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Abstract. Operation of complex engineering systems gives rise to various physical processes, in-

cluding thermal, electrical, hydrodynamic, mechanical, electromagnetic, etc. The parameters of the

elements of an engineering system and the processes going on in the same are stochastic, which
results both from a stochastic nature of the parameters of the elements and from a random nature

of the parameters of the environment and external influencing factors. Mathematical modeling of
stochastic engineering systems developed in this paper relies on a universal structural conceptual

model of an engineering system represented as a directed graph which reflects the structure of the

engineering system and the modeled physical processes. State variables in a structural conceptual
model of a system are the potentials in the graph nodes and flows at the graph edges, which edges

may contain elements modeling the processes of energy dissipation, potential energy accumulation

and kinetic energy storage, and also independent sources such as potential and physical quantity
flow with the a priori known value. Stochastic processes in a graph of an engineering system model

for each elementary event ω from the space of elementary events Ω are described through the math-

ematical model H(ω)X(ω) = Y (ω), ω ∈ Ω with a stochastic matrix H(ω) = AG(ω)AT , where A
is an incidence matrix and G(ω) is a stochastic diagonal matrix of such parameters of the elements

of a graph as conductance. The present paper offers a method based on the generalized normal so-

lution concept, known also as pseudosolution, pseudoinverse matrix and generalized inverse matrix
method allowing one to determine an equation for statistical measures (expectations, covariances,

dispersions, standard deviations) of the stochastic solution X(ω) of the mathematical model of a
stochastic engineering system under the a priori known statistical measures of the matrix of system

elements G(ω) and the stochastic right-hand side vector Y (ω). Utilization of the method in modeling

of stochastic thermal processes and statistical measures for complex electronic systems has shown
that the method is adequate and efficient.

Various physical processes going on in complex engineering systems are stochastic in the majority
of practically important cases resulting both from a random nature of the internal parameters of the
elements and structure of the system and from the external influencing factors. To allow mathematical
modeling of physical processes, the design of an engineering system should, first of all, be represented
as a structural conceptual model (SC model) constructed as a graph, which replaces the real design
of the engineering system by a simplified, but still sufficiently adequate model reflecting both the
structure of the engineering system and the physical processes going on in the same [3, 6, 14]. State
variables in the SC model graph are the quantities such as potentials in the graph nodes and flows
at the graph edges. The graph nodes are connected to each other by edges including such elements
as R, where energy is dissipated; C accumulates potential energy; L stores kinetic energy, and also
the elements that determine independent sources of state variables potential or physical quantity flow
with the a priori known values [3, 6, 13, 14]. The SC models of engineering systems are sufficiently
universal and allow to get efficient and highly adequate modeling of complex engineering systems and
various physical processes (thermal, hydrodynamic, mechanical, electrical, etc.) going on in the same.

A mathematical model of a stationary stochastic physical process in a SC model of an engineering
system is represented by a stochastic matrix equation [1, 6]

H(ω)X(ω) = Y (ω), ω ∈ Ω, (1)
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where H(ω) is a stochastic n × n-square matrix reflecting the structure of the SC model graph and
component relations between state variables and graph elements; X(ω) is an n-column vector of
stochastic state variables; Y (ω) is an n-column vector of independent stochastic sources of state
variables; ω are elementary events from the space of elementary events Ω in the probability space
{Ω, U, P}, U is the σ-algebra, P is probability in U . It should be noted that random elements of the
stochastic matrix H(ω) and vector X(ω) are stochastically interdependent and statically independent
of the elements of the stochastic vector Y (ω).

The stochastic vectors X(ω), Y (ω) and the matrix H(ω) in equation (1) are the interval stochastic
[7–9] quantities ξ(ω), whose values are evenly distributed within the interval of values [ξdown, ξup] with

a density pξ = ∆−1
ξ , ξ(ω) ∈ [ξdown, ξup] and pξ = 0, ξ(ω) /∈ [ξdown, ξup], where ∆ξ = ξup− ξdown is the

length of the interval [ξdown, ξup]; ξup and ξdown are the upper and lower interval limits.
A random process is fully characterized by the sequence of all its distribution laws of various order

over time [1, 11]. At the same time, it is impossible to determine the laws for the stochastic vector
X(ω), which is a solution to the matrix equation (1), as the task is extremely difficult. However,
modeling of stochastic processes going on in engineering systems does not require any knowledge of
distribution laws, as the most informative and most important ones in the engineering practice are
statistical measures of the vector of stochastic state variables X(ω), in particular:

–n-column vector of expectations X̄ = E{X(ω)} with elements x̄i = E{xi(ω)}, i = 1, 2, . . . , n,
where E{·} is the expectation operator;

– covariance n×n-matrix KXX = E{X̊(ω)X̊T (ω)} with elements ij, equal to kij = E{x̊i(ω)̊xj(ω)},
i, j = 1, 2, . . . , n, where x̊i(ω) = xi(ω)− x̄i is a centered stochastic quantity with a zero expectation,
(·)T is the operation of transposition;

– n-column vector of dispersions DX , equal to diagonal elements dx,i of the correlation matrix
KXX , i.e., dx,i = kii = E{(̊xi(ω))2}, i = 1, 2, . . . , n;

– n-column vector of standard deviations σX with elements σx,i =
√
dx,i, i = 1, 2, . . . , n.

The determined vectors of statistical measures X̄ = {x̄i}n1 and σX = {σx,i}n1 of the stochastic
vector X(ω) = {xi}n1 allow to determine the vectors of the lower Xdown = {xi,down}n1 and upper
Xup = {xi,up}n1 interval limits [xi,down, xi,up], i = 1, 2, . . . , n, which will contain real values of the
interval stochastic quantities xi(ω) ∈ [xi,down, xi,up].

In the simplest case, where the matrix H of the set of equations [6] is deterministic, while external
perturbations being a part of the right-hand side vector Y (ω) are stochastic only, the statistical
measures X̄ and KXX of the stochastic vector X(ω) are determined by using the equations X̄ = H−1Ȳ
and KXX = H−1KY YH

−1, where H−1 is the deterministic inverse of the matrix H, Ȳ = E{Y (ω)}
is the vector of expectations of the stochastic vector Y (ω), KY Y = E{Y̊ (ω)Y̊ T (ω)} is the covariance
matrix of the stochastic vector Y (ω).

If the matrix H(ω) in equation (1) is stochastic, it is impossible to determine statistical measures
of the vector X(ω) by a direct impact of the expectation operator on the both sides of equation [6]
in view of the statistical relationship between the stochastic elements of the matrix H(ω) and vector
X(ω); so, E{H(ω)X(ω)} 6= E{H(ω)} · E{X(ω)}. In this case, to determine statistical measures
of the stochastic vector X(ω), papers [1, 6] represent the stochastic matrix of the system H(ω) as

H(ω) = H̄(I + H̄−1H̊(ω)), and the stochastic inverse of the matrix H−1(ω) for each ω ∈ Ω is
expanded along an infinite almost surely uniformly convergent series [1]

H−1(ω) = (I + H̄−1H̊(ω))−1 · H̄−1 =

∞∑
k=1

(−1)k(H̄−1H̊(ω))k · H̄−1, (2)

provided the condition ||H̄−1H̊(ω)|| < 1 is satisfied for all realizations of ω ∈ Ω. Here, || · || is the

matrix norm [5]; H̊(ω) = H(ω)− H̄ is the centered stochastic n× n-matrix with a zero expectation;
H̄ = E{H(ω)} is the expectation of the stochastic matrix H(ω); H̄−1 is the inverse of the deterministic
matrix H̄, which can be easily determined.
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Then, the statistical measures X̄ and KXX of the stochastic vector X(ω) = H−1(ω) · Y (ω), being
a solution to equation (1), will be determined by using the following equations:

X̄ = E{H−1(ω)} · Ȳ and KXX = E{H−1(ω)Y (ω)Y T (ω)(HT (ω))−1},

where H−1(ω) is the stochastic inverse matrix to be determined by equation (2).

Practical calculations are limited to the terms of the infinite series (2) containing a matrix H̊(ω)
of degree max. 2. The above method, known also as a stochastic inverse matrix method, allows to
obtain the results with errors, sufficient to be used in practice and not exceeding 5− 7% [1,6]. At the

same time, the range of applicability of the method is subject to the condition ||H̄−1H̊(ω)|| < 1, which
imposes significant limitations on the allowable values of the parameters of the engineering system.

It should be also noted that the use of the perturbation and hierarchy methods [1] described in
literature to determine the statistical measures X̄ and KXX of the stochastic processes in engineering
systems have not found practical use. The reason is that the first of the above methods is good only for
extremely small perturbations, which do not occur in real practice, while the second one is heuristic
and does not have mathematical justification. The assumptions concerning special types of random
processes, such as Wiener or white noise, presented in a great number of papers, allow to obtain final
solutions for statistical measures in many cases, but are unrealistic and cannot exist in practice of
engineering systems operation. The use of the statistical test method [12] may not be recommended
for designing engineering systems, as far as it requires a huge input of machine time and memory
caused by the necessity to solve multiple (up to several tens of thousands) simultaneous equations (1)
to achieve an acceptable accuracy [11].

This paper offers a method to determine the statistical measures of the stochastic vector X(ω),
which is a solution to the matrix equation (1) describing physical processes in SC models of engineering
systems. The method is based on the generalized normal solution concept and allows to get final closed-
form equations for statistical measures of stochastic processes in engineering (electronic) systems of
any complexity, which are adequately simulated by SC models, being free from the above defects. The
developed method is used in modeling of stochastic thermal processes in real electronic systems and
has proven to be adequate and efficient.

The method developed in this paper is based on the generalized normal solution concept, which
is also known in relation to the matrix equation as pseudosolution, pseudoinverse matrix method,
Moore–Penrose generalized inverse matrix method [4,5,10]. The essence of the method consists in the
following.

If the matrix A = {aij}n1 in the matrix equation Ax = y is square and nonsingular, then an inverse
matrix A−1 and a unique solution to the equation x = A−1y exist. If the matrix A is square, but
singular, or the matrix A = {aij}(n×m) is a rectangular n×m-matrix (n and m are the number of lines
and columns), then the matrix A is known to have no inverse. At the same time, a unique so-called
pseudoinverse matrix A+ can be constructed for such matrix, which pseudoinverse matrix allows one
to obtain the best approximate solution x0 = A+y, x0 = (x0

1, x
0
2, . . . , x

0
m)T to the equation Ax = y in

terms of the minimum value of the residual norm (Euclidian l2-norm) square achieved for x = x0, in
particular [4],

min
x
||y −Ax||2 = min

x

n∑
i=1

∣∣∣∣yi − m∑
j=1

aijxj

∣∣∣∣2. (3)

In this case, the vector of the best approximate solution x0 has the lowest length, i.e., ||x0||2 =
(x0)T · x0 = min, where xT · x is the scalar product of the vector x. It should be noted that if the
matrix A is square and nonsingular, then the inverse A−1 is the same as the pseudoinverse matrix
A+. Further, it may be shown [4, 5] that a rectangular n ×m-matrix of the A range r = min{n,m}
can always be represented as the so-called skeleton decomposition A = BC, i.e., as a product of two
rectangular matrices, in particular, the n × r-matrix B and the r × m-matrix C. In this case, the
pseudoinverse matrix A+ is determined by using the equation A+ = C+B+, where C+ = CT (CCT )−1

and B+ = (BTB)−1BT [4]. Despite the fact that the skeleton decomposition A = BC provides no
unambiguous determination of the multiplier matrices B and C, the equation A+ = C+B+ determines
the unique pseudoinverse matrix with any skeleton decompositions [4].
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Let us apply the generalized normal solution method to the stochastic matrix equation (1) describing
the physical processes in a SC model of an engineering system. Toward this end, let us represent the
n × n-matrix of the H(ω) graph of the SC model for each ω ∈ Ω as a product of three matrices
H(ω) = AG(ω)AT , in particular, as a deterministic incidence n×m-matrix of the A graph of the SC
model (n, m are the number of nodes and edges, respectively), which contains elements 0 and 1 only,
and a stochastic diagonal m×m-matrix of elements G(ω) such as random conductance in the graph
edges. The decomposition H(ω) = AG(ω)AT can be always performed for a random graph in a single
way only [2, 6]. Then the stochastic equation (1) can be written as follows:

AG(ω)ATX(ω) = Y (ω), ω ∈ Ω, (4)

where G(ω) = diag(g1(ω), g2(ω), . . . , gm(ω)) is the stochastic diagonal m×m-matrix with stochastic
elements gi(ω), i = 1, 2, . . . ,m at m edges of the graph of a SC model of an engineering system,
which elements are expressed through physical stochastic parameters of the engineering system and
the process going on in the same [2,6].

Let us apply the generalized normal solution method to the stochastic equation (4). To do this, let us
represent equation (4) as AZ(ω) = Y (ω), ω ∈ Ω with a stochastic column vector Z(ω) = G(ω)ATX(ω)
and multiply both right-hand sides by the transposed incidence matrix AT . We obtain the equation
ATAZ(ω) = ATY (ω) with a singular square n×n-matrix ATA = B, for which there exists no inverse
matrix. At the same time, the product ATA is, in fact, a skeleton decomposition of the matrix
B = ATA, thus we can build a pseudoinverse deterministic matrix B+ [4]

B+ = AT (AAT )−1(AAT )−1A, (5)

and use the pseudoinverse matrix method to get the best approximate solution to the equation
ATAZ(ω) = BZ(ω) = ATY (ω), in particular,

Z0(ω) = B+ATY (ω), ω ∈ Ω, (6)

which is understood as the minimum residual norm square minZ ||Y (ω)−AZ(ω)||2 (3) for each real-
ization of ω ∈ Ω and has the lowest length ||Z0||2.

If we write equation [8] as G(ω)ATX0(ω) = B+ATY (ω) considering that Z0(ω) = G(ω)ATX0(ω)
and successively multiply both its right-hand sides by the stochastic inverse matrix G−1(ω) and then
by the deterministic incidence matrix A, we get

AATX0(ω) = AG−1(ω)B+ATY (ω), ω ∈ Ω. (7)

Note that the stochastic inverse m ×m-matrix G−1(ω) is diagonal and easily determinable for each
ω ∈ Ω; in particular, G−1(ω) = diag(g−1

1 (ω), g−1
2 (ω), . . . , g−1

m (ω)), i = 1, 2, . . . ,m.
Considering that the matrixAAT is square, symmetrical and, hence, has an inverse matrix (AAT )−1,

we get the final stochastic solution X0(ω) to the stochastic equation (7) understood in terms of the
generalized normal solution (3) as:

X0(ω) = (AAT )−1AG−1(ω)AT (AAT )−1Y (ω), ω ∈ Ω, (8)

which can after the introduction of the deterministic matrix

C = (AAT )−1A, CT = AT ((AAT )−1)T (9)

be written more compactly as follows:

X0(ω) = CG−1(ω)CTY (ω), ω ∈ Ω. (10)

The statistical measures of the stochastic vector X0(ω), in particular, the expectation vector X̄0

and the covariance matrix KX0X0 , are determined from the stochastic solution (10) considering the
stochastic independence of the elements of the stochastic vector Y (ω) and stochastic matrix G(ω),
and appear to be presented as follows:

– the expectation vector X̄0 = E{X0(ω)}
X̄0 = C ¯G−1CT Ȳ ,

where ¯G−1 = E{G−1(ω)} = diag(E{g−1
1 (ω)}, E{g−1

2 (ω)}, . . . , E{g−1
m (ω)}) is the diagonal matrix of

expectations with elements E{g−1
i (ω)}, i = 1, 2, . . . ,m; Ȳ = E{Y (ω)} is the vector of expectations of
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the stochastic vector Y (ω). As the elements gi(ω) are interval stochastic ones, i.e., evenly distributed
within the intervals [gdown,i, gup,i] with the length ∆gi = gup,i − gdown,i, E{g−1

i (ω)} = 1
∆gi

ln
gup,i

gdown,i
;

– the covariance matrix KX0X0 = E{ ˚(X0)(ω)X̊0T (ω)}

KX0X0 = CE{G−1(ω)CTMY Y CG
−1(ω)}CT − X̄0X̄0T

where MY Y = E{Y (ω)Y T (ω)} is the matrix of moments about the origin of the stochastic vector
Y (ω). Note that the diagonal structure of the matrix G allows easy calculation of the equation
E{G−1(ω)CTMY Y CG

−1(ω)} in its final form.
Let us estimate the relative error of the stochastic generalized normal solution X0(ω) of (8), (10)

relatively to the accurate stochastic solution X(ω) of equation (4). We determine the relative error δ
as an expectation of the stochastic error δ(ω), equal to the difference ratio between the norms ||X0(ω)||
and ||X(ω)|| of the compared stochastic solutions and the norm ||X(ω)|| of the accurate solution to
equation (4), i.e.,

|δ̄| = |E{δ(ω)}| =
∣∣∣E{ ||X(ω)|| − ||X0(ω)||

||X(ω)||

}∣∣∣, (11)

where ||Θ(ω)|| is the stochastic l2(ω)-norm determined for each realization of ω ∈ Ω, for the stochastic
vector Θ(ω) = (Θ1(ω),Θ2(ω), . . . ,Θn(ω))T or the stochastic diagonal matrix Θ(ω) = {ij(ω)}n,mi,j=1

according to the equations

lvector2 (ω) =

( n∑
i=1

Θ2
i (ω)

)1/2

, lmatrix2 (ω) =

( nm∑
i,j=1

Θ2
ij(ω)

)1/2

.

It can be shown that the estimate of the stochastic error δ(ω) (11) satisfies the inequality∣∣∣1− ||I||2G · ||I||2AAT

||G−1(ω)|| · ||G(ω)||

∣∣∣ ≤ |δ(ω)|, ω ∈ Ω,

where ||I||2G and ||I||2AAT are Euclidean l2-norms of single matrices I, one of which has the shape of

the matrix G, and the other has the shape of the matrix AAT .
Considering that the product of the norms ||G−1(ω)||·||G(ω)|| is equal to the stochastic conditioning

number µG(ω) of the stochastic matrix G(ω), and the l2-norms of single matrices I are equal to
||I||2G = m and ||I||2AAT = n (n,m are the number of nodes and edges of the graph of the SC model of
the system), we get the following estimate of the stochastic error δ(ω) between the generalized normal
and the accurate solutions |1 −m · n/µG(ω)| ≤ |δ(ω)|, ω ∈ Ω. If we expand the equation 1/µG(ω)
along the Taylor series retaining the first-order terms only and applying the expectation operator
to the resulting equation, we find that the expectation of the relative error δ̄ satisfies the inequality
|1−m ·n/µḠ| ≤ |δ̄|, where µḠ = ||Ḡ−1|| · ||Ḡ|| is the conditioning number of the matrix of expectations
Ḡ with all elements being equal to their expectations Ḡ = diag(ḡ1, ḡ2, . . . , ḡm) and the l2-norms ||Ḡ||
and ||Ḡ−1|| being equal to ||Ḡ|| = (

m∑
i=1

ḡ2
i )1/2 and ||Ḡ−1|| = (

m∑
i=1

ḡ−2
i )1/2, respectively. The equation

for the expectation of the stochastic estimate of the error shows that δ̄ depends on the conditioning
number µḠ of the matrix Ḡ and the number of edges (m) and nodes (n) in the graph of the SC model
of the engineering system.

The developed method is used in modeling of thermal processes in complex electronic systems and
has proven to be efficient.

Acknowledgement

Publication is performed as a part of the national assignment for SRISA RAS (fundamental scientic
research 47 GP) on the topic No.0065-2019-0001 (AAAA-A19-119011790077-1).

References

1. G. Adomian, Stochastic Systems. Mathematics in Science and Engineering, 169. Academic Press, Inc., Orlando, FL,
1983.



74 A. MADERA, H. MELADZE, M. SURGULADZE AND E. GREBENNIKOVA

2. L. O. Chua, Computer-aided Analysis of Electronic Circuits. Algorithms and computational techniques. Prentice-

Hall, Englwood Cliffs, New Jersey, 1975.
3. G. N. Ellison, Thermal Computations for Electronics. Conductive, radiative, and convective air cooling. CRC Press,

New York, 2011.

4. F. R. Gantmacher, The Theory of Matrices. (Russian) Fizmatlit. Moscow, 2010.
5. R. A. Horn, C. R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge, 2013.

6. A. G. Madera, Modeling of Heat Exchange in Technical Systems. (Russian) Scientific Foundation named after

academician VA. Melnikov, Moscow, 2005.
7. A. G. Madera, Interval-stochastic thermal processes in electronic systems: analysis and modeling. J. Eng. Thermo-

phys 26 (2017), 17–28.
8. A. G. Madera, P. I. Kandalov, Modeling of temperature fields of technical systems under interval uncertainty.

(Russian) Tepl. Prots. Tekhn. 6 (2014), 225–229.

9. A. G. Madera, P. I. Kandalov, Analysis of interval-stochastic temperature fields of technical systems. (Russian)
Prog. Prod. Sist. 4 (2014), 41–45.

10. R. Penrose, A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1955), 406–413.

11. V. S. Pugachev, Probability Theory and Mathematical Statistics for Engineers. Pergamon Press, Oxford, 1984.
12. R. Y. Rubinstein, D. P. Kroese, Simulation and Monte Carlo Method. 3rd edition. Wiley, New Jersey, 2016.

13. P. E. Wellstead, Introduction to Physical System Modeling. Hamilton Institute, 2005. Electronically published by:

www.control-systems-principles.co.uk
14. V. S. Zarubin, Mathematical Modeling in Engineering. (Russian) MSTU, Moscow, 2003.

(Received 05.07.2020)

1Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russia

2Muskhelishvili Institute of Computational Mathematics, Georgian Technical University, Tbilisi, Geor-

gia

E-mail address: sfm12@mail.ru

E-mail address: h meladze@hotmail.com


