
Transactions of A. Razmadze
Mathematical Institute
Vol. 175 (2021), issue 1, 43–47

A SIMPLE DERIVATION OF THE KEY EQUATION IN

JANASHIA–LAGVILAVA METHOD

LASHA EPHREMIDZE1,2 AND ALEKSANDRE SAATASHVILI3

Abstract. We provide a simple derivation of the key system of equations for the corresponding
boundary value problem in the Janashia–Lagvilava matrix spectral factorization method.

1. Introduction

Let

S(t) =


s11(t) s12(t) · · · s1r(t)
s21(t) s22(t) · · · s2r(t)

...
...

...
...

sr1(t) sr2(t) · · · srr(t)

 , (1)

|t| = 1, be a positive definite (a.e.) matrix function with integrable entries, sij ∈ L1(T), defined on
the unit circle T in the complex plane C.

Wiener’s matrix spectral factorization theorem [9] asserts that if∫
T

log detS(t) dt > −∞, (2)

then S admits the factorization

S(t) = S+(t)S∗+(t), (3)

where S+ can be analytically extended inside the unit disk D, and S∗+(t) is the Hermitian conjugate to
S+(t). Furthermore, the entries of S+ are the square integrable functions and, actually, belong to the
Hardy space H2 = H2(D) (as usual, the functions from the Hardy space and their boundary values
are identified). Representation (3) is unique (up to a constant unitary factor) under the additional
requirement that the analytic function S+ is outer (for the definition, see §2). Condition (2) is
necessary and sufficient for the spectral factorization (3) to exist.

An approximate computation of the factor S+ for the given matrix function (1) is an important
challenging problem due to its practical applications. Therefore, different authors have developed
dozens of methods for such factorization as the Levinson–Durbin algorithm, Bauer method (by Toeplitz
matrix decomposition), Wilsons algorithm (based on Newton–Raphson iterations), symmetric factor
extraction, solutions via algebraic Riccati equation, etc. (see [7, 8]).

The Janashia–Lagvilava algorithm [4,5] is a relatively new method of a matrix spectral factorization
which proved to be effective [3].

In this algorithm, the computational complexity of the problem is reduced to the minimum by
intelligent manipulations. The algorithm starts with the LU triangular factorization

S(t) = M(t)M∗(t),
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with

M(t) =


f+1 (t) 0 · · · 0 0
ξ21(t) f+2 (t) · · · 0 0

...
...

...
...

...
ξr−1,1(t) ξr−1,2(t) · · · f+r−1(t) 0
ξr1(t) ξr2(t) · · · ξr,r−1(t) f+r (t)

 ,

where f+j , j = 1, 2, . . . , r, are outer analytic functions in H2 (denoted as f+j ∈ H2
O) and ξij ∈ L2(T),

2 ≤ i ≤ r, 1 ≤ j < j. Then the algorithm performs step-by-step spectral factorization of principal
leading submatrices of S (see [5]).

A key component of this scheme is the constructive proof of the following

Theorem 1. Let

F (t) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ1(t) ζ2(t) ζ3(t) · · · ζm−1(t) f+(t)


(4)

be an m×m matrix, where f+ ∈ H2
O and ζj ∈ L2(T), j = 1, 2, . . . ,m−1. Then, there exists an m×m

unitary matrix function U of the special structure

U(t) =



u+11(t) u+12(t) · · · u+1,m−1(t) u+1m(t)

u+21(t) u+22(t) · · · u+2,m−1(t) u+2m(t)
...

...
...

...
...

u+m−1,1(t) u+m−1,2(t) · · · u+m−1,m−1(t) u+m−1,m(t)

u+m1(t) u+m2(t) · · · u+m,m−1(t) u+mm(t)


, u+ij ∈ H

∞, (5)

with
detU(t) = 1 for a.a. t ∈ T (6)

such that the entries of the product FU are analytic functions in H2, i.e.,

FU ∈ H2(D)m×m. (7)

The existence of such a unitary matrix function U follows from the general existence theorem of
the matrix spectral factorization and is demonstrated in [1]. The most important finding of Janashia
and Lagvilava was, however, the observation that the columns of U can be constructed separately,
independently of each other. In particular, the following theorem holds.

Theorem 2. Let F and U be as in Theorem 1. Then, the columns of U (more specifically, taking
x+i = u+ij, i = 1, 2, . . . ,m, for each j = 1, 2, . . . ,m), are the solutions of the following multi-dimensional
boundary value problem

ζ1(t)x+m(t)− f+(t)x+1 (t) = ϕ+
1 (t),

ζ2(t)x+m(t)− f+(t)x+2 (t) = ϕ+
2 (t),

...

ζm−1(t)x+m(t)− f+(t)x+m−1(t) = ϕ+
m−1(t),

ζ1(t)x+1 (t) + ζ2(t)x+2 (t) + . . .+ ζm−1(t)x+m−1(t) + f+(t)x+m(t) = ϕ+
m(t),

(8)

where ζi and f+ are the entries of F , and x+i ∈ H∞ and ϕ+
i ∈ H2 are the unknowns.

Actually, the Janashia–Lagvilava algorithm approximates the solution of the above system for the
given matrix function F . This task is not anymore as difficult as the discovery of system (8) itself.

A long sequence of transformations which derives system (8) from condition (6) is presented in [1].
In the present paper, we deduce the same system much easier by using a more transparent way.
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The paper is organized as follows. In the next section we introduce the necessary notation and
formulate the well-known theorems used afterwards. Although the proof of Theorem 1 based on
the Wiener’s existence theorem of the matrix spectral factorization is outlined in [1], for the readers
convenience, we present the detailed proof of this theorem in Section 3. This makes the paper more
self-contained. The proof of Theorem 2 is given in Section 4.

2. Notation and Preliminary Observations

Let Lp(T), p > 0, be the Lebesgue space of p integrable functions on the unit circle T := {z ∈ C :
|z| = 1} and

Hp = Hp(D) :=

{
f ∈ A(D) : sup

r<1

∫ 2π

0

|f(reiθ)|p dθ <∞
}

be the Hardy space of analytic functions on the unit disk D = {z ∈ C : |z| < 1}.
For f ∈ Hp and t = eiθ ∈ T, we assume that

f(t) = f(z)|z=t := limr→1 f(reiθ)

(which is defined a.e. on T); the class of the boundary value functions of all functions from Hp is
denoted by Lp+. It is well known that Lp+ ⊂ Lp and, for p ≥ 1,

L+
p = {f ∈ Lp(T) : ck{f} = 0 for k < 0},

where ck{f} stands for the k-th Fourier coefficient of f . Furthermore, there is a one-to-one correspon-
dence

Lp+ ←→ Hp, p > 0, (9)

which allows these two classes to be naturally identified. In particular, one can speak about the values
of f ∈ Lp+ inside the unit disk. The relation (9) can be strengthened by claiming that the function
f ∈ Lp+ cannot be equal to zero on a subset of T of positive measure and, furthermore, for each
f ∈ Lp+, we have ∫

T

log |f(t)| dt > −∞.

That is why condition (2) is necessary for the existence of factorization (3) and Wiener proved its
sufficiency, as well.

We use Smirnov’s theorem (see, e.g., [6]) which claims that if a function f ∈ Hp and its boundary
values function belongs to Lq (q > p), then f ∈ Hq. This theorem can be briefly formulated as

f ∈ Hp ∩ Lq+ =⇒ f ∈ Hq. (10)

A nonzero function f is called outer if it can be reconstructed from the absolute values of its
boundary values, namely,

f(z) = c · exp

(
1

2π

∫
T

t+ z

t− z
log
∣∣f(t)

∣∣ dt) , |c| = 1. (11)

The class of outer functions in Hp is denoted by Hp
O. Formula (11) implies that if f, g ∈ Hp

O and
|f(t)| = |g(t)| for a.a. t ∈ T, then f = cg for some constant c with absolute value 1. The product
of two outer functions is again outer and Hölder’s inequality guarantees that if f ∈ Hp

O and g ∈ Hq
O,

then fg ∈ Hpq/(p+q)
O .

For any set S, we denote by Sm×n the set of m× n matrices with entries from S.
A matrix function G ∈ H2(D)m×m is called outer, and we write G ∈ H2(D)m×mO , if the determinant

of G is outer, i.e., detG ∈ H2/m
O (cf. [2]).

For any matrix M ∈ Cm×m, we use the standard notation MT , M∗ := M
T

, Cof(M), and
Adj(M) := Cof(M)T for the transpose, the Hermitian conjugate, the cofactor matrix and the ad-
jugate. The same notation is used for the matrix functions, as well.

A matrix function U ∈ L∞(T)m×m is called unitary if

U(t)U∗(t) = Im a.e.,
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where Im stands for the m×m unit matrix.

3. Proof of Theorem 1

Since F ∈ L2(T)m×m and detF = f+ ∈ H2
O, we have FF ∗ ∈ L1(T)m×m and∫

T

log detF (t)F ∗(t) dt = 2

∫
T

log |f+(t)| dt > −∞.

Therefore, by virtue of the matrix spectral factorization theorem,

F (t)F ∗(t) = G+(t)G∗+(t),

where G+ ∈ H2(D)m×mO . Since detG+ ∈ H2/m
O and |detG+(t)| = |detF (t)| for a. a. t ∈ T, we have

detG+(z) = c (detF )(z) = cf+(z) for z ∈ D, with |c| = 1 and it can be assumed that c = 1, i.e.,

detG+ = f+. (12)

Let

U(t) = F−1(t)G+(t). (13)

We have

UU∗ = F−1G+G
∗
+(F−1)∗ = F−1FF ∗(F ∗)−1 = Im a.e. on T,

which implies that U is a unitary matrix function, and therefore,

U ∈ L∞(T)m×m. (14)

We also know that (6) holds because of equations (13) and (12).
Note that

F−1 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

−ζ1/f+ −ζ2/f+ −ζ3/f+ · · · −ζm−1/f+ 1/f+


. (15)

Therefore, it follows from (13) that the entries in the first m − 1 rows of U and G+ coincide. Since
we know that these entries belong to H2 and also (14) holds, it follows from Smirnov’s theorem that

uij ∈ H∞, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m.

For the entries of the last row of U , we have

umj = cof(umj) ∈ H∞,

since U∗ = U−1 = Adj(U) = Cof(U)T . Hence, the structure of U has the form (5), and Theorem 1 is
proved.

4. Proof of Theorem 2

Assume

F (t)U(t) = Φ+, (16)

where F is the matrix function (4), U is the unitary matrix function (5) satisfying (6) and

Φ+ ∈ H2(D)m×mO

(the determinant of Φ+ is outer because f+ ∈ H2
O and (6) holds). Then the last equation in (8)

follows immediately from (16). It also follows from (16) that

U∗(t)F−1(t) = Φ−1+ (t) =
1

f+
Adj Φ+,
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i.e., 
u+11 u+21 . . . u+m−1, 1 u+m1

u+12 u+22 . . . u+m−1, 2 u+m2
...

...
...

...
...

u+1m u+2m . . . u+m−1,m u+mm




f+ 0 · · · 0 0
0 f+ · · · 0 0
...

...
...

...
...

0 0 · · · f+ 0
−ζ1 −ζ2 · · · −ζm−1 1

 = Adj Φ+.

Then, we conclude that for each j = 1, 2, . . . ,m,
f+u+1j − ζ1 u

+
mj = φ+j1

f+u+2j − ζ2 u
+
mj = φ+j2

...

f+u+m−1, j − ζm−1 u
+
mj = φ+j,m−1,

(17)

where we know that each φ+jk belongs to H2/(m−1) as they are the entries of Adj Φ+. However,

equations (17) suggest that φ+jk ∈ L2(T) and applying Smirnov’s theorem, we can conclude that

φ+jk ∈ H2.
Thus Theorem 2 is proved.
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