ON THE BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS DEFINED BY AMPLITUDES IN GENERALIZED WEIGHTED GRAND LEBESGUE SPACES

ETERI GORDADZE AND VAKHTANG KOKILASHVILI

Abstract

In this article, we present weighted estimates for pseudo-differential operators with amplitudes which are only measurable in the spatial variables. The source of this investigation is the paper [2], in which weighted inequalities for the above-mentioned operators are established in classical $L^{p}(p>1)$ spaces with Muckenhoupt weights.

Our paper deals with the weighted inequalities for pseudo-differential operators with amplitudes in nonstandard Banach function space and generalized weighted grand Lebesgue spaces. Below, all the definitions concerning the amplitudes and symbols are taken from [2]. For a function $f \in C_{0}^{\infty}\left(R^{n}\right)$, a pseudo-differential operator is given formally by

$$
T_{a} f(x):=\frac{1}{(2 n)^{n}} \int_{R^{n}} \int_{R^{n}} a(x, y, \xi) \exp ^{i(x-y, \xi)} f(y) d y d \xi
$$

whose amplitude $(x, y, \xi) \mapsto a(x, y, \xi)$ is assumed to satisfy certain growth conditions. For the class of amplitudes we refer the reader to [1].

Let $1<p<\infty, \varphi$ be a positive non-decreasing function on $(0, p-1)$ satisfying $\varphi(0+)=0$. The generalized weighted grand Lebesgue space $L_{v}^{p), \varphi}\left(R^{n}, w\right)$ is defined as the set of all measurable functions for which

$$
\|f\|_{L_{v}^{p,, \varphi}}\left(R^{n}, w\right)=\sup _{0<\epsilon<p-1}\left(\varphi(\epsilon) \int_{R^{n}}|f(x)|^{p-\epsilon} w(x) v^{\epsilon}(x) d x\right)^{\frac{1}{p-\epsilon}}<+\infty
$$

where $w v^{\epsilon} \in L_{\text {loc }}^{1}\left(R^{n}\right)$ for all $\epsilon, 0<\epsilon<p-1$. The function $a: R^{n} \times R^{n} \times R^{n}$ is called an amplitude when it belongs to any one of the following sets. Let $m \in R, \rho \in[0,1]$ and $\delta \in[0,1]$.

Definition 1.
(i) We say that $a \in A_{\rho, \delta}^{m}$ when for each triple of multi-indices α, β and γ there exists a constant $C_{\alpha, \beta, \gamma}$ such that

$$
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \partial_{y}^{\gamma} a(x, y, \xi)\right| \leq C_{\alpha, \beta, \gamma}\langle\xi\rangle^{m-|\rho| \alpha+\delta|\beta+\gamma|}
$$

(ii) We say that $a \in L^{\infty} A_{\rho}^{m}$ when for each multi-index α there exists a constant C_{α} such that

$$
\left\|\partial_{\xi}^{\alpha} a(., ., \xi)\right\|_{L^{\infty}\left(R^{n} \times R^{n}\right.} \leq C_{\alpha}\langle\xi\rangle^{m-\rho|\alpha|}
$$

where $\langle\xi\rangle:=\left(a+|\xi|^{2}\right)^{\frac{1}{2}}$. Here it is assumed only measurability in the (x, y)-variables.
Definition 2 ([2]). A function $a: R^{n} \times R^{n} \mapsto R^{n}$ is called a symbol when it belongs one of the following sets. Let $m \in R, \rho \in[0,1]$ and $\delta \in[0,1]$.
(i) We say that $a \in S_{\rho, \delta}^{m}$, when for each pair of multi-indices α and β there exists a constant $C_{\alpha, \beta}$ such that

$$
\left|\partial_{\xi}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|} .
$$

[^0](ii) We say that $a \in L^{\infty} S_{\rho}^{m}$ when for each multi-index α there exists a constant C_{α} such that
$$
\left\|\partial_{\xi}^{\alpha} a(., \xi)\right\|_{L^{\infty}} \leq C_{\alpha}\langle\xi\rangle^{m-\rho|\alpha|} .
$$

Therefore here it is assumed only measurability in the x -variable. The following statements are true.
Theorem 1. Let $1<p<\infty, w \in A_{p}$ and let $v \in L^{p}\left(R^{n}, w\right), v^{\gamma} \in A_{p}$ for some $\gamma>0$. Assume that $\sigma \in L_{1}^{\infty} S^{m}$, with $m<\frac{n}{2}(\rho-1)$ and set $a(x, \xi)=e^{i|\xi|^{1-\rho}} \sigma(x, \xi)$, with $0<\rho<1$. Then T_{a} is bounded in $L_{v}^{p, \varphi_{v}}\left(R^{n}, w\right)$.
Theorem 2. Let $a(x, y, \xi)=e^{i|\xi|^{1-\rho}} \sigma(x, y, \xi)$ with $m<\frac{n}{2}(\rho-1)$. Then under the condition on p, v and w of Theorem 1, the operator T_{a} is bounded in $L_{v}^{p), \varphi}\left(R^{m}, w\right)$.
Definition 3 ([2]). The class $L^{\infty} S_{c l}^{m}$ consists of all the symbols which are bounded and measurable in the spatial variable and satisfy
(1) $\left\|\partial_{\xi}^{\alpha} a(., \xi)\right\|_{L^{\infty}} \leq c_{\alpha}\langle\xi\rangle^{m-|\alpha|}$, for each multi-index α;
(2) $a(x, t \xi)=t^{m} a(x, \xi), t \geq 1,|\xi| \geq 1$.

Theorem 3. Let p, w and v satisfy the conditions of Theorem 1. Assume that $\sigma \in L^{\infty} S_{c l}^{n^{\frac{n(\rho-1)}{2}}}$ and set $a(x, \xi)=e^{i|\xi|^{1-r h o}} \sigma(x, \xi)$ with $0<\rho \leq 1$. Then the operator T_{a} is bounded in $L_{v}^{p), \varphi}\left(R^{n}, w\right)$.
Theorem 4. Let $1<p<\infty, w \in A_{p}$ and $v \in L^{p}\left(R^{n}, w\right), v^{\gamma} \in A_{p}$ for some $\gamma>0$. Suppose $0 \leq \rho<1$, $m<n(\rho-1)$ and $a \in L^{\infty} A_{\rho}^{m}$. Then the operator T_{a} is bounded in $L_{v}^{p,, \varphi}\left(R^{n}, w\right)$.
Theorem 5. Let p, w and v be the same as in previous Theorem. Suppose that $a \in A_{p, 8}^{n(p-1)}$ with $0<\rho \leq 1,0 \leq S<1$. Then T_{a} is bounded in $L_{v}^{p), \varphi}\left(R^{n}, w\right)$.

Below, we announce weighted norm inequalities for the commutators of $B M O$ functions for variation pseudodifferential operators.
Theorem 6. Assume that p, w and v satisfy the conditions of Theorem 1. Suppose either:
(a) $a \in L^{\infty} A_{\rho}^{m}$ with $m<n(\rho-1)$ and $0 \leq \rho \leq 1$; or
(b) $a(x, y, \xi)=e^{i|\xi|^{1-\rho}} \sigma(x, y, \xi)$ and $\sigma \in L^{\infty} A_{\rho}^{m}$ with $0<\rho \leq 1$ and $m<\frac{n}{2}(\rho-1)$ or
(c) $a \in A_{\rho, \delta}^{n(\rho-1)}$ with $0 \leq \delta<\xi$ and $0<\rho \leq 1$; or
(d) $a(x, \xi)=e^{i|\xi|^{1-\rho}} \delta \in L^{\infty} S_{c l}^{\frac{n}{2}(\rho-1)}, 0<\rho \leq 1$.

Then for $b \in B M O$ the operator $T_{\alpha, \beta} f=b T f-T(f b)$ is bounded in $L_{v}^{p), \varphi}\left(R^{n}, w\right)$.

References

1. L. Hörmander, On the L^{2} continuity of pseudo-differential operators. Comm. Pure Appl. Math. 24 (1971), 529-535.
2. N. Michalowski, D. Rule, W. Staubach, Weighted norm inequalities for pseudo-pseudodifferential operators defined by amplitudes. J. Funct. Anal. 258 (2010), no. 12, 4183-4209.
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0186, Georgia

E-mail address: vakhtang.kokilashvili@tsu.ge

[^0]: 2020 Mathematics Subject Classification. Primary 47G30, Secondary 35S05, 35015.
 Key words and phrases. Weighted grand Lebesgue spaces; Pseudo-differential operators; Muckenhoupt A_{p} weights; Pseudo-differential amplitudes; Symbols.

