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Abstract. In this study, the shifted Chebyshev-Gauss collocation method (SC-GCM) is used for
finding the Nash equilibrium solution of nonzero-sum differential games with fixed-final-time. The

search for the Nash equilibrium solutions in a feedback form usually leads to a nonlinear system

of Hamilton–Jacobi–Bellman (HJB) PDEs. In the proposed approach, by applying the SC-GCM
and pursuing the idea of value functions approximation, the system of HJB PDEs is reduced to a

system of algebraic equations. By this method, a Nash equilibrium solution can be approximated as

a function of the time and the current state by Chebyshev polynomials. The main advantage of this
method is that the boundary conditions of the system of HJB PDEs can be included explicitly in the

chosen approximations of value functions, which states that the boundary conditions are satisfied

automatically. In view of the convergence of the method, several examples are given to demonstrate
the accuracy and efficiency of the proposed method.

1. Introduction

Dynamic game is a practically significant discipline in many different fields such as engineering,
ecology, management and economics. Differential game studies the situation that involves several
Decision-Makers (or Players) with different objectives, where each Player looks for minimization (or
maximization) of his own individual criterion. Nonzero-sum games were introduced in the works of
Starr and Ho [44, 45]. For a detail treatment of differential games, we refer the reader to Nash [38],
Basar and Olsder [4], Engwerda [13], Friesz [19], Yeung and Petrosyan [49] and Bressan [10].

Research in differential games is focused in the first place on extending control theory to incorporate
strategic behavior [49]. Bellman’s dynamic programming for solving optimal control problems leads
to the Hamilton–Jacobi–Bellman (HJB) equation, which is challenging due to its inherently nonlinear
nature. HJB equations have been solved by using different techniques. For example, variational
iteration method was applied for nonlinear quadratic optimal control problems in [33]. Saberi and
Effati [41] proposed a computational method to generate suboptimal solutions for a class of nonlinear
optimal control problems.

The feedback Nash equilibrium strategies in non-zero sum games, where the strategies of players
are allowed to depend on time and also on the current state, can be found by solving a highly nonlinear
system of Hamilton–Jacobi–Bellman (HJB) PDEs, which are derived from the principle of dynamic
programming (see, for example, [4, 10,13,19,33,41,49]).

Due to the difficulty in solving nonlinear HJB PDEs, the existence and continuity of the feedback
Nash equilibria are mainly considered in linear-quadratic dynamic games. Starr and Ho in [45] derived
the sufficient conditions of the existence of a linear feedback equilibrium for a finite-horizon planning,
which can be obtained via solving a system of Riccati equations. For more details on nonzero-sum
linear-quadratic games see [1, 14–16,32].

Compared to the linear-quadratic case, not many works are devoted to the nonlinear differential
games. Jiménez-Lizárraga et al. [36] studied the state-dependent Riccati equations for a certain
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class of nonlinear polynomial games to obtain open-loop quasi-equilibrium. Kossiorisa et al. [34]
provided a solution in a particular case of a nonlinear game representing a pollution and resource
management problem. Nikooeinejad et al. employed the pseudospectral method to compute the
open-loop Nash and saddle point equilibria for nonlinear nonzero-sum differential games and min-max
optimal control problems (M-MOCPs) with uncertainty, respectively [39, 40]. An iterative adaptive
dynamic programming method for solving a class of nonlinear zero-sum differential games is used to
obtain saddle point of the zero-sum differential games (see [51]). The synchronous PI method in [47]
was generalized to solve a multi-player nonzero-sum game for nonlinear continuous-time dynamic
systems.

To the extent of our knowledge, the focus of the above paper is on the theoretical analysis rather
than the numerical algorithms.

Although, setting up the system of HJB PDEs to obtain feedback Nash equilibrium solutions is
not difficult, but in general the difficulty in solving the system of HJB equations remains the biggest
problem to the practical application of nonlinear systems.

The methods from numerical analysis, such as Galerkin’s method, can be used to convert the HJB
equations from a continuous operator to a discrete problem. The existing references in this area to
solve the Hamilton-Jacobi-Isaacs (HJI) equations for zero-sum differential games include Georges [20],
Beard [5–7], Alamir [2], and Ferreira [17]. Disadvantage of Galerkin’s method is that the evaluation
of coefficients depends on the computation of definite integrals.

Our goal of this paper is to introduce a simple computational method that is able to address
nonlinear system dynamics. The pseudospectral or collocation methods are the one of best tools for
solving ordinary or partial differential equations with a high accuracy [11,21–31,37,50]. A simple way
to approximate the value functions of each player is by defining as a linear combinations of polynomial
basis functions, and equalizing the residual functions to zero at collocation points to search for the
associated coefficients. In this approach, Runge’s phenomenon shows that the selection of nodes and
the choice of basis function play an important role in the quality of the approximation. The shifted
Jacobi polynomials are a well-known class of polynomials exhibiting exponential or sometimes super-
exponential convergence, of which particular examples are the first and second kinds of Chebyshev and
Legendre polynomials [8,12,43]. It is shown that by selecting a limited number of shifted Chebyshev
collocation points, the excellent numerical results are obtained. The solution to the system of HJB
PDEs (or the value functions for each Player) must be satisfied in the boundary conditions, therefore,
the boundary conditions play a much more crucial role in the chosen form for the value functions
approximation. In the present paper we intend to extend a simple and efficient numerical method
based on value functions approximation and shifted Chebyshev-Gauss collocation method for finding
Nash equilibrium solutions of nonzero-sum differential games.

The remainder of this paper is organized as follows. In Section 2, we introduce the nonzero-sum
dynamic games and the formulation of the system of HJB PDEs. Some preliminary details about the
SC-GCM are given in Section 3. In Section 4, the presented technique is used to approximate the
value functions and the Nash equilibrium solutions of nonzero-sum dynamic games. Some numerical
examples are given in Section 5 to show the efficiency of the proposed method. Finally, a brief
conclusion is drawn in Section 6.

2. Problem Statement

Consider an n−person nonzero-sum differential game, where the players’ dynamics is governed by
the following nonlinear differential equation [4, 49]:

ẋ(t) = f(t, x(t), u1(t), u2(t), . . . , un(t)), t ∈ [t0, T ],

x(t0) = x0, (1)

where f(t, x(t), u1(t), u2(t), . . . , un(t)) = f0(x(t)) +
∑n

j=1 gj(x(t))uj(t). We assume that f0(0) = 0,

f0(x) and gj(x) are Lipschitz continuous on a compact set Ω ∈ Rm containing the origin, and the
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system is stabilizable on Ω. Define the finite horizon cost functions associated with Player i as:

Jk(u1, u2, . . . , un) =

T∫
t0

Lk(t, x(t), u1(t), . . . , un(t))dt+ ψk(x(T )),

where Lk(t, x(t), u1(t), . . . , un(t)) = xTQkx+
∑n

j=1 u
T
j Rkjuj , x(t) ∈ Rm is the state vector of the game,

uk(t) ∈ Uk ⊂ Rmk is the control function implemented by the k-th Player and Qk ∈ Rm×m, Rkj ∈
Rmj×mj are symmetric positive definite matrices. Also, the functions f0(x), gk(x) and ψk(x) for
k = 1, 2, . . . , n are the differentiable functions.

It is desirable to find the optimal control vector {u∗1, u∗2, . . . , u∗n} such that for k = 1, 2, . . . , n,
controls u∗k are continuous, u∗k stabilize (1) on Ω, ∀x0 ∈ Ω, Jk(u∗1, u

∗
2, . . . , u

∗
n) are finite, and the cost

functions (2) are minimized.
The control vector {u∗1, u∗2, . . . , u∗n} corresponds to the Nash equilibrium solution of the game.
To find Nash equilibrium solutions, we need to consider a family of problems having a unique

Nash equilibrium solution. Here we describe an important class of problems where this assumption is
satisfied.

Lemma 2.1 ([10]). Assume that the dynamics and the running costs take the decoupled form

f(t, x, u1, . . . , un) = f0(x) +

n∑
k=1

gk(x)uk, (2)

Lk(t, x, u1, . . . , un) =

n∑
j=1

Lkj(t, x, uj), k = 1, . . . , n.

Also, assume that
(i) The domains Uk(k = 1, . . . , n) are closed and the convex subsets of Rmk are, possibly, unbounded.
(ii) The functions gk(x) depend continuously on t, x.
(iii) The functions uk 7→ Lkk(t, x, uk) are strictly convex.
(iv) For each k = 1, . . . , n, either Uk is compact, or Lkk has superlinear growth

lim
|ω|→∞

Lkk(t, x, ω)

uk
= +∞, k = 1, . . . , n.

Then for every (t, x) ∈ [0, T ] × Rm and any vector pk ∈ Rm(k = 1, . . . , n), there exists a unique set
(u∗1(t), . . . , u∗n(t)) ∈ U1 × · · · × Un such that

u∗k = arg min
ω∈Uk

{Lkk(t, x, ω) + pk.gk(x)ω}.

We consider here the case, where both players can observe the current state of the system. The
value functions Vk(t, x), k = 1, 2, . . . , n associated with the admissible control policies uk ∈ Uk are
defined as follows:

Vk(t, x) = min
uk∈Uk

{ T∫
t

Lk(t, x, u1, . . . , un)dt+ ψk(x(T ))

}
. (3)

Assume that the value functions (3) are continuously differentiable. By Bellman’s optimality and the
dynamic programming principle, the optimal cost functions defined in (3) are satisfied the following
system of Hamilton–Jacobi–Bellman (HJB) PDEs:

0 =
∂

∂t
Vk(t, x)

+ min
uk∈Uk

{
Lk(t, x, u1, . . . , un) +

( ∂
∂x
Vk(t, x)

)T(
f0(x) +

n∑
j=1

gj(x)uj

)}
,

k =1, 2, . . . , n, (4)
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with the boundary conditions Vk(T, x) = ψk(x), k = 1, 2, . . . , n. Define the Hamiltonian functions as

Hk

(
t, x, u1, . . . , un,

∂

∂x
Vk

)
=

(
∂

∂x
Vk

)T (
f0(x) +

n∑
j=1

gj(x)uj

)
+Lk(t, x, u1, . . . , un), k = 1, 2, . . . , n.

Then the associated state feedback control policies can be obtained by

∂Hk

∂uk
= 0⇒ u∗k(t, x) = −1

2
R−1

kk g
T
k (x)

∂

∂x
Vk(t, x), k = 1, 2, . . . , n. (5)

Substitution of (5) into (4) yields the following n-coupled HJB equations:

0 =
∂

∂t
Vk(t, x) + xTQkx+

(
∂

∂x
Vk(t, x)

)T

f0(x)

−1

2

(
∂

∂x
Vk(t, x)

)T n∑
j=1

gj(x)R−1
jj g

T
j (x)

∂

∂x
Vj(t, x)

+
1

4

n∑
j=1

(
∂

∂x
Vj(t, x)

)T

gj(x)R−1
jj RjjR

−1
jj g

T
j (x)

∂

∂x
Vj(t, x),

k = 1, 2, . . . , n, (6)

with the boundary conditions

Vk(T, x) = ψk(x), k = 1, 2, . . . , n. (7)

The system of Hamilton–Jacobi–Bellman PDE equations (6) with boundary conditions (7) cannot
generally be solved due to its nonlinear nature. We intend to solve system (6) and (7) by the shifted
Chebyshev-Gauss collocation method (SC-GCM).

3. Some Properties of Chebyshev Polynomials

In this section, we introduce some basic properties of the Chebyshev polynomials that we use in
the CSCM as the function approximation structures.

The Chebyshev polynomials Tn(z), n = 0, 1, 2, . . . are the eigenfunctions of the singular Sturm-
Liouville problem

(1− z2)T ′′n (z)− zT ′n(z) + n2Tn(z) = 0.

They are orthogonal with respect to the L2
w inner product on the interval [−1, 1] with the weight

function w(z) = 1√
1−z2

. The Chebyshev polynomials satisfy the recurrence formula as follows:

Tn+1(z) = 2zTn(z)− Tn−1(z), n = 1, 2, . . . ,

where T0(z) = 1 and T1(z) = z. For practical use of the Chebyshev polynomials on the interval [a, b],
it is necessary to shift the defining domain by the following variable substitution:

z =
2

b− a
t− b+ a

b− a
.

Let the shifted Chebyshev polynomials Tn( 2
b−a t−

b+a
b−a ) be denoted by T ∗n(t). Then these polynomials

can be obtained by using the following recurrence formula:

T ∗n+1(t) =

(
4

(
t

b− a

)
− 2

(
b+ a

b− a

))
T ∗n(t)− T ∗n−1(t), n = 1, 2, . . . ,

where T ∗0 (t) = 1 and T ∗1 (t) = 2
b−a t−

b+a
b−a .

Now, let the shifted Chebyshev polynomials Tn( 2
b−a t −

b+a
b−a ) and Tn( 2

d−cx −
d+c
d−c ) be denoted by

T ∗n(t) and T ∗n(x), respectively.
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Similarly, an arbitrary function of two variables f(t, x) ∈ L2
w([a, b] × [c, d]), can be approximated

by the shifted Chebyshev polynomials as:

f(t, x) ' f̃(t, x) =

N1∑
i=0

N2∑
j=0

fijT
∗
i (t)T ∗j (x),

with

fij =
4

π2cicj

1∫
−1

1∫
−1

f( b−a
2 t+ b+a

2 , d−c2 x+ d+c
2 )Ti(t)Tj(x)

√
1− t2

√
1− x2

dtdx,

i = 0, 1, . . . , N1, j = 0, 1, . . . , N2.

The fundamental results of the proposed method are based on the remarkable Weierstrass Theorem
and approximability of orthogonal polynomials [9, 43].

Theorem 3.1 ([42]). If the function f(t, x) has the second order continuous derivatives, then

|fi,0| ≤
2γ2,0

(i− 1)2
, |fi,1| ≤

8γ2,0

π(i− 1)2
, i > 1,

|f0,j | ≤
2γ0,2

(j − 1)2
, |f1,j | ≤

8γ0,2

π(j − 1)2
, j > 1,

where f(t, x) =
∑∞

i=0

∑∞
j=0 fijTi(t)Tj(x), f̃(t, x) =

∑N1

i=0

∑N2

j=0 fijTi(t)Tj(x), γ2,0 ≥ max{|∂
2f

∂t2 (t, x)| :
t, x ∈ [−1, 1]}, and γ0,2 ≥ max{|∂

2f
∂x2 (t, x)| : t, x ∈ [−1, 1]}.

Theorem 3.2 ([42]). If the function f(t, x) has the second order continuous partial derivatives, then

limN1,N2→∞ f̃(t, x) = f(t, x) uniformly in [−1, 1] and

|f(t, x)− f̃(t, x)| ≤
√

6

(
20γ2

0,2

(N2 − 1)2
+

20γ2
2,0

(N1 − 1)2
+
π2γ2

1,1

6N2
+
π2γ2

1,1

6N1

) 1
2

.

For obtaining the first partial derivatives ∂
∂t f̃(t, x) and ∂

∂x f̃(t, x), we can rewrite f̃(t, x) as:

f̃(t, x) =

N1∑
i=0

Ai(x)T ∗i (t), with Ai(x) =

N2∑
j=0

fijT
∗
j (x),

or

f̃(t, x) =

N2∑
j=0

Bj(t)T
∗
j (x), with Bj(t) =

N1∑
i=0

fijT
∗
i (t).

Then the first partial derivatives of f̃(t, x) can be obtained as:

∂

∂t
f̃(t, x) =

2

b− a

N1∑
i=0

A
(1)
i (x)T ∗i (t), (8)

∂

∂x
f̃(t, x) =

2

d− c

N2∑
j=0

B
(1)
j (t)T ∗i (x), (9)

where the coefficients A
(1)
i (x), i = 0, 1, . . . , N1 and B

(1)
j (t), j = 0, 1, . . . , N2 are:

A
(1)
i (x) =

2

ci

N1∑
p=i+1

(p+i) odd

pAp(x), i = 0, . . . , N1 − 1, A
(1)
N1

(x) = 0, (10)

B
(1)
j (t) =

2

cj

N2∑
q=j+1

(p+j) odd

qBq(t), j = 0, . . . , N2 − 1, B
(1)
N2

(t) = 0. (11)
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4. Nonlinear Fixed-Final-Time n-Coupled HJB Solution by the Collocation Method

The n-coupled HJB equations (6) and (7) are difficult to solve for the cost functions Vk(t, x). In this
section, the direct collocation method is used to solve approximately the value functions in (6) over Ω
by approximating the cost functions Vk(t, x) and their partial derivatives as Chebyshev polynomials.
We assume that Vk(t, x), k = 1, 2, . . . , n are smooth. Therefore, one can use approximate cost functions
Vk(t, x) for t ∈ [0, T ] and a compact set Ω ⊂ Rm as follows:

Vk(t, x) 'Ṽk(t, x)

=(t− tN1
)

( N1∑
i=0

N2∑
j=0

vkijT
∗
i (t)T ∗j (x)

)
+ ψk(x), k = 1, 2, . . . , n. (12)

Before describing the method, it should be pointed out that this method is introduced for x ∈ R,
however, it can be extended easily to x ∈ Rm. Our aim is to approximate the solution of system (6)
and (7) for the time horizon [t0, T ] and the state domain Ω = [xmin, xmax]. So, we define:

tr =
T − t0

2

(
cos

(
(N1 − r)π

N1

))
+
T + t0

2
, r = 0, 1, . . . , N1, (13)

xs =
xmax − xmin

2

(
cos

(
(N2 − s)π

N2

))
+
xmax + xmin

2
, s = 0, 1, . . . , N2,

which are named as shifted Chebyshev–Gauss–Lobatto nodes. In fact, these points are zeros of the
(t− t0)(T − t)Ṫ ∗N1

(t) and (x− xmin)(xmax − x)Ṫ ∗N2
(x), respectively.

By the grid points defined in (13), and substituting tN1
into (12), we have:

Ṽk(tN1 , x) = Ṽk(T, x) = ψk(x), k = 1, 2, . . . , n,

which guarantee the boundary conditions for the cost functions Vk(t, x) and for k = 1, 2, . . . , n are
satisfied automatically.

In addition, from equations (8) and (9), we can get the partial derivatives ∂
∂t Ṽk(t, x) and ∂

∂x Ṽk(t, x)
as follows:

∂

∂t
Ṽk(t, x) =

N1∑
i=0

N2∑
j=0

vkijT
∗
i (t)T ∗j (x) +

2(t− tN1
)

T − t0

N1∑
i=0

A
(1)
i (x)T ∗i (t),

∂

∂x
Ṽk(t, x) =

2(t− tN1)

xmax − xmin

N2∑
j=0

B
(1)
j (t)T ∗j (x) +

∂ψk(x)

∂x
,

k =1, 2, . . . , n,

where the coefficients A
(1)
i (x), i = 0, 1, . . . , N1 and B

(1)
j (t), j = 0, 1, . . . , N2 can be obtained from

equations (10) and (11).

Approximating Vk(t, x), ∂
∂tVk(t, x) and ∂

∂xVk(t, x) in the n-coupled HJB equations (6) by Ṽk(t, x),
∂
∂t Ṽk(t, x) and ∂

∂x Ṽk(t, x) , respectively, we have

ResVk
(t, x) =

∂

∂t
Ṽk(t, x) + xTQix+

(
∂

∂x
Ṽk(t, x)

)T

f0(x)

−1

2

(
∂

∂x
Ṽk(t, x)

)T n∑
j=1

gj(x)R−1
jj g

T
j (x)

∂

∂x
Ṽj(t, x)

+
1

4

n∑
j=1

(
∂

∂x
Ṽj(t, x)

)T

gj(x)R−1
jj RjjR

−1
jj g

T
j (x)

∂

∂x
Ṽj(t, x),

k = 1, 2, . . . , n,

where ResVk
(t, x), k = 1, 2, . . . , n are the residual equations error. To find the coefficients vkijs, the

method of weighted residuals is used.
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Consider the expression

< ResVk
(t, x),Wr,s >=

[ T∫
t0

∫
Ω

ResVk
(t, x).Wr,sdΩdt

]
, (14)

where Wr,s, r = 0, 1, . . . , N1, s = 0, 1, . . . , N2 are the suitable functions.
The coefficients vkijs will be selected to minimize residual equations error in a collocation sense over

a set of points sampled from a compact set [t0, T ]× Ω.
To this end, the coefficients vkijs are determined by projecting the residual errors onto the Dirac

delta function and setting the results to zero ∀x ∈ Ω and t ∈ [0, T ].
Setting P rs = (tr, xs), we define:

Wr,s = δ(P rs), r = 0, 1, . . . , N1, s = 0, 1, . . . , N2, (15)

where δ(P rs) is the Dirac delta function. By substituting (15) into (14), the coefficients vkijs are
obtained from equalizing ResVk

(tr, xs) to zero at the collocation points as follows:

< ResVk
(t, x), δ(P rs) >= ResVk

(tr, xs) = 0,

r = 0, 1, . . . , N1, s = 0, 1, . . . , N2, k = 1, 2, . . . , n. (16)

Equations (16) generate a set of n(N1 + 1)(N2 + 1) nonlinear algebraic equations that can be solved

by the Newton method for the unknown coefficients vkijs. Consequently, the cost functions Ṽk(t, x),
k = 1, 2, . . . , n can be calculated.

From (5), the corresponding Nash equilibrium solutions as a function of the time and the state are
approximated as:

ũk(t, x) = −1

2
R−1

kk g
T
k (x)

∂

∂x
Ṽk(t, x), k = 1, 2, . . . , n.

5. Illustrative Example

To demonstrate the application of the shifted Chebyshev-Gauss collocation method (SC-GCM) and
its performance for finding feedback Nash equilibrium solution of nonzero-sum dynamic games, several
examples are examined in this section. Example 5.1 is a linear-quadratic dynamic game that can be
solved analytically. This allows one to verify the validity of the method by comparing with the results
of exact solution. The analytic solution for Examples 5.2 and 5.3 is unachievable. It should be noted
that for Example 5.2, the results obtained by the proposed method coincide with those obtained by
the variables separation method.

Example 5.1. Consider the linear-quadratic nonzero-sum differential game defined by the system [4]

ẋ(t) =
√

2u1(t)− u2(t), x(0) = 1, 0 ≤ t ≤ T = 2,

and the performance criteria of Players 1 and 2 as follows:

min
u1

J1 =

T∫
0

(u2
1(t)− u2

2(t))dt+
1

2
x(T )2,

min
u2

J2 =

T∫
0

(u2
2(t)− u2

1(t))dt− 1

2
x(T )2.

The exact solution for the feedback Nash equilibrium of this problem is

V1(t, x) = −V2(t, x) =
x2

2(3− t)
,

u∗1(t, x) =
−
√

2x

3− t
,

u∗2(t, x) =
−x

3− t
.
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Table 1. The numerical optimal value of cost functionals Ji, i = 1, 2 obtained by
using the SC-GCM as compared with the exact solutions for Example 5.1

(N1, N2) J1 J2 | Ji − J∗i |, i = 1, 2
(2, 2) 0.1708622317 -0.1708622317 0.0041955650
(4, 2) 0.1666009734 -0.1666009734 0.0000656933
(6, 2) 0.1666658930 -0.1666658930 7.73× 10−7

(8, 2) 0.1666666471 -0.1666666471 1.96× 10−8

(10, 2) 0.1666666660 -0.1666666660 7.00× 10−10

As is discussed in Section 2, the HJB equations system for this problem has the following form:

V1,t(t, x) + min
u1

{
1

2
(u1(t)2 − u2(t)2) + V1,x(t, x)(

√
2u1(t)− u2(t))

}
= 0,

V2,t(t, x) + min
u2

{
1

2
(u2(t)2 − u1(t)2) + V2,x(t, x)(

√
2u1(t)− u2(t))

}
= 0,

(17)

with the boundary conditions

V1(2, x(2)) = −V2(2, x(2)) =
1

2
x2(2).

The corresponding Hamiltonian functions are given in the form

H1(t, x, u1, u2, V1,x) =
1

2
(u1(t)2 − u2(t)2) + V1,x(t, x)(

√
2u1(t)− u2(t)),

H2(t, x, u1, u2, V2,x) =
1

2
(u2(t)2 − u1(t)2) + V2,x(t, x)(

√
2u1(t)− u2(t)).

Differentiating H1(t, x, u1, u2, V1,x) and H2(t, x, u1, u2, V2,x) with respect to u1 and u2, respectively,
and by finding the functions u1 and u2, where these derivatives tend to zero, we have

u∗1(t, x) = −
√

2V1,x(t, x),

u∗2(t, x) = V2,x(t, x).

Now, by substituting u∗1 and u∗2 into HJB equations system (17), we have the following partial differ-
ential equations: 

V1,t(t, x)− V1,x(t, x)2 − V2,x(t, x)2 − V1,x(t, x)V2,x(t, x) = 0,

V2,t(t, x)− V1,x(t, x)2 − V2,x(t, x)2 − V1,x(t, x)V2,x(t, x) = 0,

V1,t(t, x) = −V2,t(t, x) = 1
2x

2(2).

(18)

We intend to solve the PDEs system (18) using the SC-GCM (as discussed in section 4). The numerical
approximation of optimal value functions, the control solutions and state trajectory are plotted using
SC-GCM for N1 = 10 and N2 = 2 on the computational domain [0, 2]× [−2, 2] in Figure 1. The graphs
of the absolute error are also show in the same Figure 1. The exact optimal value cost functionals are
J∗1 = −J∗2 = 0.1666666667.

Comparison of the optimal cost functionals Ji, i = 1, 2 for the SC-GCM with the exact solutions
are shown in Table 1.

Example 5.2. In this example, we consider the application of differential games in competitive
advertising in Sorger. There are two firms in a market and the profit of firm1 and that of 2 are
respectively [49]:

max
u1

J1(u1, u2) =

T∫
0

e−r1t[q1x(t)− c1
2
u2

1(t)]dt+ e−r1TS1x(T ), (19)
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Figure 1. The numerical approximation of optimal value functions Vi(t, x), i = 1, 2,
control solutions ui(t, x), i = 1, 2, state trajectory x(t) and absolute error functions,
using the SC-GCM for N1 = 10 and N2 = 2 on the domain [0, 2]× [−2, 2] for Exam-
ple 5.1.
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and

max
u2

J2(u1, u2) =

T∫
0

e−r2t[q2(1− x(t))− c2
2
u2

2(t)]dt+ e−r2TS2(1− x(T )),

where ri, qi, ci and Si for i = 1, 2, are the positive constants. The dynamics of firms market share is
governed by

ẋ(t) = u1(t)
√

1− x(t)− u2(t)
√
x(t), x(0) = 1, 0 ≤ x ≤ 1, (20)

where x(t) is the market share of firm1 at time t, [1 − x(t)] is that of firm2, ui(t) is advertising
rate for firm i = 1, 2. A feedback solution which allows the firm to choose its advertising rates
contingent upon the state of the game is a realistic approach to this problem. Invoking the dynamic
programming principle, a feedback Nash equilibrium solution to the game (19)–(20) has to satisfy the
following conditions:

V1,t(t, x)+ max
u1

{e−r1t[q1x(t)− c1
2
u2

1]

+V1,x(t, x)(u1

√
1− x(t)− u∗2(t, x)

√
x(t))} = 0,

V2,t(t, x)+ max
u2

{e−r2t[q2(1− x(t))− c2
2
u2

2(t)]

+V2,x(t, x)(u∗1(t, x)
√

1− x(t)− u2

√
x(t))} = 0,

V1(T, x) = e−r1TS1x(T ),

V2(T, x) = e−r2TS2(1− x(T )). (21)

Performing the indicated maximization in (21) yields

u∗1(t, x) =
V1,x(t, x)

c1

√
1− x(t) exp(rt), (22)

u∗2(t, x) =
−V2,x(t, x)

c2

√
x(t) exp(rt). (23)

If qi = Si = 1, i = 1, 2 and T = r1 = r2 = 2, upon substituting u∗1(t, x) and u∗2(t, x) from (22) and
(23) into (21), we have the following system of PDEs:

V1,t(t, x)+x exp(−2t)

+
1

2
(1− x) exp(2t)V1,x(t, x)2 + x exp(2t)V1,x(t, x)V2,x(t, x) = 0,

V2,t(t, x)+(1− x) exp(−2t)

+
1

2
x exp(2t)V2,x(t, x)2 + (1− x) exp(2t)V1,x(t, x)V2,x(t, x) = 0,

V1(2, x) =e−4x

V2(2, x) =e−4(1− x). (24)

The numerical approximation of optimal value functions, residual errors and numerical approximation
of control solutions for Player1 and Player2 are plotted by using the SC-GCM for N1 = 10 and N2 = 2
on the computational domain [0, 2]×[0, 1] in Figure 2. To solve the partial differential equations system
(24) by separation variables method, we try a solution of the form

V1(t, x) = exp(−2t)[A1(t)x+B1(t)],

V2(t, x) = exp(−2t)[A2(t)x+B2(t)],

where A1(t), B1(t), A2(t) and B2(t) satisfy

Ȧ1(t) =
1

2
A1(t)2 −A1(t)A2(t)− 2A1(t) + 1, A1(2) = 1, (25)

Ḃ1(t) =− 1

2
A1(t)2 +B1(t), B1(2) = 0, (26)
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Figure 2. The numerical approximation of optimal value functions Vi(t, x), i = 1, 2,
the residual errors RESVi(t, x), i = 1, 2, control solutions ui(t, x), i = 1, 2, state
trajectory x(t) and RESx(t), using the SC-GCM for N1 = 10 and N2 = 2 on the
domain [0, 2]× [0, 1] for Example 5.2.
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Table 2. Optimal value of cost functionals Ji, i = 1, 2 obtained using the SC-GCM
as compared with that of obtained by the SVM for Example 5.2

(N1, N2) J1SC−GCM J2SC−GCM

(2, 1) 0.4288819515 0.0406674857
(4, 1) 0.4285865391 0.0402552676
(6, 1) 0.4285683563 0.0402927736
(8, 1) 0.4285702876 0.0402936397
(10, 2) 0.4285703954 0.0402937017

J1SV M = 0.4285704042, J2SV M = 0.0402937073

Ȧ2(t) =− 1

2
A2(t)2 +A1(t)A2(t) + 2A2(t) + 1, A2(2) = −1, (27)

Ḃ2(t) =−A1(t)A2(t) + 2B2(t)− 1, B2(2) = 1. (28)

If ordinary differential equations system (25)–(28) has a solution, then the optimal control strategies
as a function of the time and the current state are given in the form

u∗1(t, x) = A1(t)
√

1− x exp(2t),

u∗2(t, x) = −A2(t)
√
x exp(2t).

The SC-GCM method is also applied to solve the ordinary differential equations system (25)–(28) for
N = 10 on the domain [0, 2]. Comparison of the optimal cost functionals Ji, i = 1, 2 obtained by the
SC-GCM and the separation variables method (SVM) is shown in Table 2.

Example 5.3. The following example corresponds to a nonlinear electrical circuit managed by two
electric companies, which employ different costs for the consumed electric energy. The purpose of the
game problem is to minimize the energy cost for each company [36].

Consider the following nonlinear polynomial game:

ẋ1(t) = x2(t), x1(0) = 1,

ẋ2(t) = x2
1(t) + u1(t) + u2(t), x2(0) = 1, (29)

with the finite-time quadratic cost functions

min
u1

J1(u1, u2) =
1

2
(0.1x2

1(T ) + x2
2(T ))

+
1

2

T∫
0

(0.1x2
1(t) + x2

2(t) + u2
1(t) + u2

2(t))dt, (30)

min
u2

J2(u1, u2) =
1

2
(x2

1(T ) + 0.1x2
2(T ))

+
1

2

T∫
0

(x2
1(t) + 0.1x2

2(t) + u2
1(t) + u2

2(t))dt. (31)

Invoking dynamic programming principle, a feedback Nash equilibrium solution to the game (29)–(31)
has to satisfy the following conditions:

V1,t(t, x1, x2)+ min
u1

{1

2
(0.1x2

1 + x2
2 + u2

1 + (u∗2(t, x1, x2)2) + V1,x1
(t, x1, x2)(x2)

+V1,x2
(t, x1, x2)

(
x2

1 + u1 + u∗2(t, x1, x2

)}
= 0,

V2,t(t, x1, x2)+ min
u2

{1

2

(
x2

1 + 0.1x2
2 + (u∗1(t, x1, x2)2 + u2

2

)
+ V2,x1

(t, x1, x2) (x2)

+V2,x2(t, x1, x2)
(
x2

1 + u∗1(t, x1, x2 + u2

)}
= 0,



A COMPUTATIONAL METHOD FOR SOLVING THE SYSTEM OF HAMILTON–JACOBI–BELLMAN PDES 95

Figure 3. The numerical approximation of optimal value functions Vi(t, x1, x2), i =
1, 2, control solutions ui(t, x1, x2), i = 1, 2 using the SC-GCM for t = 0, 1

2 , 1, and

N1 = 6, N2 = 4, N3 = 4 on the domain [0, 1]× [− 1
2 ,

1
2 ]× [− 1

2 ,
1
2 ] for Example 5.3.

V1(T, x1, x2) =
1

2

(
0.1x2

1 + x2
2

)
,

V2(T, x1, x2) =
1

2

(
x2

1 + 0.1x2
2

)
. (32)

Performing the indicated minimization in (32) yields:

u∗1(t, x1, x2) = −V1,x2
(t, x1, x2),
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Figure 4. The residual errors RESV1
(t, x1, x2) for t = 0, 1

2 , 1, x1 = − 1
2 , 0,

1
2 , x2 =

− 1
2 , 0,

1
2 using the SC-GCM at N1 = 6, N2 = 4, N3 = 4 on the domain [0, 1]×[− 1

2 ,
1
2 ]×

[− 1
2 ,

1
2 ] for Example 5.3.

u∗2(t, x1, x2) = −V2,x2
(t, x1, x2). (33)

Upon substituting u∗1(t, x1, x2) and u∗2(t, x1, x2) into (32), we have the following system of PDEs:

V1,t(t, x1, x2)+
1

20
x2

1 +
1

2
x2

2 +
1

2

(
V2,x2

(t, x1, x2)2 − V1,x2
(t, x1, x2)2

)
+V1,x1(t, x1, x2)x2 + V1,x2(t, x1, x2)x2

1

−V2,x2
(t, x1, x2)V1,x2

(t, x1, x2) = 0,

V2,t(t, x1, x2)+
1

2
x2

1 +
1

20
x2

2 +
1

2

(
V1,x2

(t, x1, x2)2 − V2,x2
(t, x1, x2)2

)
+V2,x1

(t, x1, x2)x2 + V2,x2
(t, x1, x2)x2

1

−V2,x2(t, x1, x2)V1,x2(t, x1, x2) = 0,

V1(T, x1, x2) =
1

2

(
0.1x2

1 + x2
2

)
,

V2(T, x1, x2) =
1

2

(
x2

1 + 0.1x2
2

)
. (34)

Substituting the relevant partial derivatives of V1(t, x1, x2) and V2(t, x1, x2) from (34) into (33), we get
the feedback Nash equilibrium strategies u∗1(t, x1, x2) = φ∗1(t, x1, x2) and u∗2(t, x1, x2) = φ∗2(t, x1, x2).
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Figure 5. The residual errors RESV2
(t, x1, x2) for t = 0, 1

2 , 1, x1 = − 1
2 , 0,

1
2 , x2 =

− 1
2 , 0,

1
2 using the SC-GCM at N1 = 6, N2 = 4, N3 = 4 on the domain [0, 1]×[− 1

2 ,
1
2 ]×

[− 1
2 ,

1
2 ] for Example 5.3.

Figure 6. The numerical approximation of optimal state trajectories x∗i (t), i = 1, 2
and the residual errors RESxi(t), i = 1, 2, using the SC-GCM by N = 10 on the
domain [0, 1] for Example 5.3.
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Table 3. Optimal value of cost functionals Ji, i = 1, 2 is obtained by using the
SC-GCM, for Example 5.3.

(N1, N2, N3) J1 J2

(4, 2, 2) 1.32637334 2.47275222
(4, 3, 3) 1.379273134 2.884931842
(6, 4, 4) 1.694880607 3.001789476
(8, 4, 4) 1.694872219 3.001803382

After substituting φ∗1(t, x1(t), x2(t)) and φ∗2(t, x1(t), x2(t)) into the system of differential equations
(29) and solving, we obtain the optimal state trajectories x∗1(t) and x∗2(t).

The SC-GCM method is applied to obtain the numerical approximation of optimal value functions
Vi(t, x1, x2) and the Nash equilibrium strategies ui(t, x1, x2) for i = 1, 2, for t = 0, 1

2 , 1, using a 6×4×4

grid discreditization scheme on the computational domain [0, 1] × [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ], the obtained

results are shown in Figure 3. The residual errors RESV1(t, x1, x2) for t = 0, 1
2 , 1, x1 = −1

2 , 0,
1
2 , and

x2 = − 1
2 , 0,

1
2 using SC-GCM for N1 = 6, N2 = 4, N3 = 4 on the domain [0, 1]× [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ] are

plotted in Figures 4 and 5.
The SC-GCM method is also applied to obtain the numerical optimal state trajectories x∗1(t) and

x∗2(t), using M = 10 on the computational domain [0, 1] (see Figure 6).
In Table 3, the computational results of the performance index of Player1 and Player2 for different

values of N1, N2 and N3 are reported. It should be noted that small values for Ni, i = 1, 2, 3 are
needed to obtain a satisfactory convergence.

6. Conclusion

In this paper, we have proposed the SC-GCM to solve the HJB equations system of nonlinear
nonzero-sum differential games for finding the feedback Nash equilibrium solution of these games.
The main advantage of this method is that the boundary conditions of the system of HJB PDEs can
be included implicitly in the chosen approximations of value functions. The majority of numerical
methods are grid based suffer from the so-called “curse-of-dimensionality”. However, the SC-GCM
is also a grid based method, but with the Chebyshev–Gauss–Lobatto nodes the results show that
selecting a limited number of collocation points, excellent numerical results are obtained.
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