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ON THE COMPLEX REGIMES OF THE TAYLOR–DEAN FLOW BETWEEN

TWO ROTATING POROUS CYLINDERS

LUIZA SHAPAKIDZE

Abstract. The appearance of complex regimes in the Taylor–Dean flow between rotating porous
cylinders heated up to different temperatures with radial throughflow is studied.As it has already

been shown in [13] this flow takes place at the points of intersection of neutral curves corresponding

to the axisymmetric and nonaxisymmetric disturbances as vortices and oscillatory modes in the form
of traveling waves. The aim of the present paper is to investigate different regimes arising in a small

neighborhood of the points of intersection of neutral curves corresponding to the flow instability and

bifurcations.

Introduction

As is know, the flow between concentric cylinders, when the basic velocity distribution is the sum
of a velocity distribution due to the rotation of the cylinders and a pumping velocity distribution
due to a constant pressure gradient acting round the horizontal cylinders, is called the Taylor–Dean
flow [2]. The problem of stability of the Taylor–Dean flow was first studied experimentally by Brewster
and Nissan [1]. Later on, the theoretical analysis was carried out by various authors. In their works
(see, e.g., [4] and references therein) we can find a theoretical analysis of the loss of stability for the
Taylor–Dean flow of a viscous fluid, using approximation for close cylinders and also for cylinders
with a wide gap. This problem was also studied for complex flows such as permeable cylinders with a
radial flow, and heated cylinders with a temperature gradient (see, e.g., [3,11] and references therein).

In these papers, investigations of the stability of main flows were basically studied in the linear
approximation, i.e., for infinitesimal disturbances which gave a chance to study the problem of the
first loss of stability of the Taylor–Dean flow and also the secondary modes bifurcating from this flow.

In our work, using the nonlinear analysis, we study bifurcation in the Taylor–Dean flow, the ap-
pearance of higher instabilities in the presence of radial flows and the case where cylinders are heated
up to different temperatures.

1. Formulation of the Problem

We consider the annular space between two porous horizontal rotating cylinders partially filled
with the heat-conducting liquid, maintained by a constant azimuthal pressure gradient. It is assumed
that cylinders are heated up to different temperatures and the flow is subject to the action of a
radial diverging and converging flows. We use the Navier–Stokes, the heat transfer, continuity and
state equations in the cylindrical coordinates r, θ, z with the z-axis coinciding with that of the
cylinders [10]:

dv′

dt
= − 1

ρ′
∇Π′ + ν∆v′,

∂T ′

∂t
= (v′,∇T ′) + χ∆T ′,

∂ρ′

∂t
+ div(ρ′ v′) = 0, ρ′ = ρ0(1− β(T ′ − T0)),

(1.1)

and the boundary conditions

v′r

∣∣∣
r=R1

= Rv′r
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r=R2

= U0, v′θ = ΩiRi, v′z = 0, T ′ = Ti (i = 1, 2), (1.2)
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Under the above assumptions, of system (1.1)–(1.2) we obtain the following exact solution for the
velocity V0, temperature T0, pressure Π0:
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}
, T0 = c1 + c2r

κPr ,
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(1.3)
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ν is the radial Reynolds number, Pr = ν
χ is the Prandtl number, ν, χ, β are, respectively, the

coefficients of kinematic viscosity, thermal diffusion and thermal expansion. The radial flow is inward
for κ < 0 (converging flow) and outward for κ > 0 (diverging flow).

The flow (1.3) with the velocity vector V0, temperature T0 and pressure Π0 will be called the
main stationary flow. This flow is a superposition of the heat-conducting flow in the transverse
direction (maintained by a pumping fluid round the cylinders) and a distribution of angular velocities
(maintained by the rotation of both cylinders).

Let the perturbed state be taken as

v′ = V0 + v(vr, vθ, vz), T ′ = T0 + T, Π′ = Π0 + Π. (1.4)

Taking into account the fact that the main stationary flow (1.3) involves the rotating shear flow, we
denote rotation shear S by Vm

d , where Vm is an average velocity in the azimuthal direction, d = R2−R1

is a gap width between the cylinders. The basic velocity given in (1.3) can be written as v0 = Vmg(r),
where g(r) = vo

Vm
. Introducing dimensionless variables for time, length, velocity, temperature and

pressure by S, R2, SR2, T2−T1, νρ′S, respectively, the nonlinear system of perturbed equations takes
the form [13]:

∂v

∂t
+Nv − 1

Ta
Mv +

1

Ta
∇1Π = −L(v, v), (∇1, rv) = 0, v

∣∣∣
r=1/R,1

= 0, (1.5)
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Problem (1.5) is written in terms of the Boussinesq approximation [7], which is based on the
assumption that the thermal expansion coefficient is small. In the sequel, it will always be assumed
that the velocity, temperature and pressure components are periodic with respect to z and θ with the
known periods 2π/α and 2π/m, respectively.

2. The Amplitude System and Transitions

The stability of the main flow (1.3) depends on the following dimensional parameters: on the Taylor
Ta, radial Reynolds κ and Prandtl Pr numbers, on the ratio of the cylinders radii R, and angular
velocities Ω, radial axial, azimuthal wave numbers α, m, respectively, and also on the ratio of the
parameter of temperature gradient N and the parameter λ = Vm

Ω1R2
.

As is know from [13] for the definite parameters Ta, κ, Pr, R, Ω, α, m, N and λ, after the loss of
stability of the main flow, the neutral curves, dividing the stability and instability regions, have the
crossing points corresponding to vortices and oscillatory modes in the form of traveling waves. This
indicates that at those points after the loss of stability of the main flow in a small neighborhood of
the points of intersection, we may expect the appearance of complex regimes.

Let (Ra0,Ta0) be the points lying on the plane of parameters (Ra,Ta) and corresponding to the
intersection of the neutral curves corresponding to the convective symmetric and non-axisymmetric
three-dimensional loss of stability of the main stationary flow (1.3).

To investigate the secondary flows and the appearance of high instabilities in the flow (1.3), we use
the nonlinear theory of bifurcation of hydrodynamic flows with cylindrical symmetry (see [5,6,9,14]).
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This theory allows one to find various liquid motion regimes existing in the vicinity of the points
of intersection of neutral curves corresponding to the two types of secondary instability-vortices and
azimuthal waves in the flow. This theory has been applied to a rather wide class of problems, where the
object of this investigation is a nonlinear dynamical system of six-dimensional amplitude equations,
which are a generalization of Landau’s amplitude equations. Numerical studies will be carried out
by the methods adopted for investigation of flow instability in various fluids (see [12] and references
therein; a detailed description is given in [8]).

The SO(2) ∗ O(2) symmetry enables one to reduce the six-dimensional amplitude system to the
four-dimensional motor subsystem for the modules of amplitudes with free parameters σ, µr (the
damping decrements of the monotonic and oscillatory perturbations, respectively).

To the equilibria of this system, lying on the invariant subspaces, there correspond the motions of
a fluid having a concrete physical nature: the main stationary flow; vortex flows, i.e., a secondary
stationary axisymmetric flow; purely azimuthal waves, i.e., secondary oscillatory modes; spiral waves,
i.e., secondary autooscillatory modes; mixed azimuthal waves, i.e., three-frequency regimes; equilib-
ria not lying on the invariant subspaces, i.e., equilibria of a general state, each corresponding to a
quasiperiodic two-frequency solution of the amplitude system.

As our calculations show, the motor system depending on the parameter values of the problem, may
have no equilibria or may have equilibria of the above-mentioned types. It is found that transition
schemes may turn out to be either rather complicated or absolutely trivial.

In Figures 1–4, we present the scheme of equilibria bifurcations of the motor subsystem, which
we consider the most interesting and allowing us to judge about the transition characteristics of the
system under consideration.

The single lines show symmetric equilibria, the double lines indicate connected pair of equilibria.
Stable equilibria are drawn by solid lines and unstable equilibria by dotted lines. The circles are the
points at which the motor subsystem limit cycles bifurcate.

We present here several of our results obtained for R = 2 (the radius of the outer cylinder is two
times greater than that of the inner one), Pr = 7 (the working medium is water), m = 0, 1, for different
values of α and small absolute values of κ.

Figure 1. σ = −10, λ = 1, Ω = −0.2, κ = −1.9, Ra0 = −3.12, α = 5, Ta = 61.734,
c0 = 2.55. Bifurcation values: µ1

r = 0, µ2
r = 0.2057, µ3

r = 0.38, µ4
r = 0.612.

Figures 1–4 show the schemes of transitions of short–wave perturbations, when axial number α =
4, 5 for small absolute values of radial Raynolds number κ, angular velocities ratios Ω and the frequency
of neutral azimuthal waves c0.

For the opposite rotating cylinders, for example (Figure 1), Ω = −0.2, and κ = −1.9 (converging
flow) the main stationary flow exists for any value of parameter µr. It is stable for µr < 0 and unstable
for µr > 0. For µr = 0, there simultaneously bifurcate unstable spiral and purely azimuthal waves.
For µr = µ2

r, from spiral waves branches off a stable connected pair of general equilibria (not lying
on the invariant planes), and for µr = µ3

r, from purely azimuthal waves branch off mixed azimuthal
waves.
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Figure 2. σ = −10, λ = 1, Ω = 0.1, κ = −1.9, α = 5, c0 = 2.6678, Ra0 = −1.9809,
Ta0 = 55.138. Bifurcation values: µ1

r = 0, µ2
r = 0.11297, µ3

r = 0.12018, µ4
r = 0.13419,

µ5
r = 0.2837, µ6

r = 1.1.

Figure 3. λ = 1, σ = −10, Ω = 0, κ = −1.9, Ra0 = −2.2118, Ta0 = 59.377, α = 5,
c0 = 2.12. Bifurcation values: µ1

r = 0, µ2
r = 0.28, µ3

r = 0.31, µ4
r = 0.346, µ5

r = 0.587,
µ6
r = 0.8504.

Figure 4. σ = 10, λ = 1, Ω = −0.2, Ra0 = −0.0256, κ = 0.5, α = 4, Ta0 = 87.46,
c0 = 2.43416. Bifurcation values: µ1

r = −0.841, µ2
r = 0, µ3

r = 0.35, µ4
r = 0.959,

µ5
r = 2.513.

In case Ω = −0.2 and κ = 0.5, for a diverging flow (Figure 4), we have a subcritical bifurcation
in µr < 0. The stable main flow loses its stability and spiral waves branch off into the subcritical
region. For µr = µ1

r, from spiral waves branch off an unstable connected pair of general equilibria.
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For µr > 0, there are in general unstable equilibria. In this case, after the loss of stability of the main
flow, there arise rather complex fluid motions.

If the cylinders rotate in the same direction or rotates only the inner cylinder and the outer is at
rest (Figures 2, 3), then we have a somewhat different picture. As (Figure 2) shows, for Ω = 0.1,
κ = −1.9 (converging flow), we have found the unstable limit cycles branching off from the mixed
azimuthal waves for µr = µ3

r and µr = µ5
r. In case Ω = 0, κ = −1.9 (Figure 3), from mixed azimuthal

and purely azimuthal waves bifurcate unstable limit cycles for µr = µ3
r and µr = µ4

r. So, there are
several stable equilibria in the range µ1

r < µr = µ4
r.

3. Conclusion

We have presented the results of the numerical analysis of different regimes arising in the Taylor–
Dean flow between rotating porous cylinders heated up to different temperatures with radial through-
flow. When the liquid pumping and the inner cylinder rotate in the same direction, we have found
different regimes, appearing in a small neighborhood of the points of intersection of neutral curves
corresponding to the flow instability.

Depending on the direction of rotation of cylinders, after the loss of stability of the main flow, there
arise different modes of a fluid motion. Our calculations have shown that under certain parameters,
in the case of differently rotating cylinders, we have generally unstable equilibria of the motor system.
Therefore, experimentally, in this case one may expect complex regimes of fluid motion.

When cylinders rotate in same directions or rotates only the inner cylinder, we have found that
for certain parameters of the problem, unstable limit cycles branch off from some equilibria (they
correspond to three-frequency periodic modes of motion). In some cases, when the outer cylinder is
at rest there are simultaneously several stable equilibria, and therefore the hysteresis phenomena can
be observed in real experiments [8].
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