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ASYMPTOTIC ANALYSIS OF COUPLED OSCILLATORS EQUATIONS IN A

NON-UNIFORM PLASMA

GRIGOL GOGOBERIDZE

Abstract. We study a set of coupled oscillators equations describing Alfvén’s linear coupling and
fast magnetosonic waves in a magnetized plasma. Using the methods of asymptotic analysis, we

derive analytical expressions for the transformation coefficient, as well as Liouville–Green asymp-

totic solutions. The obtained results are compared with the mathematically similar Landau–Zener
problem in quantum mechanics.

1. Introduction

The aim of the present paper is to study coupled evolution of linear plasma waves in a shear flow.
This mechanism is expected to be responsible for generation of compressible perturbations in the solar
wind [5].

In a plasma with the uniform background velocity shear U0 = (Ay, 0, 0) equations that describe
coupled evolution of the Alfvén waves (AW) and fast magnetosonic waves (FMW) are governed by
the following coupled oscillators equations [4]:

d2by
dτ2

+
[
1 +K2

y(τ)
]
by = −Ky(τ)Kzbz, (1)

d2bz
dτ2

+
[
1 +K2

z

]
bz = −Ky(τ)Kzby. (2)

Here, by and bz are the Fourier amplitudes of the corresponding magnetic field components, Kz is the
dimensionless wave number Kz = kz/kx, kz and kx are the components of the wave number vector,
Ky(τ) = Ky − Sτ is the dimensionless wave number, S = A/kxVA is a dimensionless shear rate, VA
is the Alfvén speed and τ = VAkxt is a dimensionless time.

The solutions of the characteristic equation of the set of equations (1), (2) are

Ω2
F (τ) = 1 +K2

z +K2
y(τ), Ω2

A = 1. (3)

They can be easily identified as the frequencies of FMW and AW, respectively.
In the next section we present detailed analysis of equations (1), (2). We study the phenomenon

of a mutual transformation of wave modes and derive analytical expression for the transformation
coefficient.

2. Asymptotic Analysis

It is well known from the theory of coupled oscillator systems that if inhomogeneity is weak enough
(in the considered case the condition implies that the normalized shear rate should be small S � ΩA =
1) and the frequencies of the modes are not close to each other (in the case under consideration this
condition of weak coupling implies [4] δ ≡ |Kz|/S1/3 � 1), then the Liouville–Green approximation
[2,6,7] is valid and the asymptotic solutions of equations (1), (2) are given by the following expressions:

Ψ± =
DF,A±√
ΩF,A(τ)

e±i
∫

ΩF,A(τ)dτ ,
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where DF,A± are the Liouville–Green amplitudes of the corresponding oscillations determined by the
initial conditions. It is well known [6] that the signs ± correspond to the waves propagating along
and backward with respect to the x-axis, respectively.

If one considers equations (1), (2) in a complex τ -plane, then the Liouville–Green solution is
valid everywhere, except some vicinities of turning points, where ΩF = 0, and the resonant points,
where ΩF = ΩA. If the Liouville–Green approximation is valid, then there is no energy exchange
between FMWs and AWs and the energy densities of the modes satisfy the standard relation EF,A± =
ΩF,AD

2
F,A±. Analysis of equation (3) shows that if S � 1, the turning points are not located close to

the real τ -axis, i.e., physically speaking, in this case the wave reflection is absent [3]. When solving
the equation ΩF = ΩA, one finds that there are two second order resonant points Ky(τ1,2) = ±iKz

(the resonant point τ1 has the order n if (Ω1 − Ω2) ∼ (τ1 − τ)n/2 in the neighborhood of τ1).
As follows from equation (3), the frequencies are closest, i.e., an effective coupling is possible

only in some vicinity at the time moment when Ky(τ) = 0. This means that the Liouville–Green
approximation is always valid far on the left– and right-hand sides of this point. This circumstance
enables to study the wave coupling based on the asymptotic analysis that is usual in the scattering
theory. Assume that at the initial moment of time Ky(0)� 1 and the initial amplitudes of the modes
are DL

F,A. Denote the amplitudes on the right of the resonant area by DR
F,A. If so, the problem

reduces to the derivation of the so-called transformation coefficient TFA that connects the initial and
final amplitudes TFA = (DL

F )2/(DR
A)2. Physically, TFA represents a part of energy of the initial FMW

transformed into the AW energy.
If the condition for the effective coupling δ ≡ |Kz|/S1/3 < 1 is not satisfied, the transformation

coefficient is exponentially small, namely [4],

TFA ≈
π

2
exp

(
−δ

3

3

)
. (4)

Analytical expression for the transformation coefficients can be derived also in the opposite limit
δ � 1. In this case, it can be readily shown that by and bz coincide with the eigenfunctions of FMW
and AW, accurate to the terms of order K2

z . Consequently, the terms on the right-hand sides of
equations (1), (2) represent the coupling terms of the same accuracy. Since Kz � S1/3, the coupling
is weak, and if initially there exists only FMW, one can neglect the feedback of AW to FMW. Then,
using the well-known expressions for the solution of a linear inhomogeneous second-order differential
equation, in the above-considered limit (δ � 1), we obtain

TFA ≈ 22/3δ

∞∫
0

x sin

(
x3

3
− δ2

22/3
x

)
dx.

Note that
∞∫

0

x sin

(
x3

3
− γx

)
dx ≡ π ∂

∂γ
Ai(−γ),

and using the expansion of the Airy function Ai(γ) into power series [1], we finally obtain

TFA ≈
22/3π

31/3Γ
(

1
3

)δ(1−
Γ
(

1
3

)
27/431/3Γ

(
2
3

)δ4

)
. (5)

The results of numerical solution of the initial set of equations (1), (2) (solid line), as well as
analytical expressions (4) (dash-dotted line) and (5) (dashed line) are presented in Figure 1. It shows
that the transformation coefficient reaches its maximal value (T 2

FA)max = 1/2 at δcr that can be found
numerically, or alternatively, by finding the maximum of the analytical expression presented by the
equation (5):

δcr =

(
27/431/3Γ

(
2
3

)
5Γ
(

1
3

) )1/4

. (6)
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Figure 1. The transformation coefficient TFA vs δ. Dash-dotted line and dashed
line represent analytical expressions (4) and (5), respectively. Solid line is obtained
by numerical solution of equations (1), (2).

Formula (6) is in a perfect accordance with the numerically calculated δcr (see Figure 1), despite
the failure of equation (5) at δ ∼ 1. This fact can be explained as follows: the only reason why
equation (5) fails is the neglect of the feedback mentioned above. The feedback changes the value of
the transformation coefficient, but does not affect the value of δcr.

3. Discussion and Conclusions

It is well known (see [2, 7] and references therein) that if in the coupled oscillators system with
eigenfrequencies Ω1,2, in the neighborhood of the real τ -axis there exist only a pair of complex con-
jugated first-order resonant points τ1 and τ2, the transformation coefficient can be derived from the
exact asymptotic formula

T12 = exp

(
−
∣∣∣∣Im

τ1∫
τ0

(Ω1 − Ω2)dτ

∣∣∣∣). (7)

We shall make two remarks about this equation. Firstly, it shows that in the case of the first-
order resonant points only the eigenfrequencies are needed to derive the transformation coefficient.
Secondly, equation (7) is valid in the case of strong wave interactions. For instance, if a complex
conjugate resonant point of the first order tends to the real τ -axis, then T12 tends to unity, i.e., the
energy of one wave mode is entirely transformed into another.

None of these properties remain valid in the case of the second order resonant points. Firstly,
the transformation coefficient is small in the both limiting cases δ � 1 and δ � 1, i.e., when the
resonant points are both close and far from the real τ -axis. Secondly, only the expressions of the
eigenfrequencies are not sufficient for the derivation of the transformation coefficient, the problem
needs deeper analysis. Thirdly, the maximum value of the transformation coefficient is 1/2. This
means that even in the optimal regime, only half of the energy of FMW can be transformed into AW,
and vice versa. It has to be noted that the Landau–Zener theory [6] provides the same maximum
value for the transition probability in the two-level quantum mechanical systems.

The last point we would like to discuss in the present paper is the comparison of our problem
with the theory of quantum transitions in the two-level systems. First of all, note that equations
(1), (2) correspond to the so-called quantum mechanical diabatic representation. On the other hand,
the normal variables that were introduced in [3, 4], correspond to the adiabatic representation. As
in the two-level quantum systems, both representations are useful for derivation of a transformation
coefficient in different limits. One distinction that makes our problem different and generally more
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difficult is that in the area of the effective interaction the ’coupling terms’ (terms on the right-hand
side of equations (1), (2)) cannot be treated as constants. This circumstance does not allow to use
another powerful asymptotic method, the so-called momentum representation [6, 7].
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