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RATIONAL PAL TYPE (0,1;0)-INTERPOLATION AND QUADRATURE
FORMULA WITH CHEBYSHEV-MARKOV FRACTIONS

SHRAWAN KUMAR!, NEHA MATHUR?, VISHNU NARAYAN MISHRA®* AND PANKAJ MATHUR!*

Abstract. We present a Pal-type (0, 1;0)-interpolation on an inter-scaled set of nodes, when Her-
mite and Lagrange data are prescribed on the zeros of Chebyshev—Markov sine fraction Uy (z) and its
derivative U}, (z), respectively. A quadrature formula based on the obtained Pal-type interpolation
has been constructed. Coefficients of this quadrature are obtained in the explicit form.

1. INTRODUCTION

The study of different type interpolation processes has been a subject of interest for several math-
ematicians. In almost all the cases the interpolatory polynomials are considered on the nodes which
are the zeros of certain classical orthogonal polynomials. The main idea of the present paper is to
construct a rational interpolation process and its corresponding quadrature formula.

Let Rop—1(ag,a1,as,...,as,—1) be a rational space defined as

p2n—1('r) }

Raon-1(ao,a1,...,a2,-1) := { =
n n Zﬁol(l—&-akx)

32751 are real and belong to [—1,1], or are

where pa,_1(x) is a polynomial of degree < 2n —1 and {ay
paired by a complex conjugation.

Chebyshev and Markov introduced rational cosine and sine fractions [9] which generalize Chebyshev
polynomials, possess many similar properties [8,16, 18] and are called Chebyshev—Markov rational
fractions. More details on the rational generalization of Chebyshev polynomials can be found in

[1-6,19]. Let Uy, (z) be the rational Chebyshev-Markov sine fraction,

Un(z) = W (1.1)

where

n arccos ——— n\T) = ——F/——,
2n 1
1—
Aan (2 Z ARSTD S (1.2)

1+apz’

The rational fraction U, (z) can be expressed as

Un(e) = 2t

7M1+ ag)

where P, (z) is an algebraic polynomial of degree n — 1 with a real coefficient, and {a)};"," are as
defined above. The fraction U, (x) has n — 1 zeros on the interval (—1,1) given by

—1<zp 1 <Tpo< - <x2< 1 <1,
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with
ton(zr) =km, k=1,2,...,n— 1.
Also, the rational function Ag,(z) can be expressed as

p2n71($)
)\Qn(ir) = Ton_1,. O
k=0 (1 + akx)

where pa,_1(z) is a polynomial of degree atmost 2n — 1. It has no zeros in the interval [-1,1]. On
differentiating (1.1), we get

= €08 o (7) Aop (2)V1 — 22 4 sin g, (7)

Uy (z) = (L 2257 (1.3)
and
U,ll(.%‘k) = —(/\1271(?%)). (1.4)

In 1962, Rusak [15] initiated the study of interpolation processes by means of rational functions on
the interval [—1,1]. The nodes were taken to be the zeros of Chebyshev—Markov rational fractions.
In [13], rational interpolation functions of Hermite-Fejér-type were constructed. Min [10] was the
first, who considered the rational quasi-Hermite-type interpolation. He constructed the interpolated
function and proved its uniform convergence for the continuous functions on the segment with the
restriction that the poles of the approximating rational functions should not have limit points on
the interval [—1,1]. Based on the ideas of [13] and using the method, somewhat different from that
of [10], Rouba et al. [12], [14] revisited the rational interpolation functions of Hermite-Fejér-type.
They also proved the uniform convergence of the interpolation process for the function f € C[—1,1]
and obtained explicitly its corresponding Lobatto type quadrature formula. Recently, Shrawan Kumar
et al. [7] studied the Radau type quadrature for an almost quasi-Hermite-Fejér-type interpolation in
rational spaces.

In this paper, we have considered the existence and explicit representation of a P4l type (0, 1;0)-
interpolation on the rational space R3,—3(ag,a1,...,a2,—1), when the Hermite and Lagrange data
are prescribed on the zeros of Uy, () ({1 }7Z1) and its derivative U/, (z) ({tx}}_7), respectively. These
zeros are inter-scaled such that

=2, <Tp 1 <th9<Tpo<- - <T2<t; <1 <1=20.

A quadrature formula corresponding to the interpolation process has also been obtained.

2. EXPLICIT REPRESENTATION OF PAL TYPE (0, 1;0)-INTERPOLATION

For any function f € C[—1,1] the P4l type (0,1;0)-interpolation function W, (x, f) satisfying the
conditions

Walzk, f) = f(zr),  k=0,1,....n,

W (zk, f) = ax, k=12,...,n—1, (2.1)
Wi (te, ) = f(tx), k=1,2,...,n—2,
can be explicitly represented as
n n—1 n—2
Wz, ) =Y fer)Br(x) + Y axDi(x) + Y f(tr)Cr (@), (2.2)
k=0 k=1 k=1
where ay, k = 1,2,...,n — 1 are arbitrarily given real numbers, {Ej(2)}}{_,, {Dx(z)}?=] and

{Cx(2)}7Z? are fundamental functions of the P4l type (0,1;0) interpolation W, (z, f), satisfying the
following conditions: for £k =1,2,...,n — 2,
C’k(xj):O, j:071,...7n,
Cl(z;)=0,  j=1,2,...,n—1, (2.3)
Ck(t]): ks j:172a"'7n_27
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fork=1,2,...,n—1,

Dk(l'j): 5 j:O,L...,n,
Di(z;) =6k,  j=12,...,n—1, (2.4)
Dy(t;) =0, ji=12...,n—2

and for k=0,1,2,...,n,
Ek('r]): gk j20717"'7na
El(z;) =0, j=1,2...,n—1, (2.5)
Ei(t;) =0, j=1,2,...,n—2.
In the following lemmas, we give the explicit representation of these fundamental functions of the P4l
type (0, 1; 0)-interpolation W, (x, f).
Lemma 1. The fundamental functions {C’k(x)}z;lz satisfying conditions (2.3) can be explicitly rep-
resented for k=1,2,....,n—2, as
(A2n (t4))?2 (1 — 2°)Up () L ()
(1 = )UR(tr) Aan(@))3/2
where U, (z) are given by (1.1), Aan(x) are given by (1.2) and {Li(z)}}Z} are given by
Uy (z)
(z — te) U}, (t)
Proof. We will show that {Cy(z)}}Z7 given by (2.6) satisfies conditions (2.3). Obviously, for k =

L,2,...,n =2 Ci(z;) =0,j =0,1,...,n and Gi(z;) = 0, j = 1,2,...,n — 1. Also, for j # £,
Cvk(tj):0,j:1’...,7’L—2andforjzk-7

(A2n(t))*? (1= 1)U (tk)

Ci(x) = (2.6)

Ly(z) =

lim C = lim L =1
3, O ) = A0 ()22 b 4
which completes the proof of the Lemma. O

Lemma 2. The fundamental functions {Dk(a:)}z;ll satisfying conditions (2.4) can be explicitly rep-
resented for k=1,2,...,n—1, as

A2n (1)) (1 — a?)Us (2)U;, (2) i ()

PSR Ge@p >0
where U (x) are given by (1.3), Aoy () are given by (1.2) and {£(x)}}Z] are given by
(o) = ) (2.9

(z — 2x)Up(xk)
Proof. Obviously, for k = 1,2,...,n — 1, Dg(z;) =0, j = 0,1,...,n and for j # k, D;(z;) = 0,
i=12,...,n—1, for j =k,
: Aan (@) (1 —2)Un(z) 1. ( Un(@)
lim D.(z) = (A2n k)= n 1 n =1
i o) = (o zmytree) (ontge) (5

Also, Dy(t;) =0, j =0,1,...,n, which shows that {Dy(z)}7_], given by (2.7), satisfies all conditions
(2.4) and hence completes the proof of the Lemma. O

Lemma 3. The fundamental functions {Ey(x)}7_, satisfying conditions (2.5) can be explicitly rep-

resented as
(A2n(1))%2 (1 4 2)UZ (2)U;, (x)

EO(SC) = QU%(l)Urll(l) ()\2’”(3:))3/2 ) (29)
fork=1,2....n—1,
T 3/2 — 22 \U' (2
B) = e Oa T (1t~ )ik, (2.10)
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where
_we U)o A (wk)
T T Uy Dhan () (2.11)
and
Fae) = S0 CUPE_ (1= 2)Ua@Un(e) (212)

U3(=DUL(=1)  (Aan(2))/?

Proof. Obviously, for j # k, we have E(z;) =0, =0,1,...,n and for j = k, using de L’Hospital’s
rule and (1.4), we have

lim Ey(x) = (127 ) ( lim 78111#2”( )>
zw Adn(@r) \e=ar (z — ap)
)y, Db’y
L)\ Vioe '
Also, for k=1,2,...,n—1, wehaveEk(tJ)—O i=12...,n—2.

On differentiating (2.10) with respect to z and using (1 4) we get

(1—2a?) {2U7'1(x){1+bk(w—xk)} (sinugn(:r))/
U} (2x) (Aan () 1/ (Azn(2))3/2 T — T
N (ka,’L(a:) + {1+ bi(z — )} U} ()
(A2n(2))3/2
B 3N, () U] (2){1 + br(xz — ax) } sin poy, () sin oy, ()
o) ()] (52
then for j # k, we have Ej(z;) =0, j=1,2,...,n— 1 and for j =k,
(1-af) 20, () : sin pizn () ) ((sin pon(2) )’
i, B4 =St e (i, (5257) (52527) )

n

. (ka;L(xk) + U () 3A’2n(a:k)Ué(xk)) ( lim W%W)T

()\Qn(mk))g/2 2()‘§n(xk))5/2 r=xr T — Tk

By (x) =

We know that

. osinpon(z) — _)\2”7(:%)
N
and
. !
. sin poy, (2 1
where
vy () + (1= 2Ny, ()
Hon (T) = — (1— 22)3/2 ’
therefore
Tp Up(zr) Ao (k)
lim E - br| =0
Jm By () = L_xk Up(or)  Dhanler) | F] 77

due to (2.11) which shows that {Ey(z)}7Z} given by (2.10) satisfy all the conditions given by (2.5)
fork=1,2,...,n— 1.

Similarly, we can show that Fy and E,(x) given by (2.9) and (2.12), respectively, satisfy conditions
(2.5) for k =0 and (2.5), for k = n, respectively, which completes the proof of the Lemma. O

Remark 4. The P4l type (0, 1; 0)-interpolation W, (f, z), satisfying conditions (2.1) can be explicitly
represented as (2.2) with the help of Lemmas 1-3. Taking all a;’s as zero, W,,(f, z) reduces to the
interpolated polynomials of degree < 3n — 3.
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Theorem 5. The function W, (f,x) is a rational function, that is,

W (f,x) € Ran—3(ao, a1,az,...,a2,—-1).

Proof. Since U,, € R,—1(ag,a1,...,a2,—1), We can express it as
Sn,l(x)
U, = ,
= s
where S} (x) == 2” 1(1 +zag), Sn—1(x) :=cp_1(z —x1)(x —x2) ... (¥ —2p_1) and c,_;1 depends

onn and {a;};", " So, we have

Sh (@)
Y4 = 2 k=1,2 -1
k(x) S;;(l‘) qk(x)a ) 4y , )
where
Sn_l(x)
T) = , k=1,2,....n—1.
W) = g oo — o)
Thus ¢(x) € Rp—2(ag,a1,...,a2,—1). Similarly, we can express
Qn—2(x)
/ —
where Q,,—1(2) := dy_1(z — t1)(z — t2) ... (x — t,—2) and d,,_; depends on n and {ay}{";". Then
Sp(tr) .
Li(z) = S;;((J;)) g (z), k=1,2,...,n—1,
where
* Qn—2($)
T) = , k=1,2,...,n—2.
G = g e — )
Thus Li(z) € Ry—3(ao, a1, ..., a2,—1). Hence, by (2.6), (2.7) and (2.10) the lemma follows. O

Remark 6. Notice that the poles of the rational function W,,(f,x) can be found from the equality
A2n(x) = 0. They depend on the parameters ax,k = 0,1,...,2n — 1. The relationship between the
zeros of the function Mg, () and the parameters ay, is described in [17].

3. QUADRATURE FORMULA

Under the same assumption on the parameters a, as, ..., as,1, we consider the following P&l type
(0, 1; 0)-interpolation.
For the given function f defined on [—1, 1], we define the function

fokﬁk +Zak0k +thk'7k 3.1)

where, for k=1,2,...,n—1,

(o) et L [y (PR 4 ) (o] o)

(1 —27)Up (k }
(1+2)U2(x)U), (x) (1 —2)U2(x)U) (x)
202(-1)U;,(-1) ~

205(MUL(1)

Qo(z) =

fork=1,2,....n—1,

, Qu(z) =

(1 — 2?)Un (2)Uy ()0 ()
(1 = 27) (U} (xx))?

(- ) U2(a) L)
WO =T R

op(z) =

and for k=1,2,...,n — 2,




240 SH. KUMAR, N. MATHUR, V. NARAYAN MISHRA AND P. MATHUR

The function V,,(z) given by (3.1), satisfies conditions (2.1) and hence is the P4l type (0,1;0)-
interpolation, and

Vo(f,z) € Ran—3(a1,az,...,a2n—1).

The quadrature formula corresponding to the interpolatory function (3.1) is given by

/ (1= 22)f(r)de ~ 3 fon) / (1 - 22)Q (2)da
4 k=0 e

n—1 1 n—2 L
43 F@) [(1- )o@+ Y 1) [(1- 2 ul)de
k=1 ] k=1 “
n n—1 n—2
~ > Ef(ze) + Y Dpf'(xk) + > Cuf(ur), (32)
k=0 k=1 k=1
where
1
E), :/(1 — ) (x)dx, k=0,1,...,n, (3.3)
-1
1
Dk:/(1—x2)ak(x)dz k=1,2,...,n—1, (3.4)
21
1
Ck :/(1—x2)7k($)dx, k=1,2,...,n—2. (3.5)
-1
Theorem 7. The quadrature formula (3.2) can be expressed as
L n—1
5 B 2m(1 — 22)3/2
[ = 3 (e ) s 36)

Remark 8. The quadrature formula (3.6) can be evaluated by finding the value of the integrals
(3.3), (3.4) and (3.5). These integrals have singularities lying in the interval [—1,1]. The integrals are
evaluated by performing suitable transformations and using the Cauchy residue theorem at the poles
which lie in the interval.

To prove Theorem 7, we shall need the following lemmas below.

Lemma 9. For Dy, k=1,2,...,n—1, given by (3.4), we have

1
_2\2772 /
PSS S R AP
(1 =) (Un(en))® J C)
Proof. Dy for k=1,2,...,n—1, given by (3.4), can be represented as
1
Dy = I, (3.7)

(1 =) (Up(wx))?

where

[0
I __/1 : d

T — T)
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1
sin? pioy, () (@ sin pon () — cos pon () Aoy () V1 — 22
_ dx = Iy — Ixa,
(x — xg) V1—22
where )
.3
T sin® g, (z)
11 = dzr 3.8
o /(xwk)\/lfc? (3.8)
and )
Ty — / sin? fion () €os fion () Aap () . (3.9)
. (x — z)
Consider the transformation )
l—y
_ 1
T=T7 ) (3.10)
which gives
4y
dr = — 3.11
2y
V1i-o2= "2 3.12
S (3.12)
—2(y* — y})
r—Tp) = ——— . 3.13
=) = T+ ) (313)
We know that
gz (22} = sindan(y) (314)
inpo, [ —== | = sin @2, (), .
SIIL [i2 1+ 42 S P2n (Y
where sin ¢9, (y) is Bernstein’s sine fraction
. 1 _
sin d2,(y) = 5 (xa() = X' ), (3.15)
where
2n—1

_ Yz
Xn(y) = H —
7=0

and 2y, are the roots of the equations y? + (1+ax)(1—ax) ™t =0,Zz, >0,k =0,1,...,2n—1. Taking
into account the assumptions on the parameters ax, £ = 0,1,...,2n — 1, we have the following:
1) zo = i, 2) if ar and a; are paired by a complex conjugation, then the corresponding numbers zj,
and z; are symmetric with respect to the imaginary axis. Besides, the function sin ¢s, (y) has zeros at
+yk, yp = /(1 —2)/(1+ 1), k=1,2,...,n — 1. Thus, by using transformation (3.10)—(3.13) and
(3.14) in (3.8), we get

oo

PR b / (1 —y2> sin® gon (1)
k1l — — 2 2 2 y
2 ) \1+¢?) (v* — i)
1+y? .
— "%
2 z%ykl,r%lzk>0 Jkl(Z)’
where
T (1= 32\ sin® 6o, (y)
J = d
(%) / (1+y2> (w2 —22)
—o0
From (3.14), we have
. 1 _ _
sin® gan(y) = —= (X2 (¥) — 3xn(¥) + 3% () — X2 ° (V) - (3.16)

81



242 SH. KUMAR, N. MATHUR, V. NARAYAN MISHRA AND P. MATHUR

Thus
JM(Z) = é(Jku(z) — 3Jk12(2) + 3J;€13(z) — Jk14(2))7 (3.17)
where
s 1— o2 3
Jr11(2) = / <1+Zy/2) (;;”(y;)dy,
T (1= W)
Joz(2) __Zo (1 + y2> T
%) 12 .
Jus(z) = (1 +§) o —(y)2>dy
and
a -4\ xo')
Jialz) = / (1 +y2> (2 — 2"

— 00

Since zp = i, thus the integrand of Jg11(2z) has only a singular point y = z in the upper half plane.
Thus by the residue theorem, we have

_ 2 3
Jkll(z) =27 lim (1 Y > Xn(y)

y=z \1+y% ) (y +2)
1-22\x3(2) .
(1 +Z2) ;. (3.18)
Similarly,
1-22\ x,.%(2) .
Jle(Z) = <1_|_Z2> > ™, (319)
1—22\ xn(2)
Jklg(z) = <1 T Z2> > T (320)
and
1-22\x,'(2) .
Jr1a(z) = <1 n 22> . i (3.21)

Using (3.18), (3.19), (3.20) and (3.21) in (3.17), we get

L(1=22\xp(2) . (1-2"\x. (2)
T (2) 8i<<1—|—zQ> z m(l—&—zQ) PR
_ 2 _ .2 -1
1+ 22 z

1+ 22 z
Taking the limit as lim and using . (yx) = 1, it follows that

z2—Yk, Lz >0

Iip = 0. (3.22)
Now we evaluate Ij2, given by (3.9). Using (3.11) and (3.13) in (3.9), we get

() 0 e (1) o (1)
Io = —(1+yi)/y)\2n<l+y2 A 2CO§M2H Sl
(1 +y2) (% —viQ)

— 00

We know that
2

1—
COS L2n (sz> = COs ¢2n(y)7
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where cos ¢9,(y) is Bernstein’s cosine fraction

(xn(y) + X7 () -

[N

cos gan(y) =
Thus by (3.14) and (3.23), we have

Iio=—(1+y?) lim

2—Yr,Sz >0

7 y>\2n (%) Sil’l2 ¢2n(y) COS ¢2n (y) d
Y.

(1 +y%)(y* - 2?)

—00

By virtue of (3.14) and (3.23), we have

sin® Gan () coS dan (y) = —; O W) +xa2 W) — xaw) — X0 ' () -

Thus
1+y? .
Iy = ( 8yk) lim (Jkgl(Z) + Jr22(2) = Jr2s(z) — Jk24(2)>7
2—=Yk,S2 >0
where
00 _2 <
y YyAan (%) xi(y)d
k1 (2) _/ T+ )2 —22)
%) —y2 _
p YyAan (%) xn?’(y)d
k22(z) __/ (1+y2)(y2_22) Y,
00 2
J y)\2n (%) Xn(y) d
(%) ‘_/ T —2)
and

% yan (5) X3 (y)
Jr24(2) = / ( il ) dy.

(1 +y?)(y? — 22)

— 00

243

(3.23)

(3.24)

(3.25)

Since zp = i, thus the integrand of Jio1(z) has only a singular point y = z in the upper half-plane.

Hence by the residue theorem, we have

_12
PR— yAzn(L;z)xi(y)
TS T )+ )

_)\Qn (%) Xi(2)

= 1t 22 .
Similarly,
_,2 .
M (322) %)
Jk22(z) = (1 i 22) e,
/\2n (%) Xn(z) .
Jrosz(2) = 129 i
and

Jk24(2’) = (1 T 22) .

(3.26)

(3.27)

(3.28)

(3.29)
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Putting the values of Jia1(2), Jko2(2), Jr23(z) and Jix24(z) from (3.26), (3.27), (3.28) and (3.29), re-
spectively, in (3.25), we get

1—2°
(1+y3) . Azn <1+22> 3 -3 -1 ,
L= 1Y) A —nlz) = .
k2 3 z—>yk1,g1zk>0 (1 i 22) (Xn(z) + Xn (Z) X (Z) Xn (Z)) ™

Since xn(yx) = 1, thus

Tz = 0. (3.30)
Using (3.22) and (3.30) in (3.7), the Lemma follows. O
Lemma 10. For Ey, k=1,2,...,n— 1 given by (3.3), we have

g o (= ap)??
P Naalan)

Proof. Ey for k=1,2,...,n — 1 given by (3.3), due to (2.8) and Lemma 2 can be represented as

1
1
By =——v77— /(1 — 222U ()02 (x)dx
1— 2 U’ n
( xk) n(xk)_l
1
___(1-ap) / (1= 2®)Up () sin® pon ()
A%n(‘rk)U';L(xk) | (I — .I?k)Q :
Since
U’ (z) = — Ccos M2n(x))\2n($>m + x sin po, ()
s (1 — 22)3/2 ,
we have
(1- xi)
En(®@) = o S 3.31
{0 = 3 O o™ (331)
where
Iy = Iy — Ii2 (3.32)
with
xsin® pig, ()
T = d 3.33
e O a ’ (3.33)
and
1
.2
Ly = / Aap, () sin® pion, () cos pay (x) . (334
(x — )2

21
Using transformation (3.10) and due to (3.11), (3.13) and (3.14), (3.33) can be transformed to

(1+ )? 7 (L= y*)sin’ 6 (y)

Iy =

z . (2 —yp)?
(1+yp)? . 7 (1 — y2) sin® gon(y)
=% dy. '
2 Z‘)yklglzk >0 (y2 — 22)2 Yy (3.35)
Due to (3.16), (3.35) can be represented as
14 yi)? )
I = _% lim (Ikn(z) _3Ik12(z)+31k13(2) _Ik14(2’)), (336)

162 Z2—=Yk, Sz, >0
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where
T (=) = / Wdy,
T 1 a2
Tiaa(2) = / Wdy,
and

o) = [ U

Since zg = 4, the integrand of Ij11(z) has only a singular point y = z in the upper half-plane. Thus
by the residue theorem, we have

d (1—y2)x2(y)
) =2 G

which implies

3(1 — 2 2 / -9 3 _(1— 2 3
423
On simple calculations and using x,(yx) = 1, we get

2n—1

lim Ikll( ) 2y <3yk(]— _yk) Z

2= YK,z >0 ‘
J=0

Zj %
(yr — ) (Y — %5

- (1+ y,%)>. (3.37)

Similarly,
2n—1

Z( i R/ - —(1+y£)>. (3.38)

Yk — 2) (Yr — 25)

lim Ik14( ) 2% 53 <3yk( yl%)

2—=Yk,S2 >0 -
Jj=0

Since the integrand of Ix12(z) has only a singular point y = z in the upper half-plane. Thus again,
using the residue theorem, we have

d (1—y*)xn(y)
I — 974 lim — ¥ )XnJ)
e) =2 G

which gives

Iiia(z) = 2772-(2{(1 — 22X (2) — 224)27;(;2)} —(1— Zz)Xn(Z)>.

On simple calculations and using x,(yx) = 1, we get
lim  Jpa(z ( 3 i Bl —(1+ y2)). (3.39)
2=y, $2x>0 j:O (e = 2)(yr — %) ’
Similarly,
lim  Tps(z) = ( 1 %% —(1+ y2)> (3.40)
2y, Sz >0 ]% e (yk — Zj)(yk — Z}) k
Using (3.37), (3.38), (3.39), (3.40) in (3.36), we get

I = 0. (3.41)
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Now we evaluate Iy given by (3.34). Using the transformation (3.10) and due to (3.11), (3.13) and

(3.14), (3.34) can be written as

oo 1-y2\ . 2 1—y2 1—y?
Yo (—) sin® o (—) COS [ (—)
Lo = (1+4})? / A — Ay
(y _yk)
— 00

Thus by (3.15) and (3.23), we have

7 YAan, (%) sin® P20 (y) €O P2, (y)

Lo = (1+y)? i dy.
k2 = (14 yi) oy 50 (42 — 22)2 y
Using (3.24) in the above equation, we get
L+yp)?
Ty = _( Syk) lim  (Tx21(2) + Tr22(2) — Ir2s(2) — Iroa(2)),
2= YK,z >0
where
00 2
; YAan (ﬁ) xi(y)d
k:21( ) - / (yz — 22)2 Y,
.2 .
T yhon (ﬁ) Xn 2 (y)
Iyo2(2) = / (12 — 22)2 dy,
[e’e) )\ 1—y2
Yo (1507 ) Xn(y)
and

T yhan (%) X' ()
Tiaa(z) = / (y2 — 22)2 W

— 00

(3.42)

Since zg = 4, the integrand of Ijs1(z) has only a singular point y = z in the upper half-plane. Thus

by the residue theorem, we have

2
4 yAgn(%)xi(y)
Iyo1(z) =2mi lim —
y—z dy (y + 2)2

m 1-22 11—\
— o (3 (155 @ + (n(155) ) 6.

On simple calculations and using . (yx) = 1, we get

. 1 .2
lim Ikzl(z) K <3>\2n< Yk

_ Zj =%
2—Yk,Sz >0 ka

= e —2) vk — %)

Similarly,

. 2n—
i 1 —y? 2i — 25
lim Iy z(3>\ ( k Ll
2=y, 32 >0 z2(2) 2y \7 M\ 1+ 7 j;o (Y — 2j) (Y — %)

(3.43)

(3.44)



RATIONAL PAL TYPE (0, 1;0)-INTERPOLATION AND QUADRATURE FORMULA

247

The integrand of Ixe3(z) has only a singular point y = z in the upper half-plane. Thus by the residue

theorem, we have

2
k23(z) - WZyL}Hldey (y+z)2

o (an (155 o+ (15 Z))XU)

which on simple calculations and using x,(yx) = 1, gives

i 1—y? Rl 2i — Z;
lim  Tpos(z) =— ( Aan [ —£ J )
2= Yk, Sz >0 23(2) ka( 2”( 2) (yx — 2)(yx — %)

i 1—y? Rl 2i — Z;
lim Ik24(z) =— ()\Qn (g) J J
k

22Uk, S2>0 2y I+y = (ye — 25) (ye — %5)
1—42\Y
“(e(55)),)
Ty Yk
Using (3.43), (3.44), (3.45) and (3.46) in (3.42), we get
1 212 1_ 2\ 2n—1 s
Ik2:*( +vi0) 7Ti<)\2n< yg) Z Zj — Zj _ >
4y Lyi) = (e —2) = %)
We know that .
nz_: % =% __ Aan(ak)
(e —2z) e — %) i(l+y3)

=0

hence
203, (w1)

V1—a3 ’

Putting the values of Ij; and Iy from (3.41) and (3.47), respectively, in (3.32), we get

Iy =

Substituting this value of Ij, in (3.31), the Lemma follows.
Lemma 11. For Ey defined by (3.3) for k =0, we have

Ey =0.
Proof. For k =0, (3.3) can be represented as

1

Fo = smemu )

IOa

where

Iy :/(1 +2)(1 — 22 U2 (2)U! (z)dz

= [t s (o) (£ e 8 %mm)dx’
21

(3.45)

(3.46)

(3.47)

(3.48)
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Iy = Io1 — lo2, (3.49)
where
1
1+ (xsin® pg, ()
d .
/’/1—93( e Y (3.50)
21
and
1
_ / 1+ (sin2 pon () cos m"(x))\%(x))dx. (3.51)
1—=z V1= 22
1
First, we evaluate Ip;. Using transformations (3.10) and (3.11), (3.12) and (3.14) in (3.50), we have
17 11—\ .,
Inn = 3 / y2<1 +y2) sin® ¢an (y)dy,

and due to (3.15), I} can be represented as

oo

1
Ipy = T <1011 — Ip12 — 3113 + 31014>7 (3.52)
where
-3
Ion = | S\, 3.53
011 / 21+ 42) Y ( )
(1= )x2" ()
I n W g
na= [ S
[ (= y?)xa()
Io13 = ~ 7 7 d 3.54
013 / 2+ y?) Y ( )
and

T 1= 2)v1
Tors = / ( Y )an(y) dy.
(1 +9?)
Since zy = i, the integrand of Iy, given by (3.53), has only a singular point y = 0 in the upper
half-plane. Thus by the residue theorem, we have

d1—y? o
Io11 = 2mi li 3 (y) = 6mi — — — | = =247, (1). .
o = 2ri iy ) = o ) (£-2)=-2ma) (3.55)
Similarly,
1012 = _2477)\271(1) (356)
Again, using the residue theorem for Iy, given by (3.54), we get
d1— y 2n—1
1013 = 2m ;11}1’%) dy 1+ y2 Xn = 2m Z ( — ) = —87T)\2n(1). (357)
and, similarly,
To1a = =87 A2, (1). (3.58)

Thus using (3.55), (3.56), (3.57) and (3.58) in (3.52), we get
Io1 = 0. (3.59)
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Now, for Ipz, given by (3.51), due to (3.10)—(3.12) and (3.14), on a simple calculation, we have

% sin? B2n(y) o8 P2 (y) A2n <1+y2 )
Ipo = d
02 / y(l +y ) Y

— 00

which, due to (3.24), can be represented as

1
Ipz = 3 (1021 + Ioaz — I3 — 1024>, (3.60)
where
I _ / )\Qn (1+y ) Xn(y)d
021 (1 Ty ) Y,
oo 2 —
)\271 (ler ) XnS(y)
Ipoo = d
022 / y(1+92) Y,
o /Oo Aan, <1+y ) Xn(y)d
023 —7 vty ) Y
and

dy.

OO)\zn(l m )Xn (y)
1024:/ (++y)

— 00

Now, since for Iy21, the only singularity on the upper half plane is y = 0, hence by residue theorem,

we have
den (154) 4 w)

lyo1 = 2mi ?}g% ) = 2miAan(1). (3.61)
Similarly,
Tpao = 2midg, (1). (3.62)
Again, for Ips3, by the residue theorem, we have
2
Ipes = 2mi lim Ao (W) xn(v) = 2midg, (1) (3.63)
=0 (1+y7) "
and
To2q = 2midan (1). (3.64)

Substituting the values of (3.61), (3.62), (3.63) and (3.64) in (3.60), we get
Ios = 0. (3.65)

Putting the value of Ip; and Iy from (3.59) and (3.65), respectively, in (3.49), we get Iy = 0 which,
due to (3.48), implies

Ey = 0.

Lemma 12. For E,, defined by (3.3) for k = n, we have
E, =0.
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Proof. For k =n, (3.3) can be represented as

1
1,

50 = o™

where

(1= 2)(1 = 2*)Up (2)Uy, (2)d

1—x (xsin® pg,(x)  sin? pon () cos pon () Aap ()
- dx = Inl - In2-
L+a (1—2?) V1— 2?2

Following the same steps as in Lemma 11, we get I,,; = I,,2 = 0 which implies that I, = 0 and hence
the Lemma follows. O

L L—_

Lemma 13. For Cj given by (3.5), we have C,, =0, k=1,2,...,n—2.

Proof. C given by (3.5), can be represented as

O = TR

where

(- 2P ()
Ik—/ (.’lt—tk) dx,

which reduces to

1
1 x sin® n(T .
I, = / ( ( on () — sin® ton () cos ugn(x))\gn(x)>d;v = Ix1 — Igo,

. T —tg) V1—22
where
1
.3
2 sin® oy, ()

Iy = | ————=dz

" /(J?tk)\/IIQ
and

1
I — / sin? fion, () €08 pon () Aap () de
k2 1 @ —tr) :

Proceeding as in the above lemmas, it follows that Ix; = Iyo = 0 which implies that I, = 0, from
which the Lemma follows. g

From Lemma 9-13 and (3.2), Theorem 7 follows.

4. CONCLUSION

Here, a quadrature formula corresponding to the Pal type (0, 1; 0)-interpolation in rational spaces
has been obtained. This study may further be extended to the case of lacunary interpolation in
rational spaces.
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