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BASIC BOUNDARY VALUE PROBLEMS FOR CIRCULAR RING WITH VOIDS

BAKUR GULUA

Abstract. In the present paper, the static two-dimensional problems for an elastic material with

voids are consider. The corresponding system of differential equations is written in a complex form
and its general solution is presented with the use of two analytic functions of a complex variable and

a solution of the Helmholtz equation. The boundary value problems are solved for a circular ring

when the stress tensor and the equilibrated stress vector are given on the boundary.

Introduction

Material having small distributed voids may be called porous material or material with voids.
The nonlinear and linear theories for the behaviour of porous solids, in which the skeletal or matrix
material is elastic and the interstices are voids of the material, were developed by Nunziato and
Cowin [3, 9]. The intended application of the theory of elastic material with voids may be found in
many elds of science and technology (geology, biology, medicine, engineering, oil exploration industry,
nanotechnology, etc.).

In this article, the plane strain for elastic materials with voids is considered. The corresponding
system of differential equations is written in a complex form and its general solution is presented by
using two analytic functions of a complex variable and a solution of the Helmholtz equation [4]. The
boundary value problems are solved for a circular ring.

In resent years, many authors have investigated the BVPs for elastic materials with voids, using
the theory elaborated by Cowin jointly with his collaborators [1, 2, 5, 7, 10,11].

Basic (Governing)Equations of the Plane Strain

Let x = (x1, x2) be a point of the Euclidean two- dimensional space E2. Assume that the isotropic
material with voids occupies the domain D. The basic system of equations of motion in the linear
theory of elasticity with voids, for isotropic materials can be written as [5]
• Equations of equilibrium

∂jtij = 0, i, j = 1, 2,

∂jhj + g = 0,
(1)

where tij is the symmetric stress tensor, hj is the equilibrated stress vector, g is the intrinsic equili-
brated body force.
• Constitutive equations

tij = λekkδij + 2µeij + βφδij , k = 1, 2,

hj = α∂jφ, (2)

g = −ξφ− βekk,

where λ and µ are the Lamé constants, α, β and ξ are the constants characterizing the body porosity,
δij is the Kronecker delta, φ is the change of the volume fraction, eij is the strain tensor and eij =
0.5 (∂jui + ∂iuj), where ui is the components of the displacement vector.

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 = reiϑ, (i2 = −1) and the
operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.
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To write system (1) in a complex form, we multiply the second equation of this system by i and
sum up with the first equation

∂z(t11 − t22 + 2it12) + ∂z̄(t11 + t22) = 0,

∂zh+ + ∂z̄h̄+ + g = 0,
(3)

where h+ = h1 + ih2 and then we rewrite formulas (2) as follows:

t11 − t22 + 2it12 = 4µ∂z̄u+,

t11 + t22 = 2(λ+ µ)θ + 2βφ,

h+ = 2α∂z̄φ,

g = −ξφ− βθ,

(4)

θ = ∂zu+ + ∂z̄ū+, u+ = u1 + iu2.

Substituting relations (4) into system (3), we have

2µ∂z̄∂zu+ + (λ+ µ)∂z̄θ + β∂z̄φ = 0,

(α∆− ξ)φ− βθ = 0.
(5)

The general solution of system (5) is represented as

2µu+ = κϕ(z)− zϕ′(z)− ψ(z)− 4αβµ

ξ(λ+ 2µ)− β2
∂z̄χ(z, z̄),

φ = χ(z, z̄)− β

ξ(λ+ µ)− β2
(ϕ′(z) + ϕ′(z)),

where κ = ξ(λ+3µ)−β2

ξ(λ+µ)−β2 , ϕ(z) and ψ(z) are arbitrary analytic functions of a complex variable z, and

χ(z, z̄) is an arbitrary solution of the Helmholtz equation

∆χ(z, z̄)− γ2χ(z, z̄) = 0,

where γ2 = ξ(λ+2µ)−β2

α(λ+2µ) and γ > 0 [6].

From (4), we have

t11 − t22 + 2it12 = −2zϕ′′(z)− 2ψ′(z)− 8αβµ

ξ(λ+ 2µ)− β2
∂z̄∂z̄χ(z, z̄),

t11 + t22 = 2
(
ϕ′(z) + ϕ′(z)

)
+

2µβ

λ+ 2µ
χ(z, z̄),

h+ = 2α∂z̄χ(z, z̄)− 2αβ

ξ(λ+ µ)− β2
ϕ′′(z),

g =
( β2

λ+ 2µ
− ξ
)
χ(z, z̄).

(6)

Assume that mutually perpendicular unit vectors l and s are such that

l× s = e3,

where e3 is the unit vector directed along the x3-axis. The vector l forms the angle ϑ with the positive
direction of the x1-axis. Then the displacement components ul = u · l, us = u · s as well as the stress
and moment stress components acting on an arbitrarily oriented area are expressed by the formulas

ul + ius = e−iϑu+,

tll + itls =
1

2

[
t11 + t22 + (t11 − t22 + 2it12)e−2iϑ

]
,

hl =
1

2

[
h+e

−iϑ + h̄+e
iϑ
]
.

(7)
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Figure 1. The circular ring

The Problem for a Circular Ring

We consider the boundary value problem for a concentric circular ring of radii R1 and R2 (Figure 1).
On the circumference, we consider the following boundary value problem [8]:

trr + itrϑ =



+∞∑
−∞

A′ne
inϑ, |z| = R1,

+∞∑
−∞

A′′ne
inϑ, |z| = R2,

hr =



+∞∑
−∞

B′ne
inϑ, |z| = R1,

+∞∑
−∞

B′′ne
inϑ, |z| = R2.

(8)

By substituting formulas (6) into (7), the boundary conditions (8) may then be written as follows:

ϕ′(z) + ϕ′(z) +
βµ

λ+ 2µ
χ(z, z̄)−

[
zϕ′′(z) + ψ′(z) +

4αβµ

ξ(λ+ 2µ)− β2
∂z̄∂z̄χ(z, z̄)

]
e−2iϑ

=



+∞∑
−∞

A′ne
inϑ, |z| = R1,

+∞∑
−∞

A′′ne
inϑ, |z| = R2,[

α∂z̄χ(z, z̄)− αβ

ξ(λ+ µ)− β2
ϕ′′(z)

]
e−iϑ +

[
α∂zχ(z, z̄)− αβ

ξ(λ+ µ)− β2
ϕ′′(z)

]
eiϑ

=



+∞∑
−∞

B′ne
inϑ, |z| = R1,

+∞∑
−∞

B′′ne
inϑ, |z| = R2.

(9)

The analytic functions ϕ′(z), ψ′(z) and the metaharmonic function χ(z, z̄) are represented in the
form of the following series [8]

ϕ′(z) = δ ln z +

+∞∑
−∞

anz
n, ψ′(z) =

+∞∑
−∞

bnz
n,

χ(z, z̄) =

+∞∑
−∞

(αnIn(γr) + βnKn(γr)) einϑ,

(10)
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where In(γr) and Kn(γr) are the modified Bessel functions of n-th order.
We use the condition of single-valuedness of displacements which in the present case is expressed

as
δ = 0, κa−1 + b̄−1 = 0. (11)

Substituting the formulas (10) in (9), one finds that

+∞∑
−∞

anr
neinϑ +

+∞∑
−∞

(1− n)ānr
ne−inϑ −

+∞∑
−∞

b̄n−2r
n−2e−inϑ

+
µβ

λ+ 2µ

+∞∑
−∞

2n+ 2

γr
(In+1(γr)αn −Kn+1(γr)βn) einϑ =



+∞∑
−∞

A′ne
inϑ, |z| = R1,

+∞∑
−∞

A′′ne
inϑ, |z| = R2,

αγ

+∞∑
−∞

(I ′n(γr)αn −K ′n(γr)βn) einϑ − αβ

ξ(λ+ µ)− β2

×
+∞∑
−∞

n
(
anr

n−1einϑ + ānr
n−1e−inϑ

)
=



+∞∑
−∞

B′ne
inϑ, |z| = R1,

+∞∑
−∞

B′′ne
inϑ, |z| = R2.

As a conclusion of the previous relations, we use the following well-known formulas

In−1(x)− In+1(x) =
2n

x
In(x), In−1(x) + In+1(x) = 2I ′n(x),

Kn−1(x)−Kn+1(x) = −2n

x
Kn(x), Kn−1(x) +Kn+1(x) = −2K ′n(x).

Comparison of terms independent of ϑ gives

2a0 −R−2
1 b̄−2 +

2µβ

(λ+ 2µ)γR1
(I1(γR1)α0 −K1(γR1)β0) = A′0,

2a0 −R−2
2 b̄−2 +

2µβ

(λ+ 2µ)γR2
(I1(γR2)α0 −K1(γR2)β0) = A′′0 ,

I1(γR1)α0 −K1(γR1)β0 =
B′0
αγ

,

I1(γR2)α0 −K1(γR2)β0 =
B′′0
αγ

.

(12)

Here, the assumption has been made that a0 = ā0 i.e., that a0 is real, since any constant imaginary
part of ϕ′(z) does not affect the stress distribution [5].

Comparison of terms involving einϑ for n = ±1,±2, . . . gives

Rn1an + (1 + n)R−n1 ā−n −R−n−2
1 b̄−n−2 +

(2n+ 2)µβ

(λ+ 2µ)γR1

× (In+1(γR1)αn −Kn+1(γR1)βn) = A′n,

Rn2an + (1 + n)R−n2 ā−n −R−n−2
2 b̄−n−2 +

(2n+ 2)µβ

(λ+ 2µ)γR2

× (In+1(γR2)αn −Kn+1(γR2)βn) = A′′n,

(13)

αγ (I ′n(γR1)αn +K ′n(γR1)βn)− αβn

ξ(λ+ µ)− β2

(
Rn−1

1 an −R−n−1
1 ā−n

)
= B′n,

αγ (I ′n(γR2)αn +K ′n(γR2)βn)− αβn

ξ(λ+ µ)− β2

(
Rn−1

2 an −R−n−1
2 ā−n

)
= B′′n.

(14)
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Dividing the first equation of (13) by R−n−2
1 , and the second by R−n−2

2 , and then subtracting, one
obtains the first of the following formulae:

(R2n+2
2 −R2n+2

1 )an + (1 + n)(R2
2 −R2

1)ā−n +
(2n+ 2)µβ

(λ+ 2µ)γ

[
(Rn+1

2 In+1(γR2)

−Rn+1
1 In+1(γR1))αn − (Rn+1

2 Kn+1(γR2)−Rn+1
1 Kn+1(γR1))βn

]
= Bn,

(1− n)(R2
2 −R2

1)an + (R−2n+2
2 −R−2n+2

1 )ā−n +
(−2n+ 2)µβ

(λ+ 2µ)γ

[
(R−n+1

2 In−1(γR2)

−R−n+1
1 In−1(γR1))αn − (R−n+1

2 Kn−1(γR2)−R−n+1
1 Kn−1(γR1))βn

]
= B̄−n,

(15)

where Bn = Rn+2
2 A′′n −Rn+2

1 A′n.
The coefficients an, bn, αn and βn are found by solving (11)–(15).
It is easy to prove the absolute and uniform convergence of the series obtained in the circular ring

(including the contours) when the functions set on the boundaries have sufficient smoothness.
The procedure of solving the boundary value problem remains the same in the case where the

stresses and the change of the volume fraction, or the displacement vector and the change of the
volume fraction, or the change of the volume fraction and the equilibrated stress vector are prescribed
on the boundary of the domain.
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