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SCHUR-GEOMETRIC AND SCHUR-HARMONIC CONVEXITY OF WEIGHTED
INTEGRAL MEAN

SANJA KOVAC

Abstract. Recently, there have been many new results on Schur convexity of integral means. In this
paper we investigate the necessary and sufficient conditions for the existence of Schur-geometric and
Schur-harmonic properties in weighted integral means, weighted midpoint and weighted trapezoid
quadrature formulas.

1. INTRODUCTION
Let us recall the definitions of convex, n—convex and Schur-convex functions.
Definition 1. A function f is conver on an interval I if for any two points z,y € I and A € [0, 1],
FOx+ (1 =Ny) <Af(2) + (1 =N f(y). (1.1)
If inequality (1.1) is reversed, then f is said to be concave.

Let A C R™. We introduce the following notion: for x = (z1,...,2n), y = (Y1,---,Yn) € A, we
write x <y, if

n n k k
Zl‘[i]zzym and Zl‘[i]fzym for k=1,...,n—1,
1=1 =1 =1 =1

where [; denotes the i—th-largest component in x.

Definition 2. Function FF : A C R" — R is said to be Schur-convex on A if for every x =
(1,..-,2n), Yy = (Y1,.-.,Yn) € A such that x <y, we have

F($1,...7$n) SF(yhayn)

Function F' is said to be Schur-concave on A if —F is Schur-convex.
Remark 1. Every convex and symmetric function is Schur-convex.

Numerous researchers have recently investigated Schur-geometric and Schur-harmonic convexities
[2,8,9].
First, let us define for x = (x1,...,2,) € R*, Inx := (Inzy,...,Inxz,) and i = (i, ce i)

Let us give the following definitions:

Definition 3. Function F' : A C R} — R is said to be Schur-geometrically convex on A if for
every X = (21,...,%n), ¥ = (Y1,.-.,Yn) € A such that Inx < Iny, we have

F(.’L‘17...71'n) SF(ylvayn)

Function F' is said to be Schur-geometrically concave on A if —F' is Schur-convex.

Definition 4. Function F': A C R™ — R is said to be Schur-harmonically convex on A if for
every X = (21,...,%n), ¥ = (Y1,--.,Yn) € A such that i =< %, we have

F(xy,.. . xn) < F(y1,. - Yn)-

Function F' is said to be Schur-harmonically concave on A if —F is Schur-convex.
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Schur-convexity has been investigated by numerous researchers. The following result was proved
in [4] for the arithmetic integral mean.

Theorem 1. Let f be a continuous function on an interval I with a non-empty interior. Then

_ %xfjf(t)dt zyyel,x#y
F(x’y)_{)y”(m) r=yel

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I.

The next result for Schur-convexity of the weighted arithmetic integral mean was proved several
years ago [7].

Theorem 2. Let f be a continuous function on I C R and let w be a positive continuous weight on I.
Then the function

Fu(z,y) = o Jo v fB)dt zyelaty
f(z) r=yel
is Schur-convex (Schur-concave) on I? if and only if the inequality

[ w®f Ot _ wiw)f () + wl) i)
ff w(t)dt — w(z) +w(y)

holds (reverses) for all z,y € I.

The Schur-convex property of the functions

_1 [y _ zty
M(z.y) = v b fdt— f(552)  wmyela#y
0 r=yel
(z)+f(y) v
- 9 ) 617
T(x,y):{ = nyelry
0 rT=9y€E

has been recently investigated (see [1,3]).
The objective of this paper is to give the necessary and sufficient condition for the function F,,(z,y),
function M, : I? — R defined by

My (o) — | Tromm S wOfOd = F(55) - wyelety
o 0 z=yel
and function T, : I? — R defined by

+
To(z,y) = {f(x)zf(y) N wl(t)dt fzy w(t)f(t)dt z,yel,x#y
| 0 r=yel

to be Schur-geometrically convex (Schur-geometrically concave) and Schur-harmonically convex (Schur-
harmonically concave) on I?. The necessary and sufficient condition for the functions M, (x,y) and
Tw(x,y) to be Schur-convex on I? is given in [5].

Let us recall the weighted one-point quadrature formula [6]. If f : [z,y] — R is such that f(") is a
piecewiese continuous function, then we have

/ tydt = iAJ JFOD() + (-1 / Wi (t, 2) £ (1)t (1.2)

where for j =1,...,n

Aj(z) = ((;1_)31_)' /(z —5) " tw(s)ds

x



NEW ERROR ESTIMATION 227

and .
win(t) = ﬁ [, (t—s)""tw(s)ds t€lx,z],
Wiw(t, z) = 1 t n—1
wan(t) = oy J, (E—8)"tw(s)ds  t e (zy]
In order to prove our results, we shall use the following characterization of the Schur-geometric
convexity and Schur-harmonic convexity [9]:

Lemma 1. Let f : I? C Ry — R be a continuous function on I? and differentiable in the interior
of I2. Then f is Schur-geometrically convex (Schur-geometrically concave) on I? if and only if it is
symmetric and

(logb — loga) (bgg - ag‘i) >0(<0) (1.3)

for all a,b € I.

Lemma 2. Let f : I? C Ry — R be a continuous function on I? and differentiable in the interior
of I?. Then f is Schur-harmonically convex (Schur-harmonically concave) on I* if and only if it is
symmetric and

(b—a) <62?)‘£ - anD > 0(<0) (1.4)

for all a,b € I.

2. MAIN RESULT
Theorem 3. The function F,(z,y) is Schur-geometrically convex (concave) on I* C R% if and only
if the inequality
Jr w® (Bt _ zw(x)f(@) +yw(y)f(y)
[lwydt = zw(z) +yw(y)

holds (reverses) for every x,y € I.

(2.1)

Proof. Obviously, Fy,(z,y) is continuous on I?, differentiable in the interior of I? and symmetric. Let
x,y € I, and without loss of generality, we can assume that z < y. After direct computation we get

0 0
(logy — log ) (ya‘;; — 1136£>

w(y) f(y) [P wt)dt — [T w(t) f(t)dt - w(y)
(J wt)dt)*

—w(a)f(x) [} wt)dt — [ w(t)f(t)dt - (w(ff))>

(J2 w(tydt)”

<yw(y)f (y) + 2w(x) f(x) —

= (logy —log ) - (y

Y

_ logy —logz (zw(x) +yw(y)) - [ w(t) f(t)dt
- [Tw(t)dt [ w(t)dt
(logy —log ) (zw(z) + yw(y)) (zw(@)f(x) +ywy)fy) _ [, wt)f(@)dt (2.9)
[Yw(t)at zw(x) + yw(y) Jywt)at ) '
so, the sign of the expression (2.2) depends on the sign of the term in the brackets. According to

Lemma 1, the function Fy, is Schur-geometrically convex (concave) if and only if (2.1) holds (reverses),
so we have proved the theorem. O

Theorem 4. The function F,(x,y) is Schur-harmonically convex (concave) on I? C Ri if and only
if the inequality
Jowt) @Bt _ aPw(@)f(2) +y*w(y)f(y)
Fod =~ c2w@) + yPuly)

holds (reverses) for every x,y € I.

(2.3)
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Proof. The function F,,(z,y) is continuous on I?, differentiable in the interior of I? and symmetric.
Let x,y € I, and without loss of generality, we can assume that z < y. We compute

oF, ,0F,
(y— ) (y Gy - 6:0)
o w) ) [Lwt)dt — [T w(t)f(t)dt - w(y)
=(y—=)- <y : —
(Lw )
e ~w@)f(@) Sy w(t)dt — [ w(t)f(t)dt - (—w(x))>
(J2 w(tyr)®

oy w e (@) +yPu(y)) J7 w
= Tud < (@)f(z) + vy w(y)f(y) Tty )
y)

_ (=) (PPw(e) +y*w(y) (2*w(@)f(z) +y*wy)fly) [ wt)f(bd (2.4)
[ w(t)dt 2w (z) + y*w(y) [Pwt)ydt | '
(y—a)(®w(@)+y’w(y)) . ) P . .
The term T el is always positive, so the sign of the expression (2.4) depends only on

the sign of the term in brackets. According to Lemma 2, function F, is Schur-harmonically convex
(concave) if and only if (2.3) holds (reverses), so we have proved the theorem. U

Remark 2. If w(t) = y — (the case of a uniform weight function), we get the following classification
of Schur-geometrically and Schur-harmonically convexity (concavity):

F(z,y) is Schur-geometrically convex (concave) < L yﬁ?dt < (ngizf @) holds (reverses) for every
z,y € 1.
Y r 2 2
F(z,y) is Schur-harmonically convex (concave) < f“”yf_(?dt < = (;?jzzf @) holds (reverses) for
every x,y € 1.

Theorem 5. The function My, (x,y) is Schur-geometrically convex (concave) if f : I — R is decreasing
(increasing) and the inequality

Jo w®f(B)dt _ zw(x)f(@) +yw(y)f(y)
wtyde = aw(@) +yw(y)

(2.5)

holds (reverses) for all x,y € I.

Proof. Tt is easy to check that M, (x,y) is symmetric, contionuous on I? and differentiable on the
interior of I?. According to Lemma 1, we have to check that M, (x,y) satisfies condition (1.3). Let
xz,y € I, and without loss of generallity we can assume that z < y. Then we have

(logy — log x) oM, _ 8M
gY g Y By 83;

= (logy —logz) |y - ) [y wdt — [Jwt) f()dt-wly) y,, (z+y
Sl )<y <fmw<>dt) i (5)
. —w(z)f(x) - ffw(t)dt — ffw(t)f(t)dt (—w(x)) ¢, (T4y
(J wtyde)? 2 ))
- W (xw(x)f(x) +yw(y) f(y) — (zw(z) + yw(y)) -

y—u | z+y\ | _ (ogy —logz)(zw(z) + yuw(y))
2 / (t)dt - f( 2 ) B [P w(t)dt

J2 (t)f( )

x
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[P w(t) f(t)dt
[P w(t)dt

x+y

e

(@) f@) +yw)f@) y-x [ed y
zw(x) + yw(y) 2 zw(z) + yw(y)

(If the function f is decreasing (increasing),

then the middle term in the upper identity is > 0 (< 0) so)

> (<) logy ~logz)(@u(@) +yw(y)) (aw@)f(x) +yw)fly) [ wOfOd
- Ji w(t)dt zw(z) + yw(y) [Tw(tydt )

Since (2.5) holds (reverses), the condition in Lemma 1 is satisfied and the proof is completed. O

Theorem 6. The function M, (x,y) is Schur-harmonically convex (concave) if f is decreasing (incre-
asing) and the inequality

Jrwt) Bt _ *w(@)f(2) +y*w(y)f(y)

Jywtydt 22w(z) + y2w(y) (2.6)

holds (reverses) for all x,y € I.

Proof. Since M,,(z,y) is symmetric, continuous on I? and differentiable on the interior of I?, according
to Lemma 2 we have to check that M, (z,y) satisfies condition (1.4). Let x,y € I, and without loss
of generality, we can assume that < y. Then we have

o) (5 - 22 )

dy Jr

JLw() f(t)dt
Y (t)dt

x

= g <x2w<x>f<x> ) )~ (@) + o))

Y

2 .2
Y 2x /w(t)dﬁf’(x;y)

x

_ (- o)) + Puly) (me(x)f(x) +yPw)fy)  Jw)f()d

S, wt)dt 2w (z) + y*w(y) Vw(t)dt
-z, 2ty [P w(t)dt
A )$2w(w)+y2w(y)>

(If the function f is decreasing (increasing),
then the last term in the upper identity is > 0 (< 0) so)

> (<) (y — o) (@*w(@) + y*w(y)) (2w(@)f(@) +yPuy)fy) [, wOf@)dt
- [ w(t)dt 22w(z) + y?w(y) [lwtydt ]
Since (2.6) holds (reverses), the condition in Lemma 2 is satisfied and the proof is completed. O

Remark 3. For the case of the uniform weight function we have:
JY f(t)dt

M(z,y) is Schur-geometrically convex (concave) if f is decreasing (increasing) and “=—"— <
%@jﬂy% holds (reverses) for every z,y € I.
M (z,y) is Schur-harmonically convex (concave) if f is decreasing (increasing) and f:yf_(;)dt <

%eryzf(y), holds (reverses) for every x,y € I.

Theorem 7. The function Ty (z,y) is Schur-geometrically convex (concave) if f : I — R is convex
(concave), twice differentiable and
[ twt)dt  zw(x) + yw(y)
Jlw@)dt — w(z) +w(y)

(2.7)
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and

w(x)wy)(y—z) _ [
RS g/w(t)dt (2.8)

T

holds (reverses) for all x,y € I.

Proof. The function T}, (x,y) is symmetric, continuous on I? and differentiable on the interior of I2,
so according to Lemma 1, we have to check if the condition (1.3) holds. Let us assume z,y € I, z < y.
We have

(togy—tog) (453~ »2 ) = (1ogy  log ) (yf’<y> yu(u)/()

2 [Tw(t)dt
Lye) [Je®f0dt af@)  aw(@)f(@) ww(x) f w(t)f(t)dt>
Y 2 Y " P)
<f w(t)dt) 2 Jw(t)dt (fw(t)dt)

_ (logy —logz)(zw(z) + yw(y)) . (ff w)f(B)dt — zw(@)f(z) + yw(y)f(y)
[P w(t)dt

J,w®dt  yf'(y) —af (x)
zw(x) + yw(y) ' 2 ) ' (2.9)

From (2.7), we have
y

= w(y) / (y — w(t)dt = w(z) / (t — 2)w(t)dt. (2.10)
Further, from (2.10), we have

wy) [ttt = w(o) [ (v=o—y+

w(y) [y — ywt)de
= = =
Jw(t)dt

Applying (2.11) and according to the inequality (2.7), we have

JLw@®dt w(y) [y —thwd)dt
2 S w(t)dt =

If f is convex, we have f”(t) > 0, so function f’ is increasing, and we have

0<z<y= fl(e) <[f(y) = af'(x) <zf(y) <uf(y) (2.12)

w(z)w(y)(y — )
o@ i) (2.11)
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Applying (2.10), (2.11) and (2.12), we have

yw) f'(y) [X(y —thw ()dt*fcw F( fytfm)w(t)dt
(zw(z) + yw(y fy t

w(y) [(y — thw(t)dt
= m (yf'(y) —xf'(2))
(zw(z) + yw(y)) [w(t)dt

Jowtdt — yf'(y) —af(x)
zw(x )+yw(y) 2 '

B—e

(2.13)

zw(x)
zw(z)+yw(y)’

and then add those two identities, we obtain

On the other hand, if we apply (1.2) for n = 2 and z = x and multiply by and also

yw(y)
zw(z)+yw(y)’

JPw®)f)dt  zw(x)f(x) +yw(y)f(y)

[P w(t)dt zw(z) + yw(y)

yw(y)f'(y) [, (y = w(t)dt — zw(x) f'(x) [} (t = z)w(t)dt
(o) + yul)) - 7wty

B I [xw [l (s = thw(s)ds + yw( B ft(t - s)w(s)ds} ' (t)dt 210

a (zw(z) +yw(y)) - [, w( . '

Now, we apply (2.13) in (2.9) and use (2.14) to get

T, man,) S (logy — log z)(zw(z) + yw(y))
Ay Ox [lw
I [xw(x). fty(s—t)w(s)ds—kyw( ) [Ht = syw (s)ds] F7(t)dt
(zw(z) +yw(y)) - [, w(t)dt
(logy —logz) - [* [Iw [l (s = thw(s)ds + yw(y) - ft(t — s)w(s)ds| f"(t)dt
(t)

(J7 w(t)dt)”

Since f is convex and the integrals in the brackets are non negative, we have proved that

(logy — log ) (yag; — xag;w) >0, for all z,y € I, x < y, so, the function T,, is Schur-geometrically

convex.
The proof for the Schur-geometrically concave case is similar. O

for z = y, multiply by

+

(logy —logx) (y

X

Theorem 8. The function T,,(x,y) is Schur-harmonically convezr (concave) if f : I — R is convex
(concave), twice differentiable and

f;’ tw(t)dt _ zw(x) + yw(y)

[Pwydt — w(x)+w(y) (2.15)
and

w@w(y)y—2) _ [

2 w(z) +w(y) S/w(t)dt (2.16)

x

holds (reverses) for all x,y € I.

Proof. Since the function T, (z,y) is symmetric, continuous on I? and differentiable on the interior
of I?, according to Lemma 2, we have to check if the condition (1.4) holds. Let us assume z,y € I,
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x < y. We have

(2.17)

Again, as in the proof of Theorem 7, we conclude that (2.10), (2.11) and
Jwtdt  wly) [[(y - wt)dt

2 [l w(t)dt -

hold.
If f is convex, we have f”(t) > 0, so, the function f’ is increasing, and we have
O<z<y= fl(x) < fy)=2"f(x) <2*f(y) <y () (2.18)
Applying (2.10), (2. 11) and (2 18), we have
() [X(y (t)dt — 2?w(z) f'(z) [t — z)w(t)dt
(2 ( )+y w(y)) - [, w(t)dt
w(y) [ (y — thw(t)dt
= 7 (yzf'(y) —a?f'(x))
(z2w(z) + y?w(y)) [ w(t)
Ji w Y (y) — 2P f(2)
~ 2?w(z )+y w(y) 2 '

B —e

(2.19)

z2w(x)
z?w(z)+y?w(y)’

and then add those two identities, we obtain

On the other hand, if we apply (1.2) for n = 2 and z = 2 and multiply by and also for

v w(y)
z2w(z)+y?w(y)’

ff w(t)f(t) oz w( )
fy

z =y, multiply by

(

2w(
y) [y w(t )dt — x w(x) (x
(22 ()

S [ePw(@) - [ (s = thw ds+yw() f(t ) (s)ds] 1t
_ (2.20)
(z?w(@) +y2w(y)) - [} w(t)d
Now, we apply (2.19) in (2.17) and use (2.20) to get
( L > (y — ) (z*w(z )+y2w(y))
J7 w(t)dt

fy[‘z ) [X(s — thw ds+yw() f(t syw(s)ds| f"(¢)dt
(z2w(@) +y2w(y)) - [, w(t)dt
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(y—z)- ff [wa(x) . fty(s — tw(s)ds + y?w(y) - f;(t — s)w(s)ds| f"(t)dt
(2 w(tydt)” |

Since f is convex and the integrals in the brackets are non negative, we have proved that

(y — z) (yQaaLyw 712%) > 0, for all z,y € I,z < y, so, the function T}, is Schur-harmonically

convex.
The proof for the Schur-harmonically concave case is similar. O

Remark 4. For w(t) = ﬁ it is easy to check that conditions (2.7), (2.8), (2.15) and (2.16) are valid,
so, if f is convex, then T is Schur-geometrically and Schur-harmonically convex.
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