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THE CONTACT PROBLEM FOR PIECEWISE HOMOGENEOUS

VISCOELASTIC PLATE REINFORCED WITH A FINITE RIGID PATCH

NUGZAR SHAVLAKADZE1,2 AND TSIALA JAMASPISHVILI2

Abstract. The contact problem of the theory of viscoelasticity for a piecewise-homogeneous plate
reinforced with a finite rigid patch is considered. The patch meets the interface at a right angle

and is loaded with the normal forces. The problem is reduced to a singular integral equation of

first kind containing a fixed singularity with respect to a characteristic function of normal contact
stresses. Using the methods of the theory of analytic functions, the Riemann problem is obtained,

the solution of this problem is given explicitly. The normal contact stresses along the contact line
are determined and the behavior of the contact stresses in the neighborhood of singular points is

established.

Introduction

Exact and approximate solutions of static contact problems for different domains reinforced with
elastic thin inclusions, stringers and patches of variable rigidity were studied earlier, and the behavior
of contact stresses at the ends of the contact line have been investigated in [1–3, 11, 14–18]. Such
problems as the first fundamental problem for a piecewise-homogeneous plane, when a crack of finite
length arrives at the interface of two bodies at the right angle [10], the similar problem for a piecewise-
homogeneous plane lying under the action of symmetrical normal stresses at the crack sides [4, 19],
as well as the contact problems for a piecewise-homogeneous planes with a semi-infinite and finite
inclusion [5, 6], have also been solved.

1. Statement of the Problem and Reduction to the Integral Equation

Suppose the body holds a complex plane z = x+iy consisting of two dissimilar isotropic half-planes
with viscoelastic property and reinforced with a rigid finite patch, perpendicular to the interface of
two materials. The patch is loaded by a vertical force Pδ(x − a)H(t − t0) and the plate is free from
external loads. (δ(x) is the Dirac function and H(t) is the unit Heaviside function, a ∈ (0, 1)). The
half-planes S1 = {z|Re z > 0, z /∈ [0, 1)} and S2 = {z|Re z < 0} are connected along the Oy-axis.
The contact conditions along the interface have the form

σ(1)
x = σ(2)

x τ (1)
xy = τ (2)

xy ,
∂u1

∂y
=
∂u2

∂y

∂v1

∂y
=
∂v2

∂y
. (1.1)

On the boundary of interaction of rigid patch and half-plane S1, the conditions

σ(1)+
y − σ(1)−

y = p(x, t), τ (1)+
xy − τ (1)−

xy = 0,

u+
1 − u

−
1 = 0, v+

1 = v−1 ≡ v(x, t),
(1.2)

dv0(x, t)

dx
=
dv(x, t)

dx
,

dv0(x, t)

dx
= 0, (1.3)

1∫
0

[p(x, t)− Pδ(x− a)H(t− t0)]dx = 0 (1.4)
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are valid, where (1.2) represents the jumps of the stress and displacement components on the contact
line, (1.3) are the rigid contact condition and the constancy of normal displacements v0(x, t) of the
patch points, (1.4) shows the equilibrium condition of the patch.

In the theory of viscoelatisity, we have the Kolosov–Muskhelishvili type formulas [8, 9]:

σ(k)
y − iτ (k)

xy = Φk (z, t) + Φk (z, t) + zΦ′k (z, t) + Ψk (z, t), (1.5)

(I − L)
[
ækΦk (z, t)− Φk (z, t)− zΦ′k (z, t)−Ψk (z, t)

]
= 2µk (u′k + iv′k) , (1.6)

where (I − L)gk (t) = gk (t)−
t∫
t0

Ek
∂
∂τCk (t, τ) gk (τ) dτ , 2µk = Ek

1+νk
and

æk =


3− 4νk

3− νk
1 + νk

k = 1, 2.

Ck(t, τ) and Ek are the creep measure and Jung’s module of the material, respectively. Besides, the
plate Poisson’s coefficients for elastic-instant deformation νk(t) and creep deformation νk(t, τ) are the
same and constant: νk(t) = νk(t, τ) = νk = const. From relations (1.5), (1.6), we obtain the following
Riemann boundary value problems:

Φ+
1 (x, t)− Φ−1 (x, t) =

1

æ1 + 1
p (x, t) ,

Ψ+
1 (x, t)−Ψ1

− (x, t) =
æ1 − 1

æ1 + 1
p(x, t)− 1

æ1 + 1
xp′(x, t), 0 < x < 1.

The general solutions of these problems will be represented as follows [12]:

Φ1 (z, t) =
1

2π(æ1 + 1)i

1∫
0

p(x, t)dx

x− z
+W1 (z, t) ≡ A1(z, t) +W1(z, t),

Ψ1 (z, t) =
æ1 − 1

2π(æ1 + 1)i

1∫
0

p(x, t)dx

x− z
− 1

2π(æ1 + 1)i

1∫
0

xp′(x, t)dx

x− z

+Q1 (z, t) ≡ B1(z, t) +Q1(z, t), (1.7)

where W1 (z, t) and Q1 (z, t) are unknown analytic functions in the half-plane S1, which will be defined
from condition (1.1) on the interface. From relations (1.5)–(1.7), the conditions (1.1) result in

Re
[
2Φ1 (iy, t) + ω1 (iy, t)

]
= Re

[
2Φ2 (iy, t) + ω2 (iy, t)

]
,

Im
[
ω1 (iy, t)

]
= Im

[
ω2 (iy, t)

]
,

(1 + ν1) Re
[
æ1Φ1 (iy, t)− Φ1 (iy, t)− ω1 (iy, t)

]
= (1 + ν2) Re

[
æ2Φ2 (iy, t)− Φ2 (iy, t)− ω2 (iy, t)

]
,

(1 + ν1) Im
[
æ1Φ1 (iy, t)− Φ1 (iy, t)− ω1 (iy, t)

]
= (1 + ν2) Im

[
æ2Φ2 (iy, t)− Φ2 (iy, t)− ω2 (iy, t)

]
,

ωk (z, t) = zΦ′k (z, t)−Ψk (z, t) = ηk (z, t) + Ωk (z, t) ,

where

Ω1 (z, t) = zW ′1 (z, t)−Q1 (z, t) , Ω2 (z, t) = zΦ′2 (z, t)−Ψ2 (z, t)

η1 (z, t) = zA′1 (z, t)−B1 (z, t) , η2(z, t) = 0.

Using the methods of the theory of analytic functions (particularly, using the Cauchy theorem),
we obtain the following system of linear algebraic equations (with respect to the functions W1 (z, t),
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Φ2 (z, t) , Ω1 (z, t), Ω2 (z, t)):

2W1 (z, t) + Ω1 (z, t)− 2Φ2 (−z, t)− Ω2 (−z, t) = −η1 (−z, t)− 2A1 (−z, t) ,
Ω1 (z, t) + Ω2 (−z, t) = η1 (−z, t) ,

æ1 − 1

µ1
W1 (z, t)− 1

µ1
Ω1 (z, t)− æ2 − 1

µ2
Φ2 (−z, t) +

1

µ2
Ω2 (−z, t)

=
1 + æ1

µ1
A1 (−z, t) +

1

µ1
η1 (−z, t) ,

æ1 + 1

µ1
W1 (z, t) +

1

µ1
Ω1 (z, t) +

æ2 + 1

µ2
Φ2 (−z, t) +

1

µ2
Ω2 (−z, t)

=
æ1 + 1

µ1
A1 (−z, t) +

1

µ1
η1 (−z, t) . (1.8)

The compatibility of system (1.8) is approved, that is, the corresponding determinant is not zero,

∆ = −4 (æ2µ1+µ2)(æ1µ2+µ1)
µ2
1µ

2
2

6= 0, and the solution of this system is represented in the form

W1(z, t) = −e1t1

1∫
0

xp′(x, t)dx

x+ z
+ e1t1

1∫
0

xp(x, t)dx

(x+ z)
2 + e1t1(æ1 − 1)

1∫
0

p(x, t)dx

x+ z
,

Φ2(z, t) = h3t1

1∫
0

p(x, t)dx

x− z
,

Q1(z, t) = −e1t1

1∫
0

x2p′(x, t)dx

(x+ z)
2 +m1t1

1∫
0

p(x, t)dx

x+ z
+ e1t1(æ1 − 1)

1∫
0

xp(x, t)dx

(x+ z)
2

+e1t1z

1∫
0

p(x, t)dx

(x+ z)
2 + 2e1t1z

1∫
0

xp(x, t)dx

(x+ z)
3 ,

Ψ2(z, t) = (h3 − h4)t1z

1∫
0

p(x, t)dx

(x− z)2 − h4t1

1∫
0

xp′(x, t)dx

x− z
+ (h4(æ1 − 1) +m1)t1

1∫
0

p(x, t)dx

x− z
,

where t1 = 1
2πi(æ1+1) , e1 = µ2−µ1

æ1µ2+µ1
, e2 = µ2−µ1

æ2µ1+µ2
,

m1 = (æ1 + 1)µ2

[ 1

æ2µ1 + µ2
− 1

æ1µ2 + µ1

]
= h2 − h4,

m2 = (æ2 + 1)µ1

[ 1

æ2µ1 + µ2
− 1

æ1µ2 + µ1

]
= h3 − h1

h1 =
(æ2 + 1)µ1

æ1µ2 + µ1
, h2 =

(æ1 + 1)µ2

æ2µ1 + µ2
h3 =

(æ2 + 1)µ1

æ2µ1 + µ2
, h4 =

(æ1 + 1)µ2

æ1µ2 + µ1
.

Therefore, based on the conditions (1.3), (1.4) and relations (1.8), we obtain the following singular
integral equation with a fixed singularity:

1∫
0

p(x, t)dx

x− τ
+ e1æ

1∫
0

p(x, t)dx

x+ τ
= 0, 0 < τ < 1, (1.9)

by the condition
1∫

0

[p(x, t)− Pδ(x− a)H(t− t0)]dx = 0. (1.10)
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2. The solution of problem (1.9), (1.10)

The solution of problem (1.9), (1.10) is sought in the class of functions p ∈ H∗(0, 1) [12].

Introducing the notation ϕ(x, t) =
x∫
0

p(y, t)dy, problem (1.9), (1.10) takes the form

1∫
0

ϕ′(x, t)dx

x− τ
+ e1æ1

1∫
0

ϕ′(x, t)dx

x+ τ
= 0, 0 < τ < 1, (2.1)

ϕ(1, t) = PH(t− t0) (2.2)

and by the change of variables x = eξ, τ = eζ , from (2.1), (2.2), we obtain

0∫
−∞

ϕ′0(ζ, t)dζ

1− e−(ξ−ζ) − e1æ1

0∫
−∞

ϕ′0(ζ, t)dζ

1 + e−(ξ−ζ) = 0, ξ < 0,

ϕ0(0, t) = PH(t− t0), (2.3)

where ϕ0(ξ, t) = ϕ(eξ, t).
Applying Fourier’s transform [7] with the variable s = s0 + iε to both parts of equation (2.3)

and using the convolution theorem, we obtain the following boundary condition of the Riemann
problem [13]

Ψ+(s, t) = sG(s)Φ−(s, t) +
1√
2π
iPH(t− t0)G(s), |s0| <∞, (2.4)

where

Φ−(s, t) =
1√
2π

0∫
−∞

ϕ−(ζ, t)eisζdζ, G(s) = cthπs− e1æ1

shπs
,

Ψ+(s, t) =

√
2

π

∞∫
0

ψ+(ζ, t)eisζdζ,

ϕ−(ξ, t) =

{
ϕ0(ξ, t) ξ < 0

0, ξ > 0
, ψ+(ξ, t) =


0, ξ < 0,

0∫
−∞

ϕ′0(ζ, t)dζ

1− e−(ξ−ζ) − e1æ1

0∫
−∞

ϕ′0(ζ, t)dζ

1 + e−(ξ−ζ) , ξ > 0.

The problem can be formulated as follows: Find the function Ψ+(z, t), holomorphic in the Im z > 0
half-plane and the function Φ−(z, t), holomorphic in the Im z < 1 half-plane (with the exception of
finite number roots of the function G(z)), which vanish at infinity and satisfy condition (2.4). The
boundary condition (2.4) is represented in the form

Ψ+(s, t)√
s+ i

=
sG(s)√
1 + s2

Φ−(s, t)
√
s− i+

iPH(t− t0)G(s)√
2π
√
s+ i

. (2.5)

By
√
z + i and

√
z − i we mean the branches that are analytic in the planes with cuts along the

rays, drawn from the points z = −i and z = i, respectively, in the Ox direction and taking positive
and negative values, respectively, on the upper side of the cut. With this choice of branches, the
function

√
z2 + 1 is analytic in the strip −1 < Im z < 1 and takes a positive value on the real axis.

The function G1(s) ≡ sG(s)(1 + s2)
−1/2

satisfies the conditions

ReG1(s) > 0, G1(∞) = G1(−∞) = 1, Ind G1(s) = 0.
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The solution of this problem can be represented in the form [13]

Φ−(z, t) =
X̃(z, t)√
z − i

, Im z ≤ 0; Ψ+(z, t) = X̃(z, t)
√
z + i, Im z > 0,

Φ−(z, t) =
Ψ+(z, t)− (2π)−1/2iPH(t− t0)G(z)

zG(z)
, 0 < Im z < 1,

(2.6)

where

X̃(z, t) = X(z)

{
PH(t− t0)

2π
√

2π

∞∫
−∞

G(y)

X+(y)
√
y + i(y − z)

dy

}
, X(z) = exp

{
1

2πi

+∞∫
−∞

lnG1(y)dy

y − z

}
.

It can be shown that Φ−(s+ i0) = Φ−(s− i0), and consequently, the function Φ−(z) is holomorphic
in the half-plane Im z < 1, except the points, being the zeros of the function G(z) in the strip
0 < Im z < 1.

The boundary value of the function K(z, t) = PH(t−t0)√
2π

− izΦ−(z, t) is the Fourier transform of the

function ϕ′(eξ, t). By virtue of (2.6), the function K(z, t) has the representation

K(z, t) =
PH(t− t0)√

2π
− izX(z)PH(t− t0)

2π
√

2π
√
z − i

∞∫
−∞

G(y)dy

X+(y)
√
y + i(y − z)

=
PH(t− t0)√

2π
− izX(z)PH(t− t0)

2π
√

2π
√
z − i

∞∫
−∞

[G(y)− sgn y]dy

X+(y)
√
y + i(y − z)

− izX(z)PH(t− t0)

2π
√

2π
√
z − i

∞∫
−∞

sgn ydy

X+(y)
√
y + i(y − z)

≡ PH(t− t0)√
2π

+K1(z, t) +K2(z, t), Im z < 0.

Now let us study the behavior of the function K(z, t) at infinity. The function

K1(z, t) = − izX(z)PH(t− t0)

2π
√

2π
√
z − i

∞∫
−∞

[G(y)− sgn y]dy

X+(y)
√
y + i(y − z)

tends to zero at infinity and applying the well-known Cauchy theorem, we can represent the function
K2(z, t) in the form

K2(z, t) = − izX(z)PH(t− t0)

2π
√

2π
√
z − i

∞∫
−∞

sgny dy

X+(y)
√
y + i(y − z)

=
izX(z)PH(t− t0)

π
√

2π
√
z − i

0∫
−∞

dy

X+(y)
√
y + i(y − z)

.

As a result of the change of variables z = − 1
ξ , y = − 1

y0
, we have

K∗2 (ξ, t) =
−PH(t− t0)X∗(ξ)

√
ξ

π
√

2π
√

1 + iξ

∞∫
0

dy0

X+∗(y0)
√
y0(iy0 − 1)(y0 − ξ)

,

where K∗2 (ξ, t) = K2(z, t), X∗(ξ) = X(z). Hence, applying N. Muskhelishvili’s formulas [13] on the
behavior of the Cauchy-type integral in a neighborhood of a point ξ = 0, we get

K∗2 (ξ, t) = O(1), ξ → 0.



472 N. SHAVLAKADZE AND TS. JAMASPISHVILI

Getting back to the original variable z, we conclude that the functionK2(z, t) is bounded at infinity and

K2(∞, t) = PH(t−t0)√
2π

. Therefore the function K̃(z, t) = K(z, t) − 2PH(t−t0)√
2π

, Im z < 0 is holomorphic

in the half-plane Im z < 0, vanishes at infinity by the order O(|z|−(1/2−δ)), 0 < δ < 1
2 . Its boundary

value K̃−(y, t) is the Fourier transform of the function ϕ′0(ξ, t), which is continuous on the semi-axis
ξ ≤ 0, except the point ξ = 0, at which it may have a discontinuity of the second kind. Therefore

p(x, t) = ϕ′(x, t) =
1√
2πx

lim
ρ→0

∞∫
−∞

K̃−(y, t)e−ρ|y|e−iy ln xdy. (2.7)

Hence, by the inverse Fourier transform, we obtain the expression

ϕ′0(ξ, t) =
1√
2π

∞∫
−∞

K̃−(y, t)e−iyξdy =
1√
2π

∞∫
−∞

[
K̃−(y, t)− c(t)

(ε+ iy)
1/2−δ

]
e−iyξdy

+
c(t)√

2π

∞∫
−∞

e−iyξdy

(ε+ iy)
1/2−δ = ϕ1(ξ, t) +

c(t)eεξ

ξ1/2 −δ , ξ < 0,

(ϕ1(ξ, t) is a continuous function on the semi-axis ξ ≤ 0, ε is an arbitrary small positive number) and
the behavior of the normal contact stresses in the neighborhood of the point x = 1 has the form

p(x, t) = O(1− x)
−1/2+δ

, x→ 1− . (2.8)

Now let us study the behavior of the function p(x, t) in the neighborhood of the point x = 0. By
similar reasoning, from (2.6) we conclude that the boundary value of the function

K0(z, t) =
PH(t− t0)√

2π
− iz

(Ψ+(z, t)− (2π)
−1/2

iPH(t− t0)G(z)

zG(z)

)
= −iΨ+(z, t)G−1(z)

is the Fourier transform of the function ϕ′0(ξ, t) and the function K̃0(z, t) = K0(z, t) + PH(t−t0)√
2π

is

holomorphic in the strip D0 = {z : 0 < Im z < 1}, except of the points that are the zeros of the
function G(z) in this strip and vanishes at infinity with order |z|−(1/2−δ1), 0 < δ1 < 1/2.

The function G(z) has zero z0 = iy0, y0 = 1
πarc cos(e1æ1) in the strip 0 < Im z < 1, thus using

Cauchy’s theorem on the residue to the function e−iξzK̃0(z, t), we obtain

p(x, t) = O(xy0−1), x→ 0 + . (2.9)

Theorem. Problem (2.1), (2.2) has the solution, which is represented effectively by formula (2.7) and
admits estimates (2.8), (2.9).

Remark. For the estimate (2.9), the following conclusions are valid:
a) If e1 > 0, (µ2 > µ1), then 0 < y0 < 1/2;
b) If e1 < 0, (µ2 < µ1), then 1/2 < y0 < 1;
c) If e1 = 0, (µ2 = µ1), then y0 = 1/2.
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