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A COMPARISON BETWEEN BERNOULLI-COLLOCATION METHOD AND

HERMITE–GALERKIN METHOD FOR SOLVING TWO-DIMENSIONAL MIXED

VOLTERRA–FREDHOLM SINGULAR INTEGRAL EQUATIONS

DOAA SHOKRY MOHAMED AND DINA MOHAMED ABDESSAMI

Abstract. In this paper, a numerical solution of two-dimensional singular integral equations is

proposed. For this, two operative methods are demonstrated, Bernoulli polynomials with collocation

method and Hermite polynomials through Galerkin method which is a useful technique in two-
dimensional integral equations. Various numerical examples are presented to illustrate the efficiency

of these two methods. Maple 17 program will be used to solve the system numerically.

1. Introduction

In the last years, there was a significant importance of multidimensional singular integral equations
(MSIE). Many problems in physical, biological and applied mathematics fields reduce to a singu-
lar integral equation. Such as hydrodynamics, population genetics, elasticity, and others. In 1928,
F. G. Tricomi [20] was the first who proposed an important study concerning (MSIE). He considered
double singular integrals. Recently, many researchers had studied the numerical solutions of singular
integral equations in several formulas. For instance, [2, 7] involved solutions of the nonlinear singular
integral equations, whereas in [6,15] with Hilbert kernel. J. Obaiyst et al. [11] deal with hypersingular
integral equations. E. Hashim [5], V. A. Zisis and E. G. Ladopoulus [21] presented solutions for the
singularity of linear integral equations. S. Banerjea et al. [3] worked on a weak singular kernel with a
water wave problem as an application. There are different methods for solving two-dimensional integral
equations (see [4, 8–10] and others). M. Rahman [14] discussed the solution of linear integral equa-
tions in one-dimension using the Hermite–Galerkin method. In our paper, we work on the solution of
two-dimensional singular mixed Volterra–Fredholm integral equations using the Bernoulli-collocation
method and Hermite–Galerkin method. One can observe that the Hermite–Galerkin method is a novel
technique in the two-dimensional integral equations.

The aim of this paper is to convert the singular integral equation to a non-singular form by repeal-
ing the singularity and then converting it into a system of algebraic equations based on orthogonal
polynomials.

The next sections are arranged as follows; some definitions and properties of Bernoulli and Hermite
polynomials are introduced in Section 2. The description of the collocation and Galerkin methods
with two-dimensional singular mixed Volterra–Fredholm integral equations are explained in Section 3.
Section 4 includes some numerical examples that illustrate the above-mentioned methods. Finally,
Section 5 gives the conclusions.

We list here some of the most important advantages of the proposed methods.
• The proposed methods are easy to implement, and it is a powerful mathematical tool to obtain the
numerical solution of various kind of problems with little additional works.
• By using these methods, the problem under consideration is transformed into a system of algebraic
equations which can be solved via a suitable numerical method.
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2. Some Definitions and Properties

2.1. Bernoulli Polynomials. In many topics of mathematics, Bernoulli polynomials have a vital
role, e.g., in the theory of numbers [13] and in complex differential equations [19].

The Bernoulli polynomials are expressed by the formula [19]

Bn(x) =

n∑
k=0

(
n

k

)
xn−k Bk, (2.1)

where
(
n
k

)
= n!

k! (n−k)! and Bn(x) is the Bernoulli polynomial of nth degree.

In a special case, if x = 0 in (2.1), then Bn(0) = Bn are called Bernoulli numbers, and B0 = 1.
The Bernoulli numbers can be calculated as follows:

n∑
k=0

(
n+ 1

k

)
Bk(x) = (1− n) xn , n = 0, 1, 2, . . . .

The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
, B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x,

B6(x) = x6 − 3x5 +
5

2
x4 +

1

2
x2 − 1

42
.

2.2. Hermite Polynomials [12]. The differential equation y′′ − 2xy′ + 2λy = 0 has polynomial
solutions called Hermite polynomials which were introduced for the first time by Pierre–Simon Laplace
in 1810. Charles Hermite defined the multidimensional polynomials. Hermite polynomials are a
mutually orthogonal function with weight functions, which can be determined easily by using the
Rodrigues formula

Hn(x) = (−1)n ex
2 dn

dxn
(e−x

2

) , n = 0, 1, 2, . . . .

The first few Hermite polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x, H6(x) = 64x6 − 480x4 + 720x2 − 120.

Hermite polynomials have the generating function

w(x, t) = e2xt−x
2

=

∞∑
n=0

Hn(x)

n!
tn, |t| <∞.

3. The Description of Methods

We are concerned with solving the two-dimensional singular mixed Volterra–Fredholm integral
equations which have the form

u(x, t) = f(x, t) +

t∫
c

b∫
a

(t− z)α−1 φ(x, y) u(y, z)dydz, (3.1)

where 0 < α < 1 and (x, t) ∈ [a, b] × [c, d], where u(x, t) is an unknown function, f(x, t) is a given
function defined on [a, b] × [c, d] and k(x, t, y, z) = (t − z)α−1 φ(x, y) is the singular kernel satisfying
the discontinuity condition in the domain ([a, b]× [c, d])2.
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3.1. Bernoulli-Collocation method [16,19]. This method is based on approximating the unknown
function u(x, t) in (3.1) on the form

u(x, t) =

∞∑
i=0

∞∑
j=0

aij Bi(x) Bj(t), (3.2)

where Bi(x), Bj(t) are Bernoulli polynomials and aij are unknown coefficients to be determined in
order to obtain the approximate solution, in the following steps:

Curtailing the infinite series (3.2), we get

ũ(x, t) '
N∑
i=0

N∑
j=0

aij Bi(x) Bj(t), (3.3)

Substituting from (3.3) into (3.1) we get

N∑
i=0

N∑
j=0

aij [Bi(x) Bj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Bi(y) Bj(z)dydz] = f(x, t). (3.4)

Using the collocation points xp, tq of Bernoulli polynomials given by

xp = a+
b− a
N

p , tq = c+
d− c
N

q, (3.5)

for p, q = 0, 1, 2, . . . , N and xp ∈ [a, b], tq ∈ [c, d],
equation (3.4) would be written as

N∑
i=0

N∑
j=0

aij [Bi(xp) Bj(tq)−
tq∫
c

b∫
a

(tq − z)α−1 φ(xp, y) Bi(y) Bj(z)dydz] = f(xp, tq), 0 < α < 1. (3.6)

Substituting collocation points (3.5) into (3.6), we get a system of algebraic equations which contains
(N + 1)2 of aij unknown coefficients. Solving this system to obtain aij values, we get an approximate
solution ũ(x, t).

The accuracy of this method is given by the formula (see [18])

‖u(x, t)− ũ(x, t)‖ ≤ γ λ C N(2π)−N ,

where

λ = max
0≤x≤b,c≤t≤d

| k(x, t, y, z) |,

λ is a positive constant, independent of N , and a bound for the partial derivative of u(x, t), γ is a
positive constant and C is the coefficient matrix.

3.2. The Hermite–Galerkin method. Assume that u(x, t) is an approximate solution of (3.1). We
use Hermite polynomials through the Galerkin method which has the form

ũ(x, t) '
N∑
i=0

N∑
j=0

ci,j Hi(x) Hj(t), (3.7)

where Hi(x), Hj(t) are Hermite polynomials and ci,j are unknown Hermite coefficients to be deter-
mined in the following steps.

Substituting from (3.7) into (3.1), we get

N∑
i=0

N∑
j=0

ci,j [Hi(x) Hj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Hi(y) Hj(z)dydz] = f(x, t), (3.8)

where 0 < α < 1, (x, t) ∈ [a, b]× [c, d].
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Multiplying both sides in equation (3.8) by Hp(x) Hq(t), then integrate with respect to x and y
from a to b and from c to d, respectively, such that p and q = 0, 1, 2, . . . , N. Hence, equation (3.8)
becomes of the form

N∑
i=0

N∑
j=0

ci,j

d∫
c

b∫
a

Gij(x, t) Hp(x) Hq(t) dxdt = Fpq, (3.9)

where

Fpq =

d∫
c

b∫
a

f(x, t) Hp(x) Hq(t) dxdt,

Gij(x, t) = Hi(x) Hj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Hi(y) Hj(z)dydz.

Substituting p, q = 0, 1, . . . , N into (3.9), we get a system of (N+1)2 non-singular algebraic equations.
By solving this system, we get Hermite coefficients ci,j .

The accuracy of this method depends on reducing the error using low-degree interpolation poly-
nomials without increasing time of calculation (see [17]). The error function is expressed by the
formula

E(x, t) = |u(x, t)− ũ(x, t|,
for xl ∈ [a, b] and tm ∈ [c, d], the error function can be written as follows:

E(xl, tm) = |u(xl, tm)− ũ(xl, tm| ∼= 0,

or E(xl, tm) ≤ 10−ki , (ki) is a positive integer,
if max(10−ki) = 10−k, k is a positive integer.

4. Numerical Examples

In this section some numerical examples of two-dimensional singular mixed Volterra–Fredholm
integral equations are presented to illustrate the previous methods.

Example 1. Consider the singular VFIE [1]

u(x, t) = x2t2 − 25

156
t
13
5 +

t∫
0

1∫
0

y2(t− z)−0.4 u(y, z)dydz, (4.1)

where x, t ∈ [0, 1] with the exact solution u(x, t) = x2t2.

In Table 1, we give the absolute error of equation (4.1) by the Bernoulli-collocation (BC) and
Hermite–Galerkin (HG) methods for different values of x, t and N = 2, 4, 6 according to Section 3.
Figures 1, 2, and 3 clarify the exact solution of (4.1), the absolute error for N = 6 by BC and HG
methods, respectively. Moreover, these methods are compared to the Toeplitz matrix method [1] that
given for N = 40.

Example 2. Consider the singular VFIE [1]

u(x, t) = x2t2 − 125

336
x2t

12
5 +

t∫
0

1∫
0

x2 y(t− z)−0.6 u(y, z)dydz, (4.2)

where x, t ∈ [0, 1] with the exact solution u(x, t) = x2t2.

The absolute error of equation (4.2) for different values of x, t and N = 2, 4, 6 by BC and HG
methods are obtained in Table 2. We plot Figures 4 and 5 to show the absolute error with N = 6
by our methods. Furthermore, these examples compared to Toeplitz matrix method [1] are solved for
N = 60.
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Figure 1. Exact solution of Examples 1 and 2.

Figure 2. Absolute error of Example 1, N = 6 by BC method.
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Figure 3. Absolute error of Example 1, N = 6 by HG method.

Figure 4. Absolute error of Example 2, N = 6 by BC method.
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Figure 5. Absolute error of Example 2, N = 6 by HG method.

Table 1. Absolute Error of Example 1 by BC and HG methods for N = 2, 4, 6.

n = 2 n = 4 n = 6
(x, y) BC method HG method BC method HG method BC method HG method

(0, 0) 1.2× 10−10 1.15× 10−8 1.0× 10−10 8.6399× 10−6 1× 10−10 3.1208× 10−5

(0.1, 0.1) 1.2× 10−10 3.6077× 10−9 6.970× 10−11 6.7453× 10−7 3.294× 10−11 2.9815× 10−7

(0.2, 0.2) 1.2× 10−10 4.545× 10−10 8.882× 10−11 1.8246× 10−6 1.255× 10−10 2.2109× 10−6

(0.3, 0.3) 1.2× 10−10 7.659× 10−12 1.388× 10−10 1.8611× 10−7 1.774× 10−10 1.1138× 10−5

(0.4, 0.4) 1.2× 10−10 7.046× 10−10 2.048× 10−10 5.9285× 10−7 2.531× 10−10 9.7149× 10−6

(0.5, 0.5) 1.2× 10−10 1.4533× 10−9 2.702× 10−10 1.6656× 10−6 3.322× 10−10 1.8397× 10−6

(0.6, 0.6) 1.2× 10−10 1.6322× 10−9 3.480× 10−10 8.6798× 10−7 4.016× 10−10 5.3769× 10−6

(0.7, 0.7) 1.2× 10−10 1.0899× 10−9 4.788× 10−10 6.5042× 10−8 5.385× 10−10 1.6465× 10−5

(0.8, 0.8) 1.2× 10−10 1.455× 10−10 6.838× 10−10 1.2693× 10−6 8.329× 10−10 1.0652× 10−5

(0.9, 0.9) 1.2× 10−10 4.114× 10−10 9.297× 10−10 6.7722× 10−7 1.0599× 10−9 1.2718× 10−5

(1, 1) 1.2× 10−10 6.791× 10−10 1.2191× 10−9 6.2889× 10−6 1.0661× 10−9 3.9371× 10−5
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Table 2. Absolute Error of Example 2 by BC and HG methods for N = 2, 4, 6.

n = 2 n = 4 n = 6

(x, y) BC method HG method BC method HG method BC method HG method

(0, 0) 8.10× 10−11 1.24× 10−8 1.100× 10−10 4.6954× 10−6 2× 10−10 1.0264× 10−4

(0.1, 0.1) 6.9× 10−11 2.9013× 10−9 6.996× 10−11 2.3239× 10−8 9.8772× 10−11 1.7232× 10−5

(0.2, 0.2) 5.6× 10−11 4.559× 10−11 1.181× 10−10 68951× 10−7 1.8759× 10−10 1.1683× 10−5

(0.3, 0.3) 4.1× 10−11 4.518× 10−10 2.444× 10−10 3.1453× 10−7 1.5683× 10−10 7.8709× 10−6

(0.4, 0.4) 2.4× 10−11 1.6951× 10−9 3.745× 10−10 1.5990× 10−7 1.3114× 10−10 9.7149× 10−6

(0.5, 0.5) 5× 10−12 2.3067× 10−9 5.165× 10−10 5.5695× 10−8 4.0122× 10−12 1.6494× 10−5

(0.6, 0.6) 1.6× 10−11 1.7741× 10−9 7.210× 10−10 2.9392× 10−7 4.6349× 10−11 9.1906× 10−6

(0.7, 0.7) 3.9× 10−11 5.408× 10−10 1.0063× 10−9 8.5861× 10−8 6.43557× 10−11 1.9329× 10−6

(0.8, 0.8) 6.4× 10−11 6.763× 10−12 1.3374× 10−9 1.2693× 10−7 1.73078.× 10−10 4.1436× 10−6

(0.9, 0.9) 9.1× 10−11 2.5278× 10−9 1.6814× 10−9 6.5965× 10−8 5.42449× 10−10 4.2443× 10−6

(1, 1) 1.2× 10−10 1.1416× 10−8 2.0952× 10−9 2.6867× 10−6 7.8985× 10−10 6.3423× 10−5

5. Conclusions and Discussions

In this paper, two methods are presented to solve the two-dimensional singular mixed Volterra–
Fredholm integral equations by the results of the given two examples we compare between the two
methods and establish the following deductions

1. The two methods are better and more effective than Toeplitz matrix method [1], numerically.
2. The Bernoulli-collocation method is more effective than the Hermite–Galerkin method in appli-

cation.
3. The proposed computational methods could be further applied to the non-linear Volterra–

Fredholm integral equations.
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