radius of the reservoir, m; r is a coordinate, m; l is the depth of descent of lifting
pipes, m; l1 is the length of the transport pipeline, m; rc is the radius of well, m; τ, t is time , A;
χ is piezoconductivity coefficient, m2/s; µ is dynamic viscosity coefficient of fluid, mPa · s; β∗ is
compressibility coefficient, MP0−1; k is effective permeability of the reservoir, m2, J0 and J1, Y0 and
Y1 are the first and second kind Bessel functions of zero and the first order; ρ is fluid density, kq/m3;
Uν ,xν are denotation, ν = 1, 2, 3, . . . , n are natural numbers; ωi is vibration frequency, s−1; x, x1 are
coordinates; B(xv), b(xv), A1, . . . , A5, s, are denotation; indices: ∗ is upper index, 0 is lower index, k
is a contour; A is a well; 0 and 1 are zero and the first orders.

Figure inscriptions

Figure 1 – Calculation scheme.
Figure 2 – Dynamics of change of pressure Py(t) at the wellhead (G1 = 0, G 6= 0).
Figure 3 – Dynamics of change of pressure Pc(t) at the bottom hole (G1 = 0, G 6= 0).
Figure 4 – Dynamics of change of pressure Py(t) at the wellhead (G = 0, G1 6= 0).
Figure 5 – Dynamics of change of pressure Pc(t) at the bottom hole (G = 0, G1 6= 0).
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