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ON OSCILLATIONS OF REAL-VALUED FUNCTIONS

ALEXANDER KHARAZISHVILI

Abstract. We consider the question whether a given real-valued non-negative upper semi-continuous

function on a topological space E is the oscillation function of a Borel real-valued function defined
on the same space E.

Let E be a topological space, let R denote the real line and let f : E → R be a function. Suppose
that f is locally bounded at each point x of E, i.e., there exists a neighborhood U(x) of x such that
the restriction f |U(x) is bounded. Then there exist two values

f∗(x) = lim sup
y→x

f(y), f∗(x) = lim inf
y→x

f(y),

and the difference

Of (x) = lim sup
y→x

f(y)− lim inf
y→x

f(y)

is called the oscillation of f at x. As is known, the real-valued function

f∗(x) = lim sup
y→x

f(y) (x ∈ E)

is upper semi-continuous on E and the real-valued function

f∗(x) = lim inf
y→x

f(y) (x ∈ E)

is lower semi-continuous on E (see, e.g., [1], [3], [5]). Consequently, the produced function

Of (x) = f∗(x)− f∗(x) (x ∈ E)

is non-negative and upper semi-continuous on E.
Let us mention some facts concerning the behavior of the oscillations of real-valued functions.
(a) f is continuous at a point x ∈ E if and only if Of (x) = 0.
In particular, if x is an isolated point of E, then Of (x) = 0 for an arbitrary f : E → R.
(b) Otf (x) = |t|Of (x) for any real number t and for each point x ∈ E;
(c) Of1+f2 ≤ Of1 +Of2 .
Actually, (c) implies the finite sub-additivity of the operator O : f → Of .
(d) If a series

∑
{fn : n ∈ N} of real-valued locally bounded functions on E converges uniformly

to f , then Of ≤
∑
{Ofn : n ∈ N}.

(e) If a sequence {fn : n ∈ N} of real-valued locally bounded functions on E converges uniformly
to f , then the corresponding sequence of oscillations {Ofn : n ∈ N} converges uniformly to the
oscillation Of .

Notice that (e) is a generalization of the well-known theorem of mathematical analysis, according
to which the limit of a uniformly convergent sequence of real-valued continuous functions is also
continuous.

In connection with the above facts, there arises the following natural question:
For a given real-valued non-negative upper semi-continuous function g on E, is it true that there

exists a locally bounded function f : E → R such that Of = g?
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In case the answer to this question is positive, as far as g has a good descriptive structure (namely,
g is upper semi-continuous), it is natural to try to find an f satisfying Of = g and also having good
descriptive properties (e.g., a real-valued Borel measurable function f on E for which Of = g).

Exemple 1. Let E = R and g : R → {1}. The widely known Dirichlet function χ : R → {0, 1}
satisfies the equality Oχ = g. Recall that f takes value 1 at all rational points of R and takes value
0 at all irrational points of R. Obviously, χ is a Borel function. Denoting by c the cardinality of the
continuum, there are 2c many functions f : R → R such that Of = g. Clearly, most of such f are
not Borel functions.

The main goal of the present communication is to consider the above-formulated question and to
give its solution for some classes of topological spaces E.

First of all, let us remark that the trivial necessary condition for the existence of f is the equality
g(x) = 0 for all isolated points x in E.

Suppose that this condition is satisfied and denote by E′ the closure of the set of all isolated points
in E. Further, put U = E \ E′ and observe that the open set U does not contain isolated points.
Denote by g|U the restriction of g to U .

Lemma 1. Assume that there exists a function φ : U → R such that Oφ = g|U and the relation
0 ≤ φ ≤ g|U holds true.

Then there exists a function f : E → [0,+∞[ such that Of = g. Moreover, if φ is Borel, then f
can be chosen to be Borel, too.

Proof. We define the required f as follows:
f(x) = g(x) if x belongs to the set E′;
f(x) = φ(x) if x belongs to the set U .
Let us verify that Of (x) = g(x) for each point x ∈ E.
If x ∈ E′, then it is easy to see that f∗(x) = 0 and f∗(x) ≥ g(x). At the same time, keeping in

mind the relation 0 ≤ φ ≤ g|U and the upper semi-continuity of g, we infer that f∗(x) ≤ g(x), which
implies

f∗(x) = g(x), Of (x) = f∗(x)− f∗(x) = g(x)− 0 = g(x).

If x ∈ U , then using the equality Oφ = g|U and taking into account that U is an open set, we
conclude that Of (x) = g(x), which completes the proof. �

In many cases, the above lemma enables one to reduce the formulated problem to those topological
spaces E which do not contain isolated points.

Lemma 2. Let E be a topological space, let g : E → R be a non-negative upper semi-continuous
function, and let {Ui : i ∈ I} be a disjoint family of nonempty open subsets of E such that the union
∪{Ui : i ∈ I} is everywhere dense in E. Suppose also that for each index i ∈ I, there exists a function
φi : Ui → R satisfying these two conditions:

(1) 0 ≤ φi ≤ g|Ui and the set {x ∈ Ui : φi(x) = 0} is everywhere dense in Ui;
(2) g|Ui = Oφi

.
Let a function f : E → R be defined by the formula
f(x) = φi(x) if x ∈ Ui, and f(x) = g(x) if x ∈ E \ ∪{Ui : i ∈ I}.
Then the equality g = Of holds true.

The proof of Lemma 2 is similar to that of Lemma 1.
Using the above lemmas, one can deduce the following statement.

Theorem 1. Let E be a locally compact metric space and let g : E → R be a non-negative upper
semi-continuous function such that g(x) = 0 for any isolated point x of E.

Then there exists a Borel function f : E → R for which g = Of .

Theorem 2. Let E be a topological space satisfying the following condition:
There exists an infinite base B of E such that the cardinality of any nonempty set U ∈ B is strictly

greater than card(B).
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Then for every non-negative upper semi-continuous function g : E → R, there exists a function
f : E → R such that Of = g.

The proof of Theorem 2 essentially uses one auxiliary notion and Lemma 3 presented below.
Let b be an infinite cardinal and let E be a topological space.
A point x ∈ E is called a b-point in E if there exists a neighborhood U(x) of x whose cardinality

does not exceed b.

Lemma 3. If E is a topological space with a base whose cardinality does not exceed b, then the
cardinality of the set of all b-points in E does not exceed b.

Lemma 3 enables one to make appropriate changes in the graph of a given real-valued non-negative
upper semi-continuous function g : E → R in order to obtain a function f : E → R such that Of = g.

In general, those changes produce a function f with bad descriptive properties. However, if E fulfils
certain additional assumptions, then the required f can be chosen to be Borel.

Theorem 3. Let E be a metric space satisfying the condition of Theorem 2.
Then for every non-negative upper semi-continuous function g : E → R, there exists a Borel

function f : E → R such that Of = g.

The proof of Theorem 3 is based on the following fact which is valid for any metric space E satisfying
the condition of Theorem 2:

If X ⊂ E has cardinality, strictly less than card(E), then there exists an everywhere dense set
Y ⊂ E of type Fσ in E such that

X ∩ Y = ∅, card(Y ) < card(E).

For certain topological groups, we have the next statement.

Theorem 4. Let E be a non-discrete locally compact σ-compact topological group and let g : E → R
be a non-negative upper semi-continuous function.

Then there exists a function f : E → R such that Of = g.

The proof of Theorem 4 is based on the following important equality

card(E) = 2w(E),

where w(E) denotes the topological weight of E (see, e.g., [2]). This equality implies that the assump-
tion of Theorem 2 is automatically satisfied.

Recall that a topological space E is resolvable (in the sense of E. Hewitt) if there exists a partition
{A,B} of E such that both sets A and B are everywhere dense in E (see [4]). Otherwise, E is called
an irresolvable space. Resolvable spaces have a number of interesting properties. For instance, the
following assertions are valid.

(1) Any open subspace of a resolvable space is resolvable.
(2) The topological product of a family {Ei : i ∈ I} of nonempty topological spaces is resolvable

whenever at least one Ei is resolvable.
(3) The topological sum of a family {Ei : i ∈ I} of nonempty topological spaces is resolvable if and

only if all Ei (i ∈ I) are resolvable.
(4) If E possesses a pseudo-base all members of which are resolvable, then E itself is resolvable.
(5) Any nonempty locally compact space without isolated points is resolvable.
(6) Any metric space without isolated points is resolvable.
(7) If E is resolvable, then for each Fσ-subset X of E there exists a function f : E → R such that

X coincides with the set of all points of discontinuity of f .
In this context, it makes sense to notice that the topological product of a family of irresolvable

spaces can be resolvable, a closed subspace of a resolvable space can be irresolvable, and a continuous
image of a resolvable space can be irresolvable.
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Exemple 2. Let E be a topological space and let g : E → R be a real-valued non-negative upper
semi-continuous function. Suppose that the graph of g is a resolvable subspace of the product space
E ×R. Then there exists a function f : E → R such that g = Of . In particular, if E is a resolvable
space, then for any real-valued non-negative constant function g : E → R, there exists a function
f : E → R such that Of = g.

Theorem 5. Let E be a metric space and let g : E → R be a real-valued non-negative upper semi-
continuous function.

If the graph of g considered as a subspace of E × R does not contain isolated points, then there
exists a Borel function f : E → R such that Of = g.

Exemple 3. Let E be an infinite set, let J be a σ-ideal of subsets of E, and let F = {X ⊂ E :
E \X ∈ J } be the dual filter of J . Suppose that the following two conditions are fulfilled:

(∗) card(X) = card(E) for each set X ∈ F ;
(∗∗) there exists a base B of J with card(B) ≤ card(E).
Denote T = {∅} ∪ F . Then T is a topology on E such that:
(i) the space (E, T ) is resolvable;
(ii) for a function g : E → {1}, there exists a function f : E → R satisfying Of = g;
(iii) for the same function g : E → {1}, there exists no Borel function h : E → R satisfying Oh = g.

Exemple 4. Take an infinite set E equipped with a nontrivial ω1-complete ultrafilter Φ of subsets of
E (this condition is equivalent to the existence of a two-valued measurable cardinal number). Equip
E with the topology

T = {∅} ∪ Φ.

The obtained topological space (E, T ) has the following property:
For any function f : E → R, there exists a set X ∈ Φ such that the restriction f |X is constant.
Therefore, for every function f : E → R, there are points x in E at which f is continuous and,

consequently, Of (x) = 0.
The latter implies that if g is a real-valued strictly positive constant function on E, then there is

no f : E → R such that Of = g.

So, Example 4 shows us that certain restrictions on a general topological space E are necessary if
one wants to have a positive solution to the question discussed in this note.

Let E be a topological space, (M,ρ) be a bounded metric space and let f : E →M be a function.
For each point x ∈ E, one can define

Of (x) = inf{diam(f(U(x))) : U(x) ∈ F(x)},
where F(x) is the filter of all neighborhoods of x and diam(f(U(x))) denoting the diameter of the
set f(U(x)). The obtained function Of : E → R called also the oscillation of f , is non-negative and
upper semi-continuous.

Notice that the assertions (a) and (e) remain true for this more general concept of Of .
The question analogous to the considered above can be formulated in terms of the pair (E,M).
Namely, one can ask about a characterization of all those pairs (E,M) for which any non-negative

upper semi-continuous function g : E → R admits a (Borel) function f : E →M such that Of = g.
This question seems to be of interest from the viewpoint of mathematical analysis and general

topology.
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