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RATIONAL PÁL TYPE (0, 1; 0)-INTERPOLATION AND QUADRATURE

FORMULA WITH CHEBYSHEV–MARKOV FRACTIONS

SHRAWAN KUMAR1, NEHA MATHUR2, VISHNU NARAYAN MISHRA3∗ AND PANKAJ MATHUR1∗

Abstract. We present a Pál-type (0, 1; 0)-interpolation on an inter-scaled set of nodes, when Her-

mite and Lagrange data are prescribed on the zeros of Chebyshev–Markov sine fraction Un(x) and its

derivative U ′n(x), respectively. A quadrature formula based on the obtained Pál-type interpolation
has been constructed. Coefficients of this quadrature are obtained in the explicit form.

1. Introduction

The study of different type interpolation processes has been a subject of interest for several math-
ematicians. In almost all the cases the interpolatory polynomials are considered on the nodes which
are the zeros of certain classical orthogonal polynomials. The main idea of the present paper is to
construct a rational interpolation process and its corresponding quadrature formula.

Let R2n−1(a0, a1, a2, . . . , a2n−1) be a rational space defined as

R2n−1(a0, a1, . . . , a2n−1) :=

{
p2n−1(x)∏2n−1

k=0 (1 + akx)

}
,

where p2n−1(x) is a polynomial of degree ≤ 2n− 1 and {ak}2n−1
k=0 are real and belong to [−1, 1], or are

paired by a complex conjugation.
Chebyshev and Markov introduced rational cosine and sine fractions [9] which generalize Chebyshev

polynomials, possess many similar properties [8, 16, 18] and are called Chebyshev–Markov rational
fractions. More details on the rational generalization of Chebyshev polynomials can be found in
[1–6,19]. Let Un(x) be the rational Chebyshev–Markov sine fraction,

Un(x) =
sinµ2n(x)√

1− x2,
(1.1)

where

µ2n(x) =
1

2

2n−1∑
k=0

arccos
x+ ak
1 + akx

, µ′2n(x) = − λ2n(x)√
1− x2

,

λ2n(x) =
1

2

2n−1∑
k=0

√
1− a2

k

1 + akx
, n ∈ N. (1.2)

The rational fraction Un(x) can be expressed as

Un(x) =
Pn−1(x)√

Π2n−1
k=0 (1 + akx)

,

where Pn−1(x) is an algebraic polynomial of degree n− 1 with a real coefficient, and {ak}2n−1
k=0 are as

defined above. The fraction Un(x) has n− 1 zeros on the interval (−1, 1) given by

−1 < xn−1 < xn−2 < · · · < x2 < x1 < 1,
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with
µ2n(xk) = kπ, k = 1, 2, . . . , n− 1.

Also, the rational function λ2n(x) can be expressed as

λ2n(x) =
p2n−1(x)∏2n−1

k=0 (1 + akx)
,

where p2n−1(x) is a polynomial of degree atmost 2n − 1. It has no zeros in the interval [−1, 1]. On
differentiating (1.1), we get

U ′n(x) =
− cosµ2n(x)λ2n(x)

√
1− x2 + x sinµ2n(x)

(1− x2)3/2
(1.3)

and

U ′n(xk) = − λ2n(xk)

(1− x2
k)
. (1.4)

In 1962, Rusak [15] initiated the study of interpolation processes by means of rational functions on
the interval [−1, 1]. The nodes were taken to be the zeros of Chebyshev–Markov rational fractions.
In [13], rational interpolation functions of Hermite–Fejér-type were constructed. Min [10] was the
first, who considered the rational quasi-Hermite-type interpolation. He constructed the interpolated
function and proved its uniform convergence for the continuous functions on the segment with the
restriction that the poles of the approximating rational functions should not have limit points on
the interval [−1, 1]. Based on the ideas of [13] and using the method, somewhat different from that
of [10], Rouba et al. [12], [14] revisited the rational interpolation functions of Hermite–Fejér-type.
They also proved the uniform convergence of the interpolation process for the function f ∈ C[−1, 1]
and obtained explicitly its corresponding Lobatto type quadrature formula. Recently, Shrawan Kumar
et al. [7] studied the Radau type quadrature for an almost quasi-Hermite–Fejér-type interpolation in
rational spaces.

In this paper, we have considered the existence and explicit representation of a Pál type (0, 1; 0)-
interpolation on the rational space R3n−3(a0, a1, . . . , a2n−1), when the Hermite and Lagrange data
are prescribed on the zeros of Un(x) ({xk}n−1

k=1) and its derivative U ′n(x) ({tk}n−2
k=1), respectively. These

zeros are inter-scaled such that

−1 = xn < xn−1 < tn−2 < xn−2 < · · · < x2 < t1 < x1 < 1 = x0.

A quadrature formula corresponding to the interpolation process has also been obtained.

2. Explicit Representation of Pál type (0, 1; 0)-interpolation

For any function f ∈ C[−1, 1] the Pál type (0,1;0)-interpolation function Wn(x, f) satisfying the
conditions 

Wn(xk, f) = f(xk), k = 0, 1, . . . , n,

W ′n(xk, f) = αk, k = 1, 2, . . . , n− 1,

Wn(tk, f) = f(tk), k = 1, 2, . . . , n− 2,

(2.1)

can be explicitly represented as

Wn(x, f) =

n∑
k=0

f(xk)Ek(x) +

n−1∑
k=1

αkDk(x) +

n−2∑
k=1

f(tk)Ck(x), (2.2)

where αk, k = 1, 2, . . . , n − 1 are arbitrarily given real numbers, {Ek(x)}nk=0, {Dk(x)}n−1
k=1 and

{Ck(x)}n−2
k=1 are fundamental functions of the Pál type (0,1;0) interpolation Wn(x, f), satisfying the

following conditions: for k = 1, 2, . . . , n− 2,
Ck(xj) = 0, j = 0, 1, . . . , n,

C ′k(xj) = 0, j = 1, 2, . . . , n− 1,

Ck(tj) = δjk, j = 1, 2, . . . , n− 2,

(2.3)



RATIONAL PÁL TYPE (0, 1; 0)-INTERPOLATION AND QUADRATURE FORMULA 237

for k = 1, 2, . . . , n− 1, 
Dk(xj) = 0, j = 0, 1, . . . , n,

D′k(xj) = δjk, j = 1, 2, . . . , n− 1,

Dk(tj) = 0, j = 1, 2, . . . , n− 2

(2.4)

and for k = 0, 1, 2, . . . , n, 
Ek(xj) = δjk, j = 0, 1, . . . , n,

E′k(xj) = 0, j = 1, 2, . . . , n− 1,

Ek(tj) = 0, j = 1, 2, . . . , n− 2.

(2.5)

In the following lemmas, we give the explicit representation of these fundamental functions of the Pál
type (0, 1; 0)-interpolation Wn(x, f).

Lemma 1. The fundamental functions {Ck(x)}n−2
k=1 satisfying conditions (2.3) can be explicitly rep-

resented for k = 1, 2, . . . , n− 2, as

Ck(x) =
(λ2n(tk))3/2(1− x2)U2

n(x)Lk(x)

(1− t2k)U2
n(tk)(λ2n(x))3/2

, (2.6)

where Un(x) are given by (1.1), λ2n(x) are given by (1.2) and {Lk(x)}n−2
k=1 are given by

Lk(x) =
U ′n(x)

(x− tk)U ′′n (tk)
.

Proof. We will show that {Ck(x)}n−2
k=1 given by (2.6) satisfies conditions (2.3). Obviously, for k =

1, 2, . . . , n − 2, Ck(xj) = 0, j = 0, 1, . . . , n and C ′k(xj) = 0, j = 1, 2, . . . , n − 1. Also, for j 6= k,
Ck(tj) = 0, j = 1, . . . , n− 2 and for j = k,

lim
x→tk

Ck(x) =
(λ2n(tk))3/2

(1− t2k)U2
n(tk)

(1− t2k)U2
n(tk)

(λ2n(tk))3/2
lim
x→tk

Lk(x) = 1

which completes the proof of the Lemma. �

Lemma 2. The fundamental functions {Dk(x)}n−1
k=1 satisfying conditions (2.4) can be explicitly rep-

resented for k = 1, 2, . . . , n− 1, as

Dk(x) =
(λ2n(xk))3/2

(1− x2
k)(U ′n(xk))2

(1− x2)Un(x)U ′n(x)`k(x)

(λ2n(x))3/2
, (2.7)

where U ′n(x) are given by (1.3), λ2n(x) are given by (1.2) and {`k(x)}n−1
k=1 are given by

`k(x) =
Un(x)

(x− xk)U ′n(xk)
. (2.8)

Proof. Obviously, for k = 1, 2, . . . , n − 1, Dk(xj) = 0, j = 0, 1, . . . , n and for j 6= k, D′k(xj) = 0,
j = 1, 2, . . . , n− 1, for j = k,

lim
x→yk

D′k(x) =

(
(λ2n(xk))3/2

(1− x2
k)(U ′n(xk))2

)(
(1− x2

k)U ′n(xk)

(λ2n(xk))3/2

)
lim

x→xk

(
Un(x)

x− xk

)
= 1.

Also, Dk(tj) = 0, j = 0, 1, . . . , n, which shows that {Dk(x)}n−1
k=1 , given by (2.7), satisfies all conditions

(2.4) and hence completes the proof of the Lemma. �

Lemma 3. The fundamental functions {Ek(x)}nk=0 satisfying conditions (2.5) can be explicitly rep-
resented as

E0(x) =
(λ2n(1))3/2

2U2
n(1)U ′n(1)

(1 + x)U2
n(x)U ′n(x)

(λ2n(x))3/2
, (2.9)

for k = 1, 2, . . . , n− 1,

Ek(x) =
(λ2n(xk))3/2

(1− x2
k)U ′n(xk)

(1− x2)U ′n(x)

(λ2n(x))3/2

(
1 + bk(x− xk)

)
`2k(x), (2.10)
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where

bk = − xk
1− x2

k

− U ′′n (xk)

U ′n(xk)
+

λ′2n(xk)

2λ2n(xk)
(2.11)

and

En(x) =
(λ2n(−1))3/2

2U2
n(−1)U ′n(−1)

(1− x)U2
n(x)U ′n(x)

(λ2n(x))3/2
. (2.12)

Proof. Obviously, for j 6= k, we have Ek(xj) = 0, j = 0, 1, . . . , n and for j = k, using de L’Hospital’s
rule and (1.4), we have

lim
x→xk

Ek(x) =
(1− x2

k)

λ2
2n(xk)

(
lim

x→xk

sinµ2n(x)

(x− xk)

)2

=
(1− x2

k)

λ2
2n(xk)

(
lim

x→xk

−λ2n(x) cosµ2n(x)√
1− x2

)2

= 1.

Also, for k = 1, 2, . . . , n− 1, we have Ek(tj) = 0, j = 1, 2, . . . , n− 2.
On differentiating (2.10) with respect to x and using (1.4), we get

E′k(x) =
(1− x2

k)

U ′n(xk)(λ2n(xk))1/2

[
2U ′n(x){1 + bk(x− xk)}

(λ2n(x))3/2

(
sinµ2n(x)

x− xk

)′
+

(
bkU

′
n(x) + {1 + bk(x− xk)}U ′′n (x)

(λ2n(x))3/2

− 3λ′2n(x)U ′n(x){1 + bk(x− xk)}
2(λ2n(x))5/2

)(
sinµ2n(x)

x− xk

)](
sinµ2n(x)

x− xk

)
,

then for j 6= k, we have E′k(xj) = 0, j = 1, 2, . . . , n− 1 and for j = k,

lim
x→xk

E′k(x) =
(1− x2

k)

U ′n(xk)(λ2n(xk))1/2

[
2U ′n(xk)

(λ2n(xk))3/2

(
lim

x→xk

(
sinµ2n(x)

x− xk

)(
sinµ2n(x)

x− xk

)′)
+

(
bkU

′
n(xk) + U ′′n (xk)

(λ2n(xk))3/2
− 3λ′2n(xk)U ′n(xk)

2(λ2
2n(xk))5/2

)(
lim

x→xk

sinµ2n(x)

x− xk

)2 ]
.

We know that

lim
x→xk

sinµ2n(x)

(x− xk)
= µ′2n(xk) cosµ2n(xk) = − λ2n(xk)√

1− x2
k

and

lim
x→xk

(
sinµ2n(x)

x− xk

)′
=

1

2
cosµ2n(xk)µ′′2n(xk),

where

µ′′2n(x) = −xλ2n(x) + (1− x2)λ′2n(x)

(1− x2)3/2
,

therefore

lim
x→xk

E′k(x) =

[
xk

1− x2
k

+
U ′′n (xk)

U ′n(xk)
− λ′2n(xk)

2λ2n(xk)
+ bk

]
= 0,

due to (2.11) which shows that {Ek(x)}n−1
k=1 given by (2.10) satisfy all the conditions given by (2.5)

for k = 1, 2, . . . , n− 1.
Similarly, we can show that E0 and En(x) given by (2.9) and (2.12), respectively, satisfy conditions

(2.5) for k = 0 and (2.5), for k = n, respectively, which completes the proof of the Lemma. �

Remark 4. The Pál type (0, 1; 0)-interpolation Wn(f, x), satisfying conditions (2.1) can be explicitly
represented as (2.2) with the help of Lemmas 1–3. Taking all ai’s as zero, Wn(f, x) reduces to the
interpolated polynomials of degree ≤ 3n− 3.
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Theorem 5. The function Wn(f, x) is a rational function, that is,

Wn(f, x) ∈ R3n−3(a0, a1, a2, . . . , a2n−1).

Proof. Since Un ∈ Rn−1(a0, a1, . . . , a2n−1), we can express it as

Un(x) :=
Sn−1(x)

S∗n(x)
,

where S∗n(x) :=
√∏2n−1

k=0 (1 + xak), Sn−1(x) := cn−1(x− x1)(x− x2) . . . (x− xn−1) and cn−1 depends

on n and {ak}2n−1
k=0 . So, we have

`k(x) =
S∗n(xk)

S∗n(x)
qk(x), k = 1, 2, . . . , n− 1,

where

qk(x) :=
Sn−1(x)

S′n−1(xk)(x− xk)
, k = 1, 2, . . . , n− 1.

Thus `k(x) ∈ Rn−2(a0, a1, . . . , a2n−1). Similarly, we can express

U ′n(x) :=
Qn−2(x)

S∗n(x)
,

where Qn−1(x) := dn−1(x− t1)(x− t2) . . . (x− tn−2) and dn−1 depends on n and {ak}2n−1
k=0 . Then

Lk(x) =
S∗n(tk)

S∗n(x)
q∗k(x), k = 1, 2, . . . , n− 1,

where

q∗k(x) :=
Qn−2(x)

Q′n−2(tk)(x− tk)
, k = 1, 2, . . . , n− 2.

Thus Lk(x) ∈ Rn−3(a0, a1, . . . , a2n−1). Hence, by (2.6), (2.7) and (2.10) the lemma follows. �

Remark 6. Notice that the poles of the rational function Wn(f, x) can be found from the equality
λ2n(x) = 0. They depend on the parameters ak, k = 0, 1, . . . , 2n − 1. The relationship between the
zeros of the function λ2n(x) and the parameters ak is described in [17].

3. Quadrature Formula

Under the same assumption on the parameters a1, a2, . . . , a2n1, we consider the following Pál type
(0, 1; 0)-interpolation.

For the given function f defined on [−1, 1], we define the function

Vn(f, x) =

n∑
k=0

f(xk)Ωk(x) +

n−1∑
k=1

αkσk(x) +

n−2∑
k=1

f(tk)γk(x), (3.1)

where, for k = 1, 2, . . . , n− 1,

Ωk(x) =
(1− x2)U ′n(x)

(1− x2
k)U ′n(xk)

[
1− 2

(
U ′′n (xk)

U ′n(xk)
+

xk
(1− x2

k)

)
(x− xk)

]
`2k(x),

Ω0(x) =
(1 + x)U2

n(x)U ′n(x)

2U2
n(1)U ′n(1)

, Ωn(x) =
(1− x)U2

n(x)U ′n(x)

2U2
n(−1)U ′n(−1)

,

for k = 1, 2, . . . , n− 1,

σk(x) =
(1− x2)Un(x)U ′n(x)`k(x)

(1− x2
k)(U ′n(xk))2

and for k = 1, 2, . . . , n− 2,

γk(x) =
(1− x2)U2

n(x)Lk(x)

(1− t2k)U2
n(tk)

.
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The function Vn(x) given by (3.1), satisfies conditions (2.1) and hence is the Pál type (0, 1; 0)-
interpolation, and

Vn(f, x) ∈ R3n−3(a1, a2, . . . , a2n−1).

The quadrature formula corresponding to the interpolatory function (3.1) is given by

1∫
−1

(1− x2)f(x)dx ≈
n∑

k=0

f(xk)

1∫
−1

(1− x2)Ωk(x)dx

+

n−1∑
k=1

f ′(xk)

1∫
−1

(1− x2)σk(x)dx+

n−2∑
k=1

f(yk)

1∫
−1

(1− x2)γk(x)dx

≈
n∑

k=0

Ekf(xk) +

n−1∑
k=1

Dkf
′(xk) +

n−2∑
k=1

Ckf(yk), (3.2)

where

Ek =

1∫
−1

(1− x2)Ωk(x)dx, k = 0, 1, . . . , n, (3.3)

Dk =

1∫
−1

(1− x2)σk(x)dx, k = 1, 2, . . . , n− 1, (3.4)

Ck =

1∫
−1

(1− x2)γk(x)dx, k = 1, 2, . . . , n− 2. (3.5)

Theorem 7. The quadrature formula (3.2) can be expressed as

1∫
−1

(1− x2)f(x)dx =

n−1∑
k=1

(
2π(1− x2

k)3/2

λ2n(xk)

)
f(xk). (3.6)

Remark 8. The quadrature formula (3.6) can be evaluated by finding the value of the integrals
(3.3), (3.4) and (3.5). These integrals have singularities lying in the interval [−1, 1]. The integrals are
evaluated by performing suitable transformations and using the Cauchy residue theorem at the poles
which lie in the interval.

To prove Theorem 7, we shall need the following lemmas below.

Lemma 9. For Dk, k = 1, 2, . . . , n− 1, given by (3.4), we have

Dk =
1

(1− x2
k)(U ′n(xk))3

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− xk)
dx = 0.

Proof. Dk for k = 1, 2, . . . , n− 1, given by (3.4), can be represented as

Dk =
1

(1− x2
k)(U ′n(xk))3

Ik, (3.7)

where

Ik =

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− xk)
dx
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=

1∫
−1

sin2 µ2n(x)

(x− xk)

(
x sinµ2n(x)− cosµ2n(x)λ2n(x)

√
1− x2

√
1− x2

)
dx = Ik1 − Ik2,

where

Ik1 =

1∫
−1

x sin3 µ2n(x)

(x− xk)
√

1− x2
dx (3.8)

and

Ik2 =

1∫
−1

sin2 µ2n(x) cosµ2n(x)λ2n(x)

(x− xk)
dx. (3.9)

Consider the transformation

x =
1− y2

1 + y2
(3.10)

which gives

dx = − 4y

(1 + y2)2
dy, (3.11)√

1− x2 =
2y

(1 + y2)
, (3.12)

(x− xk) =
−2(y2 − y2

k)

(1 + y2)(1 + y2
k)
. (3.13)

We know that

sinµ2n

(
1− y2

1 + y2

)
= sinφ2n(y), (3.14)

where sinφ2n(y) is Bernstein’s sine fraction

sinφ2n(y) =
1

2i

(
χn(y)− χ−1

n (y)
)
, (3.15)

where

χn(y) =

2n−1∏
j=0

y − zj
y − z̄j

and zk are the roots of the equations y2 +(1+ak)(1−ak)−1 = 0, Izk > 0, k = 0, 1, . . . , 2n−1. Taking
into account the assumptions on the parameters ak, k = 0, 1, . . . , 2n − 1, we have the following:
1) z0 = i, 2) if ak and al are paired by a complex conjugation, then the corresponding numbers zk
and zl are symmetric with respect to the imaginary axis. Besides, the function sinφ2n(y) has zeros at

±yk, yk =
√

(1− xk)/(1 + xk), k = 1, 2, . . . , n− 1. Thus, by using transformation (3.10)–(3.13) and
(3.14) in (3.8), we get

Ik1 =− 1 + y2
k

2

∞∫
−∞

(
1− y2

1 + y2

)
sin3 φ2n(y)

(y2 − y2
k)

dy

= −1 + y2
k

2
lim

z→yk,Izk>0
Jk1(z),

where

Jk1(z) =

∞∫
−∞

(
1− y2

1 + y2

)
sin3 φ2n(y)

(y2 − z2)
dy.

From (3.14), we have

sin3 φ2n(y) = − 1

8i

(
χ3
n(y)− 3χn(y) + 3χ−1

n (y)− χ−3
n (y)

)
. (3.16)
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Thus

Jk1(z) =
1

8i

(
Jk11(z)− 3Jk12(z) + 3Jk13(z)− Jk14(z)

)
, (3.17)

where

Jk11(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ3
n(y)

(y2 − z2)
dy,

Jk12(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ−3
n (y)

(y2 − z2)
dy,

Jk13(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χn(y)

(y2 − z2)
dy

and

Jk14(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ−1
n (y)

(y2 − z2)
dy.

Since z0 = i, thus the integrand of Jk11(z) has only a singular point y = z in the upper half plane.
Thus by the residue theorem, we have

Jk11(z) =2πi lim
y→z

(
1− y2

1 + y2

)
χ3
n(y)

(y + z)

=

(
1− z2

1 + z2

)
χ3
n(z)

z
πi. (3.18)

Similarly,

Jk12(z) =

(
1− z2

1 + z2

)
χ−3
n (z)

z
πi, (3.19)

Jk13(z) =

(
1− z2

1 + z2

)
χn(z)

z
πi (3.20)

and

Jk14(z) =

(
1− z2

1 + z2

)
χ−1
n (z)

z
πi (3.21)

Using (3.18), (3.19), (3.20) and (3.21) in (3.17), we get

Jk1(z) =
1

8i

((
1− z2

1 + z2

)
χ3
n(z)

z
πi−

(
1− z2

1 + z2

)
χ−3
n (z)

z
πi

− 3

(
1− z2

1 + z2

)
χn(z)

z
πi+ 3

(
1− z2

1 + z2

)
χ−1
n (z)

z
πi

)
.

Taking the limit as lim
z→yk,Izk>0

and using χn(yk) = 1, it follows that

Ik1 = 0. (3.22)

Now we evaluate Ik2, given by (3.9). Using (3.11) and (3.13) in (3.9), we get

Ik2 = −(1 + y2
k)

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 µ2n

(
1−y2

1+y2

)
cosµ2n

(
1−y2

1+y2

)
(1 + y2)(y2 − y2

k)
dy.

We know that

cosµ2n

(
1− y2

1 + y2

)
= cosφ2n(y),
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where cosφ2n(y) is Bernstein’s cosine fraction

cosφ2n(y) =
1

2

(
χn(y) + χ−1

n (y)
)
. (3.23)

Thus by (3.14) and (3.23), we have

Ik2 = −(1 + y2
k) lim

z→yk,=zk>0

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 φ2n(y) cosφ2n(y)

(1 + y2)(y2 − z2)
dy.

By virtue of (3.14) and (3.23), we have

sin2 φ2n(y) cosφ2n(y) = −1

8

(
χ3
n(y) + χ−3

n (y)− χn(y)− χ−1
n (y)

)
. (3.24)

Thus

Ik2 =
(1 + y2

k)

8
lim

z→yk,=zk>0

(
Jk21(z) + Jk22(z)− Jk23(z)− Jk24(z)

)
, (3.25)

where

Jk21(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y2 − z2)
dy,

Jk22(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−3
n (y)

(1 + y2)(y2 − z2)
dy,

Jk23(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χn(y)

(1 + y2)(y2 − z2)
dy

and

Jk24(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y2 − z2)
dy.

Since z0 = i, thus the integrand of Jk21(z) has only a singular point y = z in the upper half-plane.
Hence by the residue theorem, we have

Jk21(z) =2πi lim
y→z

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y + z)

=
λ2n

(
1−z2

1+z2

)
χ3
n(z)

(1 + z2)
πi. (3.26)

Similarly,

Jk22(z) =
λ2n

(
1−z2

1+z2

)
χ−3
n (z)

(1 + z2)
πi, (3.27)

Jk23(z) =
λ2n

(
1−z2

1+z2

)
χn(z)

(1 + z2)
πi (3.28)

and

Jk24(z) =
λ2n

(
1−z2

1+z2

)
χ−1
n (z)

(1 + z2)
πi. (3.29)
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Putting the values of Jk21(z), Jk22(z), Jk23(z) and Jk24(z) from (3.26), (3.27), (3.28) and (3.29), re-
spectively, in (3.25), we get

Ik2 =
(1 + y2

k)

8
lim

z→yk,=zk>0

λ2n

(
1−z2

1+z2

)
(1 + z2)

(
χ3
n(z) + χ−3

n (z)− χn(z)− χ−1
n (z)

)
πi.

Since χn(yk) = 1, thus

Ik2 = 0. (3.30)

Using (3.22) and (3.30) in (3.7), the Lemma follows. �

Lemma 10. For Ek, k = 1, 2, . . . , n− 1 given by (3.3), we have

Ek =
2π(1− x2

k)3/2

λ2n(xk)
.

Proof. Ek for k = 1, 2, . . . , n− 1 given by (3.3), due to (2.8) and Lemma 2 can be represented as

Ek =
1

(1− x2
k)U ′n(xk)

1∫
−1

(1− x2)2U ′n(x)`2k(x)dx

=
(1− x2

k)

λ2
2n(xk)U ′n(xk)

1∫
−1

(1− x2)U ′n(x) sin2 µ2n(x)

(x− xk)2
dx.

Since

U ′n(x) =
− cosµ2n(x)λ2n(x)

√
1− x2 + x sinµ2n(x)

(1− x2)3/2
,

we have

Ek(x) =
(1− x2

k)

λ2
2n(xk)U ′n(xk)

Ik, (3.31)

where

Ik = Ik1 − Ik2 (3.32)

with

Ik1 =

1∫
−1

x sin3 µ2n(x)√
1− x2(x− xk)2

dx (3.33)

and

Ik2 =

1∫
−1

λ2n(x) sin2 µ2n(x) cosµ2n(x)

(x− xk)2
dx. (3.34)

Using transformation (3.10) and due to (3.11), (3.13) and (3.14), (3.33) can be transformed to

Ik1 =
(1 + yk)2

2

∞∫
−∞

(1− y2) sin3 φ2n(y)

(y2 − y2
k)2

dy

=
(1 + y2

k)2

2
lim

z→yk,=zk>0

∞∫
−∞

(1− y2) sin3 φ2n(y)

(y2 − z2)2
dy. (3.35)

Due to (3.16), (3.35) can be represented as

Ik1 = − (1 + yk)2

16i
lim

z→yk,=zk>0
(Ik11(z)− 3Ik12(z) + 3Ik13(z)− Ik14(z)) , (3.36)
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where

Ik11(z) =

∞∫
−∞

(1− y2)χ3
n(y)

(y2 − z2)2
dy,

Ik12(z) =

∞∫
−∞

(1− y2)χn(y)

(y2 − z2)2
dy,

Ik13(z) =

∞∫
−∞

(1− y2)χ−1
n (y)

(y2 − z2)2
dy

and

Ik14(z) =

∞∫
−∞

(1− y2)χ−3
n (y)

(y2 − z2)2
dy.

Since z0 = i, the integrand of Ik11(z) has only a singular point y = z in the upper half-plane. Thus
by the residue theorem, we have

Ik11(z) = 2πi lim
y→z

d

dy

(1− y2)χ3
n(y)

(y + z)2

which implies

Ik11(z) = 2πi

(
z{3(1− z2)χ2

n(z)χ′n(z)− 2zχ3
n(z)} − (1− z2)χ3

n(z)

4z3

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik11(z) =
πi

2y3
k

(
3yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.37)

Similarly,

lim
z→yk,=zk>0

Ik14(z) =
πi

2y3
k

(
3yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.38)

Since the integrand of Ik12(z) has only a singular point y = z in the upper half-plane. Thus again,
using the residue theorem, we have

Ik12(z) = 2πi lim
y→z

d

dy

(1− y2)χn(y)

(y + z)2

which gives

Ik12(z) = 2πi

(
z{(1− z2)χ′n(z)− 2zχn(z)} − (1− z2)χn(z)

4z3

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik12(z) =
πi

2y3
k

(
yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.39)

Similarly,

lim
z→yk,=zk>0

Ik13(z) =
πi

2y3
k

(
yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
(3.40)

Using (3.37), (3.38), (3.39), (3.40) in (3.36), we get

Ik1 = 0. (3.41)
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Now we evaluate Ik2 given by (3.34). Using the transformation (3.10) and due to (3.11), (3.13) and
(3.14), (3.34) can be written as

Ik2 = (1 + y2
k)2

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 µ2n

(
1−y2

1+y2

)
cosµ2n

(
1−y2

1+y2

)
(y2 − y2

k)2
dy.

Thus by (3.15) and (3.23), we have

Ik2 = (1 + y2
k)2 lim

z→yk,=zk>0

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 φ2n(y) cosφ2n(y)

(y2 − z2)2
dy.

Using (3.24) in the above equation, we get

Ik2 = − (1 + y2
k)2

8
lim

z→yk,=zk>0
(Ik21(z) + Ik22(z)− Ik23(z)− Ik24(z)) , (3.42)

where

Ik21(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(y2 − z2)2
dy,

Ik22(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−3
n (y)

(y2 − z2)2
dy,

Ik23(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χn(y)

(y2 − z2)2
dy

and

Ik24(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−1
n (y)

(y2 − z2)2
dy.

Since z0 = i, the integrand of Ik21(z) has only a singular point y = z in the upper half-plane. Thus
by the residue theorem, we have

Ik21(z) =2πi lim
y→z

d

dy

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(y + z)2

=
πi

2z

(
3λ2n

(
1− z2

1 + z2

)
χ2
n(z)χ′n(z) +

(
λ2n

(
1− y2

1 + y2

))′
z

χ3
n(z)

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik21(z) =
πi

2yk

(
3λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.43)

Similarly,

lim
z→yk,=zk>0

Ik22(z) =
πi

2yk

(
3λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.44)
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The integrand of Ik23(z) has only a singular point y = z in the upper half-plane. Thus by the residue
theorem, we have

Ik23(z) =2πi lim
y→z

d

dy

yλ2n

(
1−y2

1+y2

)
χn(y)

(y + z)2

=
πi

2z

(
λ2n

(
1− z2

1 + z2

)
χ′n(z) +

(
λ2n

(
1− y2

1 + y2

))′
z

χn(z)

)
which on simple calculations and using χn(yk) = 1, gives

lim
z→yk,=zk>0

Ik23(z) =
πi

2yk

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
(3.45)

lim
z→yk,=zk>0

Ik24(z) =
πi

2yk

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.46)

Using (3.43), (3.44), (3.45) and (3.46) in (3.42), we get

Ik2 = − (1 + y2
k)2

4yk
πi

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

)
.

We know that
2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

= −4λ2n(xk)

i(1 + y2
k)
,

hence

Ik2 =
2πλ2

2n(xk)√
1− x2

k

. (3.47)

Putting the values of Ik1 and Ik2 from (3.41) and (3.47), respectively, in (3.32), we get

Ik = −2πλ2
2n(xk)√

1− x2
k

.

Substituting this value of Ik in (3.31), the Lemma follows. �

Lemma 11. For E0 defined by (3.3) for k = 0, we have

E0 = 0.

Proof. For k = 0, (3.3) can be represented as

E0 =
1

2U2
n(1)U ′n(1)

I0, (3.48)

where

I0 =

1∫
−1

(1 + x)(1− x2)U2
n(x)U ′n(x)dx

=

1∫
−1

(1 + x) sin2 µ2n(x)

(
x sinµ2n(x)− cosµ2n(x)λ2n(x)

√
1− x2

(1− x2)3/2

)
dx,
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I0 = I01 − I02, (3.49)

where

I01 =

1∫
−1

√
1 + x

1− x

(
x sin3 µ2n(x)

(1− x2)

)
dx (3.50)

and

I02 =

1∫
−1

√
1 + x

1− x

(
sin2 µ2n(x) cosµ2n(x)λ2n(x)√

1− x2

)
dx. (3.51)

First, we evaluate I01. Using transformations (3.10) and (3.11), (3.12) and (3.14) in (3.50), we have

I01 =
1

2

∞∫
−∞

1

y2

(
1− y2

1 + y2

)
sin3 φ2n(y)dy,

and due to (3.15), I1 can be represented as

I01 = − 1

16i

∞∫
−∞

(
I011 − I012 − 3I013 + 3I014

)
, (3.52)

where

I011 =

∞∫
−∞

(1− y2)χ3
n(y)

y2(1 + y2)
dy, (3.53)

I012 =

∞∫
−∞

(1− y2)χ−3
n (y)

y2(1 + y2)
dy,

I013 =

∞∫
−∞

(1− y2)χn(y)

y2(1 + y2)
dy (3.54)

and

I014 =

∞∫
−∞

(1− y2)χ−1
n (y)

y2(1 + y2)
dy.

Since z0 = i, the integrand of I011, given by (3.53), has only a singular point y = 0 in the upper
half-plane. Thus by the residue theorem, we have

I011 = 2πi lim
y→0

d

dy

1− y2

1 + y2
χ3
n(y) = 6πi

2n−1∑
j=0

(
1

z̄j
− 1

zj

)
= −24πλ2n(1). (3.55)

Similarly,

I012 = −24πλ2n(1). (3.56)

Again, using the residue theorem for I013, given by (3.54), we get

I013 = 2πi lim
y→0

d

dy

1− y2

1 + y2
χn(y) = 2πi

2n−1∑
j=0

(
1

z̄j
− 1

zj

)
= −8πλ2n(1). (3.57)

and, similarly,

I014 = −8πλ2n(1). (3.58)

Thus using (3.55), (3.56), (3.57) and (3.58) in (3.52), we get

I01 = 0. (3.59)
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Now, for I02, given by (3.51), due to (3.10)–(3.12) and (3.14), on a simple calculation, we have

I02 =

∞∫
−∞

sin2 φ2n(y) cosφ2n(y)λ2n

(
1−y2

1+y2

)
y(1 + y2)

dy

which, due to (3.24), can be represented as

I02 = −1

8

(
I021 + I022 − I023 − I024

)
, (3.60)

where

I021 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ3
n(y)

y(1 + y2)
dy,

I022 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ−3
n (y)

y(1 + y2)
dy,

I023 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χn(y)

y(1 + y2)
dy

and

I024 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ−1
n (y)

y(1 + y2)
dy.

Now, since for I021, the only singularity on the upper half plane is y = 0, hence by residue theorem,
we have

I021 = 2πi lim
y→0

λ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)
= 2πiλ2n(1). (3.61)

Similarly,

I022 = 2πiλ2n(1). (3.62)

Again, for I023, by the residue theorem, we have

I023 = 2πi lim
y→0

λ2n

(
1−y2

1+y2

)
χn(y)

(1 + y2)
= 2πiλ2n(1) (3.63)

and

I024 = 2πiλ2n(1). (3.64)

Substituting the values of (3.61), (3.62), (3.63) and (3.64) in (3.60), we get

I02 = 0. (3.65)

Putting the value of I01 and I02 from (3.59) and (3.65), respectively, in (3.49), we get I0 = 0 which,
due to (3.48), implies

E0 = 0.

�

Lemma 12. For En defined by (3.3) for k = n, we have

En = 0.
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Proof. For k = n, (3.3) can be represented as

En(x) =
1

2U2
n(−1)U ′n(−1)

In,

where

In =

1∫
−1

(1− x)(1− x2)U2
n(x)U ′n(x)dx

=

1∫
−1

√
1− x
1 + x

(
x sin3 µ2n(x)

(1− x2)
− sin2 µ2n(x) cosµ2n(x)λ2n(x)√

1− x2

)
dx = In1 − In2.

Following the same steps as in Lemma 11, we get In1 = In2 = 0 which implies that In = 0 and hence
the Lemma follows. �

Lemma 13. For Ck given by (3.5), we have Ck = 0, k = 1, 2, . . . , n− 2.

Proof. Ck given by (3.5), can be represented as

Ck =
1

(1− t2k)U2
n(tk)U ′′n (tk)

Ik,

where

Ik =

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− tk)
dx,

which reduces to

Ik =

1∫
−1

1

(x− tk)

(
x sin3 µ2n(x)√

1− x2
− sin2 µ2n(x) cosµ2n(x)λ2n(x)

)
dx = Ik1 − Ik2,

where

Ik1 =

1∫
−1

x sin3 µ2n(x)

(x− tk)
√

1− x2
dx

and

Ik2 =

1∫
−1

sin2 µ2n(x) cosµ2n(x)λ2n(x)

(x− tk)
dx.

Proceeding as in the above lemmas, it follows that Ik1 = Ik2 = 0 which implies that Ik = 0, from
which the Lemma follows. �

From Lemma 9–13 and (3.2), Theorem 7 follows.

4. Conclusion

Here, a quadrature formula corresponding to the Pál type (0, 1; 0)-interpolation in rational spaces
has been obtained. This study may further be extended to the case of lacunary interpolation in
rational spaces.
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