ON THE BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS DEFINED BY AMPLITUDES IN GENERALIZED WEIGHTED GRAND LEBESGUE SPACES

ETERI GORDADZE AND VAKHTANG KOKILASHVILI

Abstract. In this article, we present weighted estimates for pseudo-differential operators with amplitudes which are only measurable in the spatial variables. The source of this investigation is the paper [2], in which weighted inequalities for the above-mentioned operators are established in classical $L^p(p > 1)$ spaces with Muckenhoupt weights.

Our paper deals with the weighted inequalities for pseudo-differential operators with amplitudes in nonstandard Banach function space and generalized weighted grand Lebesgue spaces. Below, all the definitions concerning the amplitudes and symbols are taken from [2]. For a function $f \in C_0^{\infty}(\mathbb{R}^n)$, a pseudo-differential operator is given formally by

$$T_a f(x) := \frac{1}{(2n)^n} \int_{R^n} \int_{R^n} \int_{R^n} a(x, y, \xi) \exp^{i(x-y,\xi)} f(y) \, dy \, d\xi,$$

whose amplitude $(x, y, \xi) \mapsto a(x, y, \xi)$ is assumed to satisfy certain growth conditions. For the class of amplitudes we refer the reader to [1].

Let $1 , <math>\varphi$ be a positive non-decreasing function on (0, p - 1) satisfying $\varphi(0+) = 0$. The generalized weighted grand Lebesgue space $L_v^{p),\varphi}(\mathbb{R}^n,w)$ is defined as the set of all measurable functions for which

$$||f||_{L^{p),\varphi}_v}(R^n,w) = \sup_{0<\epsilon< p-1} (\varphi(\epsilon) \int\limits_{R^n} |f(x)|^{p-\epsilon} w(x) v^\epsilon(x) \, dx)^{\frac{1}{p-\epsilon}} < +\infty,$$

where $wv^{\epsilon} \in L^1_{loc}(\mathbb{R}^n)$ for all $\epsilon, 0 < \epsilon < p-1$. The function $a: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ is called an amplitude when it belongs to any one of the following sets. Let $m \in R, \rho \in [0, 1]$ and $\delta \in [0, 1]$.

Definition 1.

(i) We say that $a \in A^m_{\rho,\delta}$ when for each triple of multi-indices α , β and γ there exists a constant $C_{\alpha,\beta,\gamma}$ such that

$$\partial_{\varepsilon}^{\alpha} \partial_{x}^{\beta} \partial_{y}^{\gamma} a(x, y, \xi) | \leq C_{\alpha, \beta, \gamma} \langle \xi \rangle^{m - |\rho| \alpha + \delta |\beta + \gamma|}$$

 $|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}\partial_{y}^{\gamma}a(x,y,\xi)| \leq C_{\alpha,\beta,\gamma}\langle\xi\rangle^{m-|\rho|\alpha+\delta|\beta+\gamma|}.$ (ii) We say that $a \in L^{\infty}A_{\rho}^{m}$ when for each multi-index α there exists a constant C_{α} such that

$$||\partial_{\xi}^{\alpha}a(.,.,\xi)||_{L^{\infty}(\mathbb{R}^{n}\times\mathbb{R}^{n}} \leq C_{\alpha}\langle\xi\rangle^{m-\rho|\alpha|}$$

where $\langle \xi \rangle := (a + |\xi|^2)^{\frac{1}{2}}$. Here it is assumed only measurability in the (x, y)-variables.

Definition 2 ([2]). A function $a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is called a symbol when it belongs one of the following sets. Let $m \in R$, $\rho \in [0, 1]$ and $\delta \in [0, 1]$.

(i) We say that $a \in S^m_{\rho,\delta}$, when for each pair of multi-indices α and β there exists a constant $C_{\alpha,\beta}$ such that

$$|\partial_{\xi}^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)| \le C_{\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}.$$

²⁰²⁰ Mathematics Subject Classification. Primary 47G30, Secondary 35S05, 35015.

Key words and phrases. Weighted grand Lebesgue spaces; Pseudo-differential operators; Muckenhoupt A_p weights; Pseudo-differential amplitudes; Symbols.

(ii) We say that $a \in L^{\infty}S_{\rho}^{m}$ when for each multi-index α there exists a constant C_{α} such that

$$|\partial_{\xi}^{\alpha}a(.,\xi)||_{L^{\infty}} \le C_{\alpha}\langle\xi\rangle^{m-\rho|\alpha|}$$

Therefore here it is assumed only measurability in the x-variable. The following statements are true.

Theorem 1. Let $1 , <math>w \in A_p$ and let $v \in L^p(\mathbb{R}^n, w)$, $v^{\gamma} \in A_p$ for some $\gamma > 0$. Assume that $\sigma \in L_1^{\infty}S^m$, with $m < \frac{n}{2}(\rho - 1)$ and set $a(x, \xi) = e^{i|\xi|^{1-\rho}}\sigma(x, \xi)$, with $0 < \rho < 1$. Then T_a is bounded in $L_v^{p,\varphi_v}(\mathbb{R}^n, w)$.

Theorem 2. Let $a(x, y, \xi) = e^{i|\xi|^{1-\rho}} \sigma(x, y, \xi)$ with $m < \frac{n}{2}(\rho - 1)$. Then under the condition on p, v and w of Theorem 1, the operator T_a is bounded in $L_v^{p),\varphi}(R^m, w)$.

Definition 3 ([2]). The class $L^{\infty}S_{cl}^{m}$ consists of all the symbols which are bounded and measurable in the spatial variable and satisfy

- (1) $||\partial_{\xi}^{\alpha}a(.,\xi)||_{L^{\infty}} \leq c_{\alpha}\langle\xi\rangle^{m-|\alpha|}$, for each multi-index α ;
- (2) $a(x, t\xi) = t^m a(x, \xi), t \ge 1, |\xi| \ge 1.$

Theorem 3. Let p, w and v satisfy the conditions of Theorem 1. Assume that $\sigma \in L^{\infty}S_{cl}^{\frac{n(\rho-1)}{2}}$ and set $a(x,\xi) = e^{i|\xi|^{1-rho}}\sigma(x,\xi)$ with $0 < \rho \leq 1$. Then the operator T_a is bounded in $L_v^{p),\varphi}(R^n, w)$.

Theorem 4. Let $1 , <math>w \in A_p$ and $v \in L^p(\mathbb{R}^n, w)$, $v^{\gamma} \in A_p$ for some $\gamma > 0$. Suppose $0 \le \rho < 1$, $m < n(\rho - 1)$ and $a \in L^{\infty}A_{\rho}^m$. Then the operator T_a is bounded in $L_v^{p),\varphi}(\mathbb{R}^n, w)$.

Theorem 5. Let p, w and v be the same as in previous Theorem. Suppose that $a \in A_{p,8}^{n(p-1)}$ with $0 < \rho \le 1, 0 \le S < 1$. Then T_a is bounded in $L_v^{p),\varphi}(R^n, w)$.

Below, we announce weighted norm inequalities for the commutators of BMO functions for variation pseudodifferential operators.

Theorem 6. Assume that p, w and v satisfy the conditions of Theorem 1. Suppose either:

(a) $a \in L^{\infty} A_{\rho}^{m}$ with $m < n(\rho - 1)$ and $0 \le \rho \le 1$; or (b) $a(x, y, \xi) = e^{i|\xi|^{1-\rho}} \sigma(x, y, \xi)$ and $\sigma \in L^{\infty} A_{\rho}^{m}$ with $0 < \rho \le 1$ and $m < \frac{n}{2}(\rho - 1)$ or (c) $a \in A_{\rho,\delta}^{n(\rho-1)}$ with $0 \le \delta < \xi$ and $0 < \rho \le 1$; or (d) $a(x,\xi) = e^{i|\xi|^{1-\rho}} \delta \in L^{\infty} S_{cl}^{\frac{n}{2}(\rho-1)}, 0 < \rho \le 1$. Then for $b \in BMO$ the operator $T_{\alpha,\beta}f = bTf - T(fb)$ is bounded in $L_{v}^{p),\varphi}(\mathbb{R}^{n}, w)$.

References

1. L. Hörmander, On the L² continuity of pseudo-differential operators. Comm. Pure Appl. Math. 24 (1971), 529–535.

 N. Michalowski, D. Rule, W. Staubach, Weighted norm inequalities for pseudo-pseudodifferential operators defined by amplitudes. J. Funct. Anal. 258 (2010), no. 12, 4183–4209.

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 6 TAMARASHVILI STR., TBILISI 0186, GEORGIA

 $E\text{-}mail\ address:$ vakhtang.kokilashvili@tsu.ge