ON OSCILLATIONS OF REAL-VALUED FUNCTIONS

ALEXANDER KHARAZISHVILI

Abstract

We consider the question whether a given real-valued non-negative upper semi-continuous function on a topological space E is the oscillation function of a Borel real-valued function defined on the same space E.

Let E be a topological space, let \mathbf{R} denote the real line and let $f: E \rightarrow \mathbf{R}$ be a function. Suppose that f is locally bounded at each point x of E, i.e., there exists a neighborhood $U(x)$ of x such that the restriction $f \mid U(x)$ is bounded. Then there exist two values

$$
f^{*}(x)=\limsup _{y \rightarrow x} f(y), \quad f_{*}(x)=\liminf _{y \rightarrow x} f(y)
$$

and the difference

$$
O_{f}(x)=\limsup _{y \rightarrow x} f(y)-\liminf _{y \rightarrow x} f(y)
$$

is called the oscillation of f at x. As is known, the real-valued function

$$
f^{*}(x)=\limsup _{y \rightarrow x} f(y)(x \in E)
$$

is upper semi-continuous on E and the real-valued function

$$
f_{*}(x)=\liminf _{y \rightarrow x} f(y)(x \in E)
$$

is lower semi-continuous on E (see, e.g., [1], [3], [5]). Consequently, the produced function

$$
O_{f}(x)=f^{*}(x)-f_{*}(x)(x \in E)
$$

is non-negative and upper semi-continuous on E.
Let us mention some facts concerning the behavior of the oscillations of real-valued functions.
(a) f is continuous at a point $x \in E$ if and only if $O_{f}(x)=0$.

In particular, if x is an isolated point of E, then $O_{f}(x)=0$ for an arbitrary $f: E \rightarrow \mathbf{R}$.
(b) $O_{t f}(x)=|t| O_{f}(x)$ for any real number t and for each point $x \in E$;
(c) $O_{f_{1}+f_{2}} \leq O_{f_{1}}+O_{f_{2}}$.

Actually, (c) implies the finite sub-additivity of the operator $O: f \rightarrow O_{f}$.
(d) If a series $\sum\left\{f_{n}: n \in \mathbf{N}\right\}$ of real-valued locally bounded functions on E converges uniformly to f, then $O_{f} \leq \sum\left\{O_{f_{n}}: n \in \mathbf{N}\right\}$.
(e) If a sequence $\left\{f_{n}: n \in \mathbf{N}\right\}$ of real-valued locally bounded functions on E converges uniformly to f, then the corresponding sequence of oscillations $\left\{O_{f_{n}}: n \in \mathbf{N}\right\}$ converges uniformly to the oscillation O_{f}.

Notice that (e) is a generalization of the well-known theorem of mathematical analysis, according to which the limit of a uniformly convergent sequence of real-valued continuous functions is also continuous.

In connection with the above facts, there arises the following natural question:
For a given real-valued non-negative upper semi-continuous function g on E, is it true that there exists a locally bounded function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$?

[^0]In case the answer to this question is positive, as far as g has a good descriptive structure (namely, g is upper semi-continuous), it is natural to try to find an f satisfying $O_{f}=g$ and also having good descriptive properties (e.g., a real-valued Borel measurable function f on E for which $O_{f}=g$).

Exemple 1. Let $E=\mathbf{R}$ and $g: \mathbf{R} \rightarrow\{1\}$. The widely known Dirichlet function $\chi: \mathbf{R} \rightarrow\{0,1\}$ satisfies the equality $O_{\chi}=g$. Recall that f takes value 1 at all rational points of \mathbf{R} and takes value 0 at all irrational points of \mathbf{R}. Obviously, χ is a Borel function. Denoting by \mathbf{c} the cardinality of the continuum, there are $2^{\mathbf{c}}$ many functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $O_{f}=g$. Clearly, most of such f are not Borel functions.

The main goal of the present communication is to consider the above-formulated question and to give its solution for some classes of topological spaces E.

First of all, let us remark that the trivial necessary condition for the existence of f is the equality $g(x)=0$ for all isolated points x in E.

Suppose that this condition is satisfied and denote by E^{\prime} the closure of the set of all isolated points in E. Further, put $U=E \backslash E^{\prime}$ and observe that the open set U does not contain isolated points. Denote by $g \mid U$ the restriction of g to U.

Lemma 1. Assume that there exists a function $\phi: U \rightarrow \mathbf{R}$ such that $O_{\phi}=g \mid U$ and the relation $0 \leq \phi \leq g \mid U$ holds true.

Then there exists a function $f: E \rightarrow\left[0,+\infty\left[\right.\right.$ such that $O_{f}=g$. Moreover, if ϕ is Borel, then f can be chosen to be Borel, too.

Proof. We define the required f as follows:
$f(x)=g(x)$ if x belongs to the set $E^{\prime} ;$
$f(x)=\phi(x)$ if x belongs to the set U.
Let us verify that $O_{f}(x)=g(x)$ for each point $x \in E$.
If $x \in E^{\prime}$, then it is easy to see that $f_{*}(x)=0$ and $f^{*}(x) \geq g(x)$. At the same time, keeping in mind the relation $0 \leq \phi \leq g \mid U$ and the upper semi-continuity of g, we infer that $f^{*}(x) \leq g(x)$, which implies

$$
f^{*}(x)=g(x), O_{f}(x)=f^{*}(x)-f_{*}(x)=g(x)-0=g(x)
$$

If $x \in U$, then using the equality $O_{\phi}=g \mid U$ and taking into account that U is an open set, we conclude that $O_{f}(x)=g(x)$, which completes the proof.

In many cases, the above lemma enables one to reduce the formulated problem to those topological spaces E which do not contain isolated points.
Lemma 2. Let E be a topological space, let $g: E \rightarrow \mathbf{R}$ be a non-negative upper semi-continuous function, and let $\left\{U_{i}: i \in I\right\}$ be a disjoint family of nonempty open subsets of E such that the union $\cup\left\{U_{i}: i \in I\right\}$ is everywhere dense in E. Suppose also that for each index $i \in I$, there exists a function $\phi_{i}: U_{i} \rightarrow \mathbf{R}$ satisfying these two conditions:
(1) $0 \leq \phi_{i} \leq g \mid U_{i}$ and the set $\left\{x \in U_{i}: \phi_{i}(x)=0\right\}$ is everywhere dense in U_{i};
(2) $g \mid U_{i}=O_{\phi_{i}}$.

Let a function $f: E \rightarrow \mathbf{R}$ be defined by the formula
$f(x)=\phi_{i}(x)$ if $x \in U_{i}$, and $f(x)=g(x)$ if $x \in E \backslash \cup\left\{U_{i}: i \in I\right\}$.
Then the equality $g=O_{f}$ holds true.
The proof of Lemma 2 is similar to that of Lemma 1.
Using the above lemmas, one can deduce the following statement.
Theorem 1. Let E be a locally compact metric space and let $g: E \rightarrow \mathbf{R}$ be a non-negative upper semi-continuous function such that $g(x)=0$ for any isolated point x of E.

Then there exists a Borel function $f: E \rightarrow \mathbf{R}$ for which $g=O_{f}$.
Theorem 2. Let E be a topological space satisfying the following condition:
There exists an infinite base \mathcal{B} of E such that the cardinality of any nonempty set $U \in \mathcal{B}$ is strictly greater than $\operatorname{card}(\mathcal{B})$.

Then for every non-negative upper semi-continuous function $g: E \rightarrow \mathbf{R}$, there exists a function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.

The proof of Theorem 2 essentially uses one auxiliary notion and Lemma 3 presented below.
Let \mathbf{b} be an infinite cardinal and let E be a topological space.
A point $x \in E$ is called a b-point in E if there exists a neighborhood $U(x)$ of x whose cardinality does not exceed \mathbf{b}.

Lemma 3. If E is a topological space with a base whose cardinality does not exceed \mathbf{b}, then the cardinality of the set of all b-points in E does not exceed \mathbf{b}.

Lemma 3 enables one to make appropriate changes in the graph of a given real-valued non-negative upper semi-continuous function $g: E \rightarrow \mathbf{R}$ in order to obtain a function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.

In general, those changes produce a function f with bad descriptive properties. However, if E fulfils certain additional assumptions, then the required f can be chosen to be Borel.

Theorem 3. Let E be a metric space satisfying the condition of Theorem 2.
Then for every non-negative upper semi-continuous function $g: E \rightarrow \mathbf{R}$, there exists a Borel function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.

The proof of Theorem 3 is based on the following fact which is valid for any metric space E satisfying the condition of Theorem 2:

If $X \subset E$ has cardinality, strictly less than $\operatorname{card}(E)$, then there exists an everywhere dense set $Y \subset E$ of type F_{σ} in E such that

$$
X \cap Y=\emptyset, \quad \operatorname{card}(Y)<\operatorname{card}(E)
$$

For certain topological groups, we have the next statement.
Theorem 4. Let E be a non-discrete locally compact σ-compact topological group and let $g: E \rightarrow \mathbf{R}$ be a non-negative upper semi-continuous function.

Then there exists a function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.
The proof of Theorem 4 is based on the following important equality

$$
\operatorname{card}(E)=2^{w(E)}
$$

where $w(E)$ denotes the topological weight of E (see, e.g., [2]). This equality implies that the assumption of Theorem 2 is automatically satisfied.

Recall that a topological space E is resolvable (in the sense of E. Hewitt) if there exists a partition $\{A, B\}$ of E such that both sets A and B are everywhere dense in E (see [4]). Otherwise, E is called an irresolvable space. Resolvable spaces have a number of interesting properties. For instance, the following assertions are valid.
(1) Any open subspace of a resolvable space is resolvable.
(2) The topological product of a family $\left\{E_{i}: i \in I\right\}$ of nonempty topological spaces is resolvable whenever at least one E_{i} is resolvable.
(3) The topological sum of a family $\left\{E_{i}: i \in I\right\}$ of nonempty topological spaces is resolvable if and only if all $E_{i}(i \in I)$ are resolvable.
(4) If E possesses a pseudo-base all members of which are resolvable, then E itself is resolvable.
(5) Any nonempty locally compact space without isolated points is resolvable.
(6) Any metric space without isolated points is resolvable.
(7) If E is resolvable, then for each F_{σ}-subset X of E there exists a function $f: E \rightarrow \mathbf{R}$ such that X coincides with the set of all points of discontinuity of f.

In this context, it makes sense to notice that the topological product of a family of irresolvable spaces can be resolvable, a closed subspace of a resolvable space can be irresolvable, and a continuous image of a resolvable space can be irresolvable.

Exemple 2. Let E be a topological space and let $g: E \rightarrow \mathbf{R}$ be a real-valued non-negative upper semi-continuous function. Suppose that the graph of g is a resolvable subspace of the product space $E \times \mathbf{R}$. Then there exists a function $f: E \rightarrow \mathbf{R}$ such that $g=O_{f}$. In particular, if E is a resolvable space, then for any real-valued non-negative constant function $g: E \rightarrow \mathbf{R}$, there exists a function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.
Theorem 5. Let E be a metric space and let $g: E \rightarrow \mathbf{R}$ be a real-valued non-negative upper semicontinuous function.

If the graph of g considered as a subspace of $E \times \mathbf{R}$ does not contain isolated points, then there exists a Borel function $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.
Exemple 3. Let E be an infinite set, let \mathcal{J} be a σ-ideal of subsets of E, and let $\mathcal{F}=\{X \subset E$: $E \backslash X \in \mathcal{J}\}$ be the dual filter of \mathcal{J}. Suppose that the following two conditions are fulfilled:
$(*) \operatorname{card}(X)=\operatorname{card}(E)$ for each set $X \in \mathcal{F}$;
$(* *)$ there exists a base \mathcal{B} of \mathcal{J} with $\operatorname{card}(\mathcal{B}) \leq \operatorname{card}(E)$.
Denote $\mathcal{T}=\{\emptyset\} \cup \mathcal{F}$. Then \mathcal{T} is a topology on E such that:
(i) the space (E, \mathcal{T}) is resolvable;
(ii) for a function $g: E \rightarrow\{1\}$, there exists a function $f: E \rightarrow \mathbf{R}$ satisfying $O_{f}=g$;
(iii) for the same function $g: E \rightarrow\{1\}$, there exists no Borel function $h: E \rightarrow \mathbf{R}$ satisfying $O_{h}=g$.

Exemple 4. Take an infinite set E equipped with a nontrivial ω_{1}-complete ultrafilter Φ of subsets of E (this condition is equivalent to the existence of a two-valued measurable cardinal number). Equip E with the topology

$$
\mathcal{T}=\{\emptyset\} \cup \Phi
$$

The obtained topological space (E, \mathcal{T}) has the following property:
For any function $f: E \rightarrow \mathbf{R}$, there exists a set $X \in \Phi$ such that the restriction $f \mid X$ is constant.
Therefore, for every function $f: E \rightarrow \mathbf{R}$, there are points x in E at which f is continuous and, consequently, $O_{f}(x)=0$.

The latter implies that if g is a real-valued strictly positive constant function on E, then there is no $f: E \rightarrow \mathbf{R}$ such that $O_{f}=g$.

So, Example 4 shows us that certain restrictions on a general topological space E are necessary if one wants to have a positive solution to the question discussed in this note.

Let E be a topological space, (M, ρ) be a bounded metric space and let $f: E \rightarrow M$ be a function. For each point $x \in E$, one can define

$$
O_{f}(x)=\inf \{\operatorname{diam}(f(U(x))): U(x) \in \mathcal{F}(x)\}
$$

where $\mathcal{F}(x)$ is the filter of all neighborhoods of x and $\operatorname{diam}(f(U(x)))$ denoting the diameter of the set $f(U(x))$. The obtained function $O_{f}: E \rightarrow \mathbf{R}$ called also the oscillation of f, is non-negative and upper semi-continuous.

Notice that the assertions (a) and (e) remain true for this more general concept of O_{f}.
The question analogous to the considered above can be formulated in terms of the pair (E, M).
Namely, one can ask about a characterization of all those pairs (E, M) for which any non-negative upper semi-continuous function $g: E \rightarrow \mathbf{R}$ admits a (Borel) function $f: E \rightarrow M$ such that $O_{f}=g$.

This question seems to be of interest from the viewpoint of mathematical analysis and general topology.

Acknowledgement

The work was partially supported by the Shota Rustaveli National Science Foundation of Georgia, Grant FR-18-6190.

References

1. N. Bourbaki, General Topology. Chapters I-IV, Springer-Verlag, Berlin, 1995.
2. W. W. Comfort, Topological groups. In: Handbook of set-theoretic topology. 1143-1263, North-Holland, Amsterdam, 1984.
3. R. Engelking, General Topology. PWN, Warszawa, 1985.
4. E. Hewitt, A problem of set-theoretic topology. Duke Math. J. 10 (1943), 309-333.
5. A. Kharazishvili, Strange Functions in Real Analysis. Chapman and Hall, Boca Raton-New York, 2017.
(Received 23.04.2020)
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia
I. Vekua Institute of Applied Mathematics, 2 University Str., Tbilisi 0186, Georgia

E-mail address: kharaz2@yahoo.com

[^0]: 2020 Mathematics Subject Classification. 26A15, 54C30, 54D80.
 Key words and phrases. Upper semicontinuous function; Oscillation of a real-valued function; b-point; Countably complete ultrafilter.

