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ON THE BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS DEFINED

BY AMPLITUDES IN GENERALIZED WEIGHTED GRAND LEBESGUE

SPACES

ETERI GORDADZE AND VAKHTANG KOKILASHVILI

Abstract. In this article, we present weighted estimates for pseudo-differential operators with am-

plitudes which are only measurable in the spatial variables. The source of this investigation is

the paper [2], in which weighted inequalities for the above-mentioned operators are established in
classical Lp(p > 1) spaces with Muckenhoupt weights.

Our paper deals with the weighted inequalities for pseudo-differential operators with amplitudes in
nonstandard Banach function space and generalized weighted grand Lebesgue spaces. Below, all the
definitions concerning the amplitudes and symbols are taken from [2]. For a function f ∈ C∞0 (Rn), a
pseudo-differential operator is given formally by

Taf(x) :=
1

(2n)n

∫
Rn

∫
Rn

a(x, y, ξ) expi(x−y,ξ) f(y) dy dξ,

whose amplitude (x, y, ξ) 7→ a(x, y, ξ) is assumed to satisfy certain growth conditions. For the class of
amplitudes we refer the reader to [1].

Let 1 < p < ∞, ϕ be a positive non-decreasing function on (0, p − 1) satisfying ϕ(0+) = 0.

The generalized weighted grand Lebesgue space L
p),ϕ
v (Rn, w) is defined as the set of all measurable

functions for which

||f ||
L
p),ϕ
v

(Rn, w) = sup
0<ε<p−1

(ϕ(ε)

∫
Rn

|f(x)|p−εw(x)vε(x) dx)
1
p−ε < +∞,

where wvε ∈ L1
loc(R

n) for all ε, 0 < ε < p− 1. The function a : Rn ×Rn ×Rn is called an amplitude
when it belongs to any one of the following sets. Let m ∈ R, ρ ∈ [0, 1] and δ ∈ [0, 1].

Definition 1.
(i) We say that a ∈ Amρ,δ when for each triple of multi-indices α, β and γ there exists a constant

Cα,β,γ such that

|∂αξ ∂βx∂γy a(x, y, ξ)| ≤ Cα,β,γ〈ξ〉m−|ρ|α+δ|β+γ|.
(ii) We say that a ∈ L∞Amρ when for each multi-index α there exists a constant Cα such that

||∂αξ a(., ., ξ)||L∞(Rn×Rn ≤ Cα〈ξ〉m−ρ|α|,

where 〈ξ〉 := (a+ |ξ|2)
1
2 . Here it is assumed only measurability in the (x, y)-variables.

Definition 2 ([2]). A function a : Rn × Rn 7→ Rn is called a symbol when it belongs one of the
following sets. Let m ∈ R, ρ ∈ [0, 1] and δ ∈ [0, 1].

(i) We say that a ∈ Smρ,δ, when for each pair of multi-indices α and β there exists a constant Cα,β
such that

|∂αξ ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|.
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(ii) We say that a ∈ L∞Smρ when for each multi-index α there exists a constant Cα such that

||∂αξ a(., ξ)||L∞ ≤ Cα〈ξ〉m−ρ|α|.
Therefore here it is assumed only measurability in the x-variable. The following statements are true.

Theorem 1. Let 1 < p < ∞, w ∈ Ap and let v ∈ Lp(Rn, w), vγ ∈ Ap for some γ > 0. Assume that

σ ∈ L∞1 Sm, with m < n
2 (ρ− 1) and set a(x, ξ) = ei|ξ|

1−ρ
σ(x, ξ), with 0 < ρ < 1. Then Ta is bounded

in L
p),ϕv
v (Rn, w).

Theorem 2. Let a(x, y, ξ) = ei|ξ|
1−ρ

σ(x, y, ξ) with m < n
2 (ρ − 1). Then under the condition on p, v

and w of Theorem 1, the operator Ta is bounded in L
p),ϕ
v (Rm, w).

Definition 3 ([2]). The class L∞Smcl consists of all the symbols which are bounded and measurable
in the spatial variable and satisfy

(1) ||∂αξ a(., ξ)||L∞ ≤ cα〈ξ〉m−|α|, for each multi-index α;

(2) a(x, tξ) = tma(x, ξ), t ≥ 1, |ξ| ≥ 1.

Theorem 3. Let p, w and v satisfy the conditions of Theorem 1. Assume that σ ∈ L∞S
n(ρ−1)

2

cl and

set a(x, ξ) = ei|ξ|
1−rho

σ(x, ξ) with 0 < ρ ≤ 1. Then the operator Ta is bounded in L
p),ϕ
v (Rn, w).

Theorem 4. Let 1 < p <∞, w ∈ Ap and v ∈ Lp(Rn, w), vγ ∈ Ap for some γ > 0. Suppose 0 ≤ ρ < 1,

m < n(ρ− 1) and a ∈ L∞Amρ . Then the operator Ta is bounded in L
p),ϕ
v (Rn, w).

Theorem 5. Let p, w and v be the same as in previous Theorem. Suppose that a ∈ A
n(p−1)
p,8 with

0 < ρ ≤ 1, 0 ≤ S < 1. Then Ta is bounded in L
p),ϕ
v (Rn, w).

Below, we announce weighted norm inequalities for the commutators of BMO functions for varia-
tion pseudodifferential operators.

Theorem 6. Assume that p, w and v satisfy the conditions of Theorem 1. Suppose either:
(a) a ∈ L∞Amρ with m < n(ρ− 1) and 0 ≤ ρ ≤ 1; or

(b) a(x, y, ξ) = ei|ξ|
1−ρ

σ(x, y, ξ) and σ ∈ L∞Amρ with 0 < ρ ≤ 1 and m < n
2 (ρ− 1) or

(c) a ∈ An(ρ−1)ρ,δ with 0 ≤ δ < ξ and 0 < ρ ≤ 1; or

(d) a(x, ξ) = ei|ξ|
1−ρ

δ ∈ L∞S
n
2 (ρ−1)
cl , 0 < ρ ≤ 1.

Then for b ∈ BMO the operator Tα,βf = bTf − T (fb) is bounded in L
p),ϕ
v (Rn, w).
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