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ON THE ABSOLUTE MATRIX SUMMABILITY FACTORS OF FOURIER

SERIES

ŞEBNEM YILDIZ

Abstract. In this paper, a general theorem on the local property of the
∣∣N̄, pn; δ

∣∣
k

summability of

factored Fourier series, which generalizes some known results has been extended to absolute matrix

summability factors of Fourier series.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv

defines the sequence (tn) of the Riesz means or, simply, the (N̄ , pn) mean of the sequence (sn) generated
by the sequence of coefficients (pn) (see [4]).

The series
∑
an is said to be

∣∣N̄ , pn; δ
∣∣
k

summable, where k ≥ 1 and δ ≥ 0, if (see [2])

∞∑
n=1

(
Pn
pn

)δk+k−1

| tn − tn−1 |k<∞.

In the special case, pn = 1 for all n (resp., δ = 0), the
∣∣N̄ , pn; δ

∣∣
k

summability is the same as the

|C, 1; δ|k (resp.,
∣∣N̄ , pn∣∣k) summability (see [1]).

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where
∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1 (see [9]).

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)),
where

An(s) =

n∑
v=0

anvsv n = 0, 1, . . . .

The series
∑
an is said to be |A, pn; δ|k summable, where k ≥ 1 and δ ≥ 0, if (see [5])

∞∑
n=1

(
Pn
pn

)δk+k−1

|An(s)−An−1(s)|k <∞.

If we take anv = pv
Pn

, then the |A, pn; δ|k summability is the same as the
∣∣N̄ , pn; δ

∣∣
k

summability. If

we take anv = pv
Pn

and δ = 0, then the |A, pn; δ|k summability reduces to the
∣∣N̄ , pn∣∣k summability.

Also, if we take δ = 0, then the |A, pn; δ|k summability reduces to the |A, pn|k summability (see [6]).
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Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv)
as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, . . . (1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . . (2)

It should be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. So, we get

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav

and

∆̄An(s) =

n∑
v=0

ânvav.

2. The Known Results

Let f be a periodic function with period 2π, integrable (L) over (−π, π). We may assume that the
constant term of the Fourier series of f is zero, that is,

π∫
−π

f(t)dt = 0,

f(t) ∼
∞∑
n=1

(an cosnt+ bn sinnt) ≡
∞∑
n=1

Cn(t).

In [3], Bor proved the following result dealing with the
∣∣N̄ , pn; δ

∣∣
k

summability factors of Fourier series.

Theorem 2.1 ([3]). Let k ≥ 1 and 0 ≤ δ < 1/k. If (λn) is a convex sequence such that
∑
pnλn is

convergent and

m∑
v=1

(
Pv
pv

)δk
Pv∆λv = O(1) as m→∞,

m∑
v=1

(
Pv
pv

)δk
pvλv = O(1) as m→∞,

∞∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O

((
Pv
pv

)δk
1

Pv

)
,

then the
∣∣N̄ , pn; δ

∣∣
k

summability of the series
∑
Cn(t)λnPn at a point can be ensured by a local prop-

erty.

In [7], Sulaiman has obtained a result from which a special case improved the result of [3] in the
following form.
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Theorem 2.2 ( [7]). Let k ≥ 1 and 0 ≤ δ < 1/k. Let (ϕn) be a complex sequence. If (|λn|) is
non-increasing such that

∑
pn|λn| is convergent and

m∑
v=1

(
Pv
pv

)δk
pv
P kv
|λv||ϕv|k = O(1) as m→∞, (3)

m∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv| = O(1) as m→∞, (4)

m∑
v=1

(
Pv
pv

)δk
1

pk−1
v+1

|λv+1||∆ϕv|k = O(1) as m→∞, (5)

∞∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O

((
Pv
pv

)δk
1

Pv

)
,

then the
∣∣N̄ , pn; δ

∣∣
k

summability of the series
∑
Cn(t)λnPn at a point can be ensured by a local prop-

erty.

3. Main Result

The aim of this paper is to generalize Sulaiman’s result in [7] for the |A, pn; δ|k summability method.

Theorem 3.1. Let (ϕn) be a complex sequence. Let k ≥ 1 and 0 ≤ δ < 1/k. Suppose that A = (anv)
is a positive normal matrix such that

an0 = 1, n = 0, 1, . . . , (6)

an−1,v ≥ anv, for n ≥ v + 1, (7)

ann = O

(
pn
Pn

)
.

If (|λn|) is non-increasing such that
∑
pn|λn| is convergent and satisfy conditions (3)–(5) of Theorem

2.2 and the conditions
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)| = O

((
Pv
pv

)δk
pv
Pv

)
as m→∞, (8)

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1| = O

((
Pv
pv

)δk)
as m→∞ (9)

are satisfied, then the |A, pn; δ|k summability of the series
∞∑
n=1

Cn(t)λnϕn,

at any point is a local property of f .

Lemma 3.1 ([8]). From conditions (1), (2) and (6), (7), we have

n−1∑
v=1

|∆v(ânv)| ≤ ann,

|ân,v+1| ≤ ann.
Lemma 3.2 ( [7]). If (|λn|) is non-increasing such that

∑
pn|λn| < ∞, then Pn|λn| = O(1), as

n→∞.

Lemma 3.3. Let (ϕn) be a complex sequence. If (sn) is bounded, and all the conditions of Theorem 3.1
are satisfied, then the series

∞∑
n=1

anλnϕn
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is |A, pn; δ|k summable, where k ≥ 1 and 0 ≤ δ < 1/k, and (|λn|) is the same as in Theorem 3.1.

Proof. Let (In) denotes the A-transform of the series
∞∑
n=1

anλnϕn, then

∆̄In =

n∑
v=1

ânvavλvϕv.

Applying Abel’s transformation to this sum, we have

∆̄In =

n−1∑
v=1

∆v(ânvλvϕv)

v∑
r=1

ar + annλnϕn

n∑
v=1

av

=

n−1∑
v=1

∆v(ânvλvϕv)sv + annλnϕnsn

=

n−1∑
v=1

∆(ânv)λvϕvsv +

n−1∑
v=1

∆λvϕvân,v+1sv +

n−1∑
v=1

∆ϕvλv+1ân,v+1sv + annλnϕnsn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Lemma 3.3, it suffices to show that

∞∑
n=1

(
Pn
pn

)δk+k−1

| In,r |k<∞, for r = 1, 2, 3, 4.

First, applying Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,1 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|∆v(ânv)| |λv||ϕv||sv|
}k

≤
m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

|∆(ânv)| |sv|k|λv|k|ϕv|k ×
{ n−1∑
v=1

|∆v(ânv)|
}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

{ n−1∑
v=1

|∆v(ânv)||λv|k|ϕv|k
}

= O(1)

m∑
v=1

|λv|k|ϕv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)δk
pv
Pv
|λv|k|ϕv|k

= O(1)

m∑
v=1

(
Pv
pv

)δk
(Pv|λv|)k−1|λv||ϕv|k

pv
P kv

= O(1)

m∑
v=1

(
Pv
pv

)δk
|λv||ϕv|k

pv
P kv

= O(1) as m→∞,

by virtue of the hypotheses of Lemma 3.3 and by using condition (3) of Theorem 2.2, condition (8) of
Theorem 3.1 and also taking into account Lemma 3.1 and Lemma 3.2. Now, using Hölder’s inequality,
we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,2 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1|∆λv||ϕv||sv|
}k
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= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv||sv|k×

{ n−1∑
v=1

(
Pv
pv

)δ
|ân,v+1||∆λv||ϕv|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv| ×

{ n−1∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk { n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv|

}

= O(1)

m∑
v=1

(
pv
Pv

)δk−δ
|∆λv||ϕv|

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

(
pv
Pv

)δk−δ (
Pv
pv

)δk
|∆λv||ϕv|

= O(1)

m∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv|

= O(1) m→∞,

by virtue of the hypotheses of Lemma 3.3 and by taking condition (4) of Theorem 2.2 and also
condition (9) of Theorem 3.1. Further, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,3 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1|∆ϕv||λv+1||sv|
}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

×
{ n−1∑
v=1

|ân,v+1||λv+1|pv+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

×
{ n−1∑
v=1

|λv+1|pv+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

= O(1)

m∑
v=1

|∆ϕv|k
|λv+1|
pk−1
v+1

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

(
Pv
pv

)δk
|∆ϕv|k

|λv+1|
pk−1
v+1

= O(1) m→∞,

by virtue of the hypotheses of Lemma 3.3 and using condition (5) of Theorem 2.2, condition (9) of
Theorem 3.1 and also taking Lemma 3.1 and Lemma 3.2. Finally, by virtue of the hypotheses of
Lemma 3.3 and using condition (3) of Theorem 2.2 and taking Lemma 3.2, we have

m∑
n=1

(
Pn
pn

)δk+k−1

| In,4 |k =

m∑
n=1

(
Pn
pn

)δk+k−1

|annλnϕnsn|k ≤
m∑
n=1

(
Pn
pn

)δk+k−1

aknn|λn|k|ϕn|k|sn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk−1

|λn|k|ϕn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk
pn
P kn
|λn||ϕn|k(Pn|λn|)k−1
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= O(1)

m∑
n=1

(
Pn
pn

)δk
pn
P kn
|λn||ϕn|k = O(1) as m→∞,

which completes the proof of Lemma 3.3. �

Proof of Theorem 3.1. Since the convergence of Fourier series at a point is a local property of its
generating function f , our theorem follows immediately from Lemma 3.3.

4. Conclusions

If we take anv = pv
Pn

in Theorem 3.1, then we have a result of Theorem 2.2. Also, if we take δ = 0

in Theorem 3.1, we have a new result dealing with the |A, pn|k summability of Fourier series.
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