A SIMPLE DERIVATION OF THE KEY EQUATION IN JANASHIA-LAGVILAVA METHOD

LASHA EPHREMIDZE ${ }^{1,2}$ AND ALEKSANDRE SAATASHVILI ${ }^{3}$

Abstract

We provide a simple derivation of the key system of equations for the corresponding boundary value problem in the Janashia-Lagvilava matrix spectral factorization method.

1. Introduction

Let

$$
S(t)=\left(\begin{array}{cccc}
s_{11}(t) & s_{12}(t) & \cdots & s_{1 r}(t) \tag{1}\\
s_{21}(t) & s_{22}(t) & \cdots & s_{2 r}(t) \\
\vdots & \vdots & \vdots & \vdots \\
s_{r 1}(t) & s_{r 2}(t) & \cdots & s_{r r}(t)
\end{array}\right)
$$

$|t|=1$, be a positive definite (a.e.) matrix function with integrable entries, $s_{i j} \in L^{1}(\mathbb{T})$, defined on the unit circle \mathbb{T} in the complex plane \mathbb{C}.

Wiener's matrix spectral factorization theorem [9] asserts that if

$$
\begin{equation*}
\int_{\mathbb{T}} \log \operatorname{det} S(t) d t>-\infty \tag{2}
\end{equation*}
$$

then S admits the factorization

$$
\begin{equation*}
S(t)=S_{+}(t) S_{+}^{*}(t) \tag{3}
\end{equation*}
$$

where S_{+}can be analytically extended inside the unit disk \mathbb{D}, and $S_{+}^{*}(t)$ is the Hermitian conjugate to $S_{+}(t)$. Furthermore, the entries of S_{+}are the square integrable functions and, actually, belong to the Hardy space $H^{2}=H^{2}(\mathbb{D})$ (as usual, the functions from the Hardy space and their boundary values are identified). Representation (3) is unique (up to a constant unitary factor) under the additional requirement that the analytic function S_{+}is outer (for the definition, see $\S 2$). Condition (2) is necessary and sufficient for the spectral factorization (3) to exist.

An approximate computation of the factor S_{+}for the given matrix function (1) is an important challenging problem due to its practical applications. Therefore, different authors have developed dozens of methods for such factorization as the Levinson-Durbin algorithm, Bauer method (by Toeplitz matrix decomposition), Wilsons algorithm (based on Newton-Raphson iterations), symmetric factor extraction, solutions via algebraic Riccati equation, etc. (see $[7,8]$).

The Janashia-Lagvilava algorithm $[4,5]$ is a relatively new method of a matrix spectral factorization which proved to be effective [3].

In this algorithm, the computational complexity of the problem is reduced to the minimum by intelligent manipulations. The algorithm starts with the LU triangular factorization

$$
S(t)=M(t) M^{*}(t)
$$

with

$$
M(t)=\left(\begin{array}{ccccc}
f_{1}^{+}(t) & 0 & \cdots & 0 & 0 \\
\xi_{21}(t) & f_{2}^{+}(t) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\xi_{r-1,1}(t) & \xi_{r-1,2}(t) & \cdots & f_{r-1}^{+}(t) & 0 \\
\xi_{r 1}(t) & \xi_{r 2}(t) & \cdots & \xi_{r, r-1}(t) & f_{r}^{+}(t)
\end{array}\right)
$$

where $f_{j}^{+}, j=1,2, \ldots, r$, are outer analytic functions in H^{2} (denoted as $\left.f_{j}^{+} \in H_{O}^{2}\right)$ and $\xi_{i j} \in L^{2}(\mathbb{T})$, $2 \leq i \leq r, 1 \leq j<j$. Then the algorithm performs step-by-step spectral factorization of principal leading submatrices of S (see [5]).

A key component of this scheme is the constructive proof of the following
Theorem 1. Let

$$
F(t)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \tag{4}\\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
\zeta_{1}(t) & \zeta_{2}(t) & \zeta_{3}(t) & \cdots & \zeta_{m-1}(t) & f^{+}(t)
\end{array}\right)
$$

be an $m \times m$ matrix, where $f^{+} \in H_{O}^{2}$ and $\zeta_{j} \in L^{2}(\mathbb{T}), j=1,2, \ldots, m-1$. Then, there exists an $m \times m$ unitary matrix function U of the special structure

$$
U(t)=\left(\begin{array}{ccccc}
u_{11}^{+}(t) & u_{12}^{+}(t) & \cdots & u_{1, m-1}^{+}(t) & u_{1 m}^{+}(t) \tag{5}\\
u_{21}^{+}(t) & u_{22}^{+}(t) & \cdots & u_{2, m-1}^{+}(t) & u_{2 m}^{+}(t) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
u_{m-1,1}^{+}(t) & u_{m-1,2}^{+}(t) & \cdots & u_{m-1, m-1}^{+}(t) & u_{m-1, m}^{+}(t) \\
\overline{u_{m 1}^{+}(t)} & \overline{u_{m 2}^{+}(t)} & \cdots & \overline{u_{m, m-1}^{+}(t)} & \overline{u_{m m}^{+}(t)}
\end{array}\right), u_{i j}^{+} \in H^{\infty}
$$

with

$$
\begin{equation*}
\operatorname{det} U(t)=1 \text { for a.a. } t \in \mathbb{T} \tag{6}
\end{equation*}
$$

such that the entries of the product $F U$ are analytic functions in H^{2}, i.e.,

$$
\begin{equation*}
F U \in H^{2}(\mathbb{D})^{m \times m} \tag{7}
\end{equation*}
$$

The existence of such a unitary matrix function U follows from the general existence theorem of the matrix spectral factorization and is demonstrated in [1]. The most important finding of Janashia and Lagvilava was, however, the observation that the columns of U can be constructed separately, independently of each other. In particular, the following theorem holds.

Theorem 2. Let F and U be as in Theorem 1. Then, the columns of U (more specifically, taking $x_{i}^{+}=u_{i j}^{+}, i=1,2, \ldots, m$, for each $j=1,2, \ldots, m$), are the solutions of the following multi-dimensional boundary value problem

$$
\left\{\begin{array}{l}
\zeta_{1}(t) x_{m}^{+}(t)-f^{+}(t) \overline{x_{1}^{+}(t)}=\varphi_{1}^{+}(t) \tag{8}\\
\zeta_{2}(t) x_{m}^{+}(t)-f^{+}(t) \overline{x_{2}^{+}(t)}=\varphi_{2}^{+}(t) \\
\vdots \\
\zeta_{m-1}(t) x_{m}^{+}(t)-f^{+}(t) \overline{x_{m-1}^{+}(t)}=\varphi_{m-1}^{+}(t) \\
\zeta_{1}(t) x_{1}^{+}(t)+\zeta_{2}(t) x_{2}^{+}(t)+\ldots+\zeta_{m-1}(t) x_{m-1}^{+}(t)+f^{+}(t) \overline{x_{m}^{+}(t)}=\varphi_{m}^{+}(t)
\end{array}\right.
$$

where ζ_{i} and f^{+}are the entries of F, and $x_{i}^{+} \in H^{\infty}$ and $\varphi_{i}^{+} \in H^{2}$ are the unknowns.
Actually, the Janashia-Lagvilava algorithm approximates the solution of the above system for the given matrix function F. This task is not anymore as difficult as the discovery of system (8) itself.

A long sequence of transformations which derives system (8) from condition (6) is presented in [1]. In the present paper, we deduce the same system much easier by using a more transparent way.

The paper is organized as follows. In the next section we introduce the necessary notation and formulate the well-known theorems used afterwards. Although the proof of Theorem 1 based on the Wiener's existence theorem of the matrix spectral factorization is outlined in [1], for the readers convenience, we present the detailed proof of this theorem in Section 3. This makes the paper more self-contained. The proof of Theorem 2 is given in Section 4.

2. Notation and Preliminary Observations

Let $L^{p}(\mathbb{T}), p>0$, be the Lebesgue space of p integrable functions on the unit circle $\mathbb{T}:=\{z \in \mathbb{C}$: $|z|=1\}$ and

$$
H^{p}=H^{p}(\mathbb{D}):=\left\{f \in \mathcal{A}(\mathbb{D}): \sup _{r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<\infty\right\}
$$

be the Hardy space of analytic functions on the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
For $f \in H^{p}$ and $t=e^{i \theta} \in \mathbb{T}$, we assume that

$$
f(t)=\left.f(z)\right|_{z=t}:=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)
$$

(which is defined a.e. on \mathbb{T}); the class of the boundary value functions of all functions from H^{p} is denoted by L_{+}^{p}. It is well known that $L_{+}^{p} \subset L^{p}$ and, for $p \geq 1$,

$$
L_{p}^{+}=\left\{f \in L^{p}(\mathbb{T}): c_{k}\{f\}=0 \text { for } k<0\right\}
$$

where $c_{k}\{f\}$ stands for the k-th Fourier coefficient of f. Furthermore, there is a one-to-one correspondence

$$
\begin{equation*}
L_{+}^{p} \longleftrightarrow H^{p}, \quad p>0 \tag{9}
\end{equation*}
$$

which allows these two classes to be naturally identified. In particular, one can speak about the values of $f \in L_{+}^{p}$ inside the unit disk. The relation (9) can be strengthened by claiming that the function $f \in L_{+}^{p}$ cannot be equal to zero on a subset of \mathbb{T} of positive measure and, furthermore, for each $f \in L_{+}^{p}$, we have

$$
\int_{\mathbb{T}} \log |f(t)| d t>-\infty
$$

That is why condition (2) is necessary for the existence of factorization (3) and Wiener proved its sufficiency, as well.

We use Smirnov's theorem (see, e.g., [6]) which claims that if a function $f \in H^{p}$ and its boundary values function belongs to $L^{q}(q>p)$, then $f \in H^{q}$. This theorem can be briefly formulated as

$$
\begin{equation*}
f \in H^{p} \cap L_{+}^{q} \Longrightarrow f \in H^{q} \tag{10}
\end{equation*}
$$

A nonzero function f is called outer if it can be reconstructed from the absolute values of its boundary values, namely,

$$
\begin{equation*}
f(z)=c \cdot \exp \left(\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{t+z}{t-z} \log |f(t)| d t\right), \quad|c|=1 \tag{11}
\end{equation*}
$$

The class of outer functions in H^{p} is denoted by H_{O}^{p}. Formula (11) implies that if $f, g \in H_{O}^{p}$ and $|f(t)|=|g(t)|$ for a.a. $t \in \mathbb{T}$, then $f=c g$ for some constant c with absolute value 1 . The product of two outer functions is again outer and Hölder's inequality guarantees that if $f \in H_{O}^{p}$ and $g \in H_{O}^{q}$, then $f g \in H_{O}^{p q /(p+q)}$.

For any set \mathcal{S}, we denote by $\mathcal{S}^{m \times n}$ the set of $m \times n$ matrices with entries from \mathcal{S}.
A matrix function $G \in H^{2}(\mathbb{D})^{m \times m}$ is called outer, and we write $G \in H^{2}(\mathbb{D})_{O}^{m \times m}$, if the determinant of G is outer, i.e., $\operatorname{det} G \in H_{O}^{2 / m}$ (cf. [2]).

For any matrix $M \in \mathbb{C}^{m \times m}$, we use the standard notation $M^{T}, M^{*}:=\bar{M}^{T}, \operatorname{Cof}(M)$, and $\operatorname{Adj}(M):=\operatorname{Cof}(M)^{T}$ for the transpose, the Hermitian conjugate, the cofactor matrix and the adjugate. The same notation is used for the matrix functions, as well.

A matrix function $U \in L^{\infty}(\mathbb{T})^{m \times m}$ is called unitary if

$$
U(t) U^{*}(t)=I_{m} \quad \text { a.e. }
$$

where I_{m} stands for the $m \times m$ unit matrix.

3. Proof of Theorem 1

Since $F \in L^{2}(\mathbb{T})^{m \times m}$ and $\operatorname{det} F=f^{+} \in H_{O}^{2}$, we have $F F^{*} \in L^{1}(\mathbb{T})^{m \times m}$ and

$$
\int_{\mathbb{T}} \log \operatorname{det} F(t) F^{*}(t) d t=2 \int_{\mathbb{T}} \log \left|f^{+}(t)\right| d t>-\infty
$$

Therefore, by virtue of the matrix spectral factorization theorem,

$$
F(t) F^{*}(t)=G_{+}(t) G_{+}^{*}(t)
$$

where $G_{+} \in H^{2}(\mathbb{D})_{O}^{m \times m}$. Since $\operatorname{det} G_{+} \in H_{O}^{2 / m}$ and $\left|\operatorname{det} G_{+}(t)\right|=|\operatorname{det} F(t)|$ for a. a. $t \in \mathbb{T}$, we have $\operatorname{det} G_{+}(z)=c(\operatorname{det} F)(z)=c f^{+}(z)$ for $z \in \mathbb{D}$, with $|c|=1$ and it can be assumed that $c=1$, i.e.,

$$
\begin{equation*}
\operatorname{det} G_{+}=f^{+} \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
U(t)=F^{-1}(t) G_{+}(t) \tag{13}
\end{equation*}
$$

We have

$$
U U^{*}=F^{-1} G_{+} G_{+}^{*}\left(F^{-1}\right)^{*}=F^{-1} F F^{*}\left(F^{*}\right)^{-1}=I_{m} \text { a.e. on } \mathbb{T},
$$

which implies that U is a unitary matrix function, and therefore,

$$
\begin{equation*}
U \in L^{\infty}(\mathbb{T})^{m \times m} \tag{14}
\end{equation*}
$$

We also know that (6) holds because of equations (13) and (12).
Note that

$$
F^{-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \tag{15}\\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
-\zeta_{1} / f^{+} & -\zeta_{2} / f^{+} & -\zeta_{3} / f^{+} & \cdots & -\zeta_{m-1} / f^{+} & 1 / f^{+}
\end{array}\right)
$$

Therefore, it follows from (13) that the entries in the first $m-1$ rows of U and G_{+}coincide. Since we know that these entries belong to H^{2} and also (14) holds, it follows from Smirnov's theorem that

$$
u_{i j} \in H^{\infty}, \quad 1 \leq i \leq m-1, \quad 1 \leq j \leq m
$$

For the entries of the last row of U, we have

$$
\overline{u_{m j}}=\operatorname{cof}\left(u_{m j}\right) \in H^{\infty},
$$

since $U^{*}=U^{-1}=\operatorname{Adj}(U)=\operatorname{Cof}(U)^{T}$. Hence, the structure of U has the form (5), and Theorem 1 is proved.

4. Proof of Theorem 2

Assume

$$
\begin{equation*}
F(t) U(t)=\Phi_{+} \tag{16}
\end{equation*}
$$

where F is the matrix function (4), U is the unitary matrix function (5) satisfying (6) and

$$
\Phi_{+} \in H^{2}(\mathbb{D})_{O}^{m \times m}
$$

(the determinant of Φ^{+}is outer because $f^{+} \in H_{O}^{2}$ and (6) holds). Then the last equation in (8) follows immediately from (16). It also follows from (16) that

$$
U^{*}(t) F^{-1}(t)=\Phi_{+}^{-1}(t)=\frac{1}{f^{+}} \operatorname{Adj} \Phi_{+}
$$

i.e.,

$$
\left(\begin{array}{ccccc}
\overline{u_{11}^{+}} & \overline{u_{21}^{+}} & \ldots & \overline{u_{m-1,1}^{+}} & u_{m 1}^{+} \\
\overline{u_{12}^{+}} & \overline{u_{22}^{+}} & \ldots & \overline{u_{m-1,2}^{+}} & u_{m 2}^{+} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\overline{u_{1 m}^{+}} & \overline{u_{2 m}^{+}} & \ldots & \overline{u_{m-1, m}^{+}} & u_{m m}^{+}
\end{array}\right)\left(\begin{array}{ccccc}
f^{+} & 0 & \ldots & 0 & 0 \\
0 & f^{+} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & f^{+} & 0 \\
-\zeta_{1} & -\zeta_{2} & \cdots & -\zeta_{m-1} & 1
\end{array}\right)=\operatorname{Adj} \Phi_{+} .
$$

Then, we conclude that for each $j=1,2, \ldots, m$,

$$
\left\{\begin{array}{l}
f^{+} \overline{u_{1 j}^{+}}-\zeta_{1} u_{m j}^{+}=\phi_{j 1}^{+} \tag{17}\\
f^{+} \overline{u_{2 j}^{+}}-\zeta_{2} u_{m j}^{+}=\phi_{j 2}^{+} \\
\vdots \\
f^{+} \overline{u_{m-1, j}^{+}}-\zeta_{m-1} u_{m j}^{+}=\phi_{j, m-1}^{+}
\end{array}\right.
$$

where we know that each $\phi_{j k}^{+}$belongs to $H^{2 /(m-1)}$ as they are the entries of $\operatorname{Adj} \Phi_{+}$. However, equations (17) suggest that $\phi_{j k}^{+} \in L^{2}(\mathbb{T})$ and applying Smirnov's theorem, we can conclude that $\phi_{j k}^{+} \in H^{2}$.

Thus Theorem 2 is proved.

Acknowledgement

The first author was partially supported by the Shota Rustaveli National Science Foundation of Georgia (Project No. FR-18-2499).

References

1. L. Ephremidze, G. Janashia, E. Lagvilava, On approximate spectral factorization of matrix functions. J. Fourier Anal. Appl. 17 (2011), no. 5, 976-990.
2. L. Ephremidze, E. Lagvilava, Remark on outer analytic matrix-functions. Proc. A. Razmadze Math. Inst. 152 (2010), 29-32.
3. L. Ephremidze, F. Saied, I. M. Spitkovsky, On the algorithmization of Janashia-Lagvilava matrix spectral factorization method. IEEE Trans. Inform. Theory 64 (2018), no. 2, 728-737.
4. G. Janashia, E. Lagvilava, A method of approximate factorization of positive definite matrix functions. Studia Math. 137 (1999), no. 1, 93-100.
5. G. Janashia, E. Lagvilava, L. Ephremidze, A new method of matrix spectral factorization. IEEE Trans. Inform. Theory 57 (2011), no. 4, 2318-2326.
6. P. Koosis, Introduction to H_{p} Spaces. London Mathematical Society Lecture Note Series, 40. Cambridge University Press, Cambridge-New York, 1980.
7. V. Kučera, Factorization of rational spectral matrices: a survey of methods, In: Proc. IEEE Int. Conf. Control, Edinburgh, pp. 1074-1078, 1991.
8. A. H. Sayed, T. Kailath, A survey of spectral factorization methods. Numerical linear algebra techniques for control and signal processing. Numer. Linear Algebra Appl. 8 (2001), no. 6-7, 467-496.
9. N. Wiener, P. Masani, The prediction theory of multivariate stochastic processes. I. The regularity condition. Acta Math. 98 (1957), 111-150.
(Received 20.12.2020)
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia
${ }^{2}$ Faculty of Science and Mathematics, New York University Abu Dhabi (NyUAD), Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
${ }^{3}$ Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, CamBRIDGE, MA 02193, USA

E-mail address: le23@nyu.edu
E-mail address: saata@mit.edu

