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A paper devoted to the 75th birthday of Estate Khmaladze

Abstract. The model of heteroscedastic extremes initially introduced by Einmahl et al. (JRSSB,
2016) describes the evolution of a nonstationary sequence whose extremes evolve over time. We
revisit this model and adapt it into a general extreme quantile regression framework. We provide
estimates for the extreme value index and the integrated skedasis function and prove their joint
asymptotic normality. Our results are quite similar to those developed for heteroscedastic extremes,
but with a di�erent proof approach emphasizing coupling arguments. We also propose a pointwise
estimator of the skedasis function and a Weissman estimator of conditional extreme quantiles and
prove the asymptotic normality of both estimators.

1. Introduction and Main Results

1.1. Framework. One of the main goals of the extreme value theory is to propose estimators of
extreme quantiles: given an i.i.d. sample Y1, . . . , Yn with distribution F , one wants to estimate the
quantile of order 1− αn de�ned as q(αn) := F←(1− αn), with αn → 0 as n→∞ and

F←(u) := inf{x ∈ R : F (x) ≥ u}, u ∈ (0, 1)

denotes the quantile function. The extreme regime corresponds to the case for αn < 1/n in which case
extrapolation beyond the sample maximum is needed. Considering an application in hydrology, these
mathematical problems correspond to the following situation: given a record over n = 50 years of the
level of a river, can we estimate the 100-year return level ? The answer to this question is provided by
the univariate extreme value theory and we refer to the monographs by Coles [6], Beirlant et al. [2]
or de Haan and Ferreira [8] for a general background.

In many situations, auxiliary information is available and represented by a covariate X taking
values in Rd and, given x ∈ Rd, one wants to estimate q(αn|x), the conditional (1 − αn)-quantile of
Y with respect to some given values of the covariate X = x. This is an extreme quantile regression
problem. Recent advances in extreme quantile regression include the works by Chernozhukov [5], El
Methni et al. [13] or Daouia et al. [7].

In this paper we develop the proportional tail framework for extreme quantile regression. It is
an adaptation of the heteroscedastic extremes developed by Einmahl et al. [12], where the authors
propose a model for the extremes of independent, but nonstationary observations whose distribution
evolves over time, a model which can be viewed as a regression framework with time as covariate
and deterministic design with uniformly distributed observation times 1/n, 2/n, . . . , 1. In our setting,
the covariate X takes values in Rd and is random with arbitrary distribution. The main assumption,
directly adapted from Einmmahl et al. [12], is the so-called proportional tail assumption formulated in
Equation (1) and stating that the conditional tail function of Y for the given X = x is asymptotically
proportional to the unconditional tail. The proportionality factor is given by the so-called skedasis
function σ(x) that accounts for the dependency of the extremes of Y with respect to the covariate
X. Furthermore, as it is standard in the extreme value theory, the unconditional distribution of Y is
assumed to be regularly varying. Together with the proportional tail assumption, this implies that
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all the conditional distributions are regularly varying with the same extreme value index. Hence the
proportional tail framework appears suitable for modeling covariate dependent extremes, where the
extreme value index is constant, but the scale parameter depends on the covariate X in a nonpara-
metric way related to the skedasis function σ(x). Note that this framework is also considered by
Gardes [14] for the purpose of estimation of the extreme value index.

Our main results are presented in the following subsections. Section 1.2 considers the estimation
of the extreme value index and integrated skedasis function in the proportional tail model, and our
results of asymptotic normality are similar to those in Einmahl et al. [9], but with a di�erent proof
emphasizing coupling arguments. Section 1.3 considers both the pointwise estimation of the skedasis
function and the conditional extreme quantile estimation with Weissman estimators and states their
asymptotic normality. Section 2 develops some coupling arguments used in the proofs of the main
theorems, proofs gathered in Section 3. Finally, an appendix states a technical lemma and its proof.

1.2. The proportional tail model. Let (X,Y ) be a generic random couple taking values in Rd×R.
De�ne the conditional cumulative distribution function of Y given X = x by

Fx(y) := P(Y ≤ y|X = x), y ∈ R, x ∈ Rd.

The main assumption of the proportional tail model is

lim
y→∞

1− Fx(y)

1− F 0(y)
= σ(x) uniformly in x ∈ Rd, (1)

where F 0 is some baseline distribution function and σ is the so-called skedasis function following the
terminology introduced in [12]. By integration, the unconditional distribution F of Y satis�es

lim
y→∞

1− F (y)

1− F 0(y)
=

∫
Rd

σ(x)PX(dx).

We can hence suppose without loss of generality that F = F 0 and that
∫
σdPX = 1.

We also make the assumption that F is of 1/γ-regular variation,

1− F (y) = y−1/γ`(y), y ∈ R,

with `, slowly varying at in�nity. Together with the proportional tail condition (1) with F = F 0, this
implies that Fx is also of 1/γ-regular variation for each x ∈ Rd. This is a strong consequence of the
model assumptions. In this model, the extremes are driven by two parameters: the common extreme
value index γ > 0 and the skedasis function σ(·). Following [12], we consider the usual ratio estimator
(see, e.g., [16, p. 198]) for γ and propose a nonparametric estimator of the integrated (or cumulative)
skedasis function

C(x) :=

∫
{u≤x}

σ(u)PX(du), x ∈ Rd,

where u ≤ x stands for the componentwise comparison of vectors. Note that - putting aside the case,
where X is discrete - the function C is easier to estimate than σ, in the same way that a cumulative
distribution function is easier to estimate than a density function. Estimation of C is useful to derive
tests, while estimation of σ will be considered later on for the purpose of extreme quantile estimation.

Let (Xi, Yi)1≤i≤n be i.i.d. copies of (X,Y ). The estimators are built with observations (Xi, Yi) for
which Yi exceeds a high threshold yn. Note that in this article, (yn)n∈N may be deterministic or data
driven. For the purpose of asymptotics, yn depends on the sample size n ≥ 1 in a way such that

yn →∞ and Nn →∞ in probability,

with Nn :=
∑n
i=1 1{Yi>yn}, the (possibly random) number of exceedances. The extreme value index

γ > 0 is estimated by the ratio estimator

γ̂n :=
1

Nn

n∑
i=1

log

(
Yi
yn

)
1{Yi>yn}.
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The integrated skedasis function C can be estimated by the following empirical pseudo distribution
function

Ĉn(x) :=
1

Nn

n∑
i=1

1{Yi>yn, Xi≤x}, x ∈ Rd.

When Y is continuous and yn := Yn−kn:n is the (kn + 1)-th highest order statistic, then Nn = k and
γ̂n coincides with the usual Hill estimator.

Our �rst result addresses the joint asymptotic normality of γ̂n and Ĉn, namely,

vn

(
Ĉn(·)− C(·)
γ̂n − γ

)
L−→W, (2)

where W is a Gaussian Borel probability measure on L∞(Rd) × R, and vn → ∞ is a deterministic
rate. To prove the asymptotic normality, the threshold yn must scale suitably with respect to the
rates of convergence in the proportional tail and domain of attraction conditions. More precisely, we
assume the existence of a positive function A converging to zero and such that as y →∞,

sup
x∈Rd

∣∣∣∣ F̄x(y)

σ(x)F̄ (y)
− 1

∣∣∣∣ = O

(
A

(
1

F̄ (y)

))
, (3)

and

sup
z> 1

2

∣∣∣∣ F̄ (zy)

z−1/γF̄ (y)
− 1

∣∣∣∣ = O

(
A

(
1

F̄ (y)

))
, (4)

with F̄ (y) := 1− F (y) and F̄x(y) := 1− Fx(y). Our main result can then be stated as follows. When
reading the present article, the reader probably notices that the domain {z > 1/2} in (4) can be
replaced by any domain {z > c} for some c ∈]0, 1[.

Theorem 1.1. Assume that assumptions (3) and (4) hold and yn/yn → 1 in probability for some

deterministic sequence yn such that pn := F̄ (yn) satis�es

pn → 0, npn →∞ and
√
npn

1+ε
A (1/pn)→ 0 for some ε > 0.

Then the asymptotic normality (2) holds with

vn :=
√
npn and W L

=

(
B
N

)
,

with B a C-Brownian bridge on Rd and N a centered Gaussian random variable with variance γ2 and

independent of B.

Under the C-Brownian bridge we here mean a centered Gaussian process on Rd with the covariance
function

cov(B(x), B(x′)) :=

∫
Rd

1]−∞,x]1]−∞,x′]dC − C(x)C(x′).

Remark. Theorem 1.1 extends Theorem 2.1 of Einmhal et al. [12] in two directions: �rst, it states that
their estimators and theoretical results have natural counterparts in the framework of proportional
tails. We also could go past their univariate dependency i/n→ σ(i/n) to a multivariate dependency
x→ σ(x), x ∈ Rd. Second, it shows that general data-driven thresholds can be used. Those extensions
come at the price of a slightly more stringent condition upon the bias control. Indeed, their condition√
knA(n/kn) → 0 corresponds to our condition

√
npn

1+εA(1/pn) → 0 with ε = 0. We believe that

this loss is small in regard to the gain on the practical side: the threshold yn in (γ̂n, Ĉn) may be data-
driven. Take, for example, yn := Yn−kn:n, which is equivalent in probability to yn := F← (1− kn/n)
is kn →∞. As a consequence, Theorem 1.1 holds for this choice of yn if

kn →∞,
kn
n
→ 0, and

√
kn

1+ε
A

(
n

kn

)
→ 0.
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An example where (3) and (4) hold: The reader might wonder if a model imposing (3) and
(4) is not too restrictive for modeling. First, note that condition (4) has been well studied as the
second order condition holding uniformly over intervals (see, e.g., [8, p. 383, Section B.3], [1, 11]).
A generic example of the regression model, where (3) and (4) hold, is given as follows: take a c.d.f
H ful�lling the second order heavy tail condition (4) on any domain {z > c}. Then assume that the
laws of Y | X = x obey a location scale model in the sense that

Fx(y) = H

(
y − µ(x)

∆(x)

)
,

for some functions µ(·) and ∆(·) that are uniformly bounded on Rd. Then, since 1−∆(x)µ(x)/y → 1
uniformly in x as y →∞, condition (4) entails

sup
x∈Rd

∣∣∣ F x(y)

∆(x)1/γH(y)
− 1
∣∣∣ = O(A(1/H(y)), as y →∞.

Integrating in x gives H(y) = θF (y) as y → ∞ for some θ > 0, which yields (3) with the choice of
σ(·) := θ∆(·)1/γ .

1.3. Extreme quantile regression. In this subsection, we restrict ourselves to the case where yn is
deterministic i.e. yn = yn according to the notations of Theorem 1.1. We now address the estimation
of extreme conditional quantiles in the proportional tail model, namely

q(αn|x) := F←x (1− αn),

for some x ∈ Rd that will be �xed once for all in this section, and for a sequence αn = O(1/n). To
that aim, we shall borrow the heuristics behind the Weissman estimator [19], for which we here write
a short reminder. It is known that F ∈ D(Gγ) is equivalent to

lim
t→∞

U(tz)

U(t)
= zγ , for each z > 0,

with U(t) = F←(1 − 1/t), t > 1. Recall that pn = F̄ (yn). Since U is of γ-regular variation, the
unconditional quantile q(αn) := F←(1− αn) is approximated by

q(αn) = U(1/pn)
U(1/αn)

U(1/pn)
≈ yn

(
pn
αn

)γ
,

leading to the Weissman-type quantile estimator

q̂(αn) := yn

(
p̂n
αn

)γ̂n
,

where p̂n := 1
n

∑n
i=1 1{Yi>yn} is the empirical counterpart of pn.

Now going back to quantile regression in the proportional tail model, it is readily veri�ed that
assumption (1) implies

q(αn | x) ∼ q
(
αn
σ(x)

)
as n→∞.

This immediately leads to the plug-in estimator

q̂(αn|x) := q̂

(
αn
σ̂n(x)

)
= yn

(
p̂nσ̂n(x)

αn

)γ̂n
,

where σ̂n(x) denotes a consistent estimator of σ(x).
In the following, we propose a kernel estimator of σ(x) and prove its asymptotic normality be-

fore deriving the asymptotic normality of the extreme conditional quantile estimator q̂(αn|x). The
proportional tail assumption (1) implies

σ(x) = lim
n→∞

F x(yn)

F (yn)
.
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We propose the simplest kernel estimator with bandwidth hn > 0,∑n
i=1 1{|x−Xi|<hn}1{Yi>yn}∑n

i=1 1{|x−Xi|<hn}

as an estimator of F x(yn), while the denominator is estimated by p̂n. Combining the two estimators
yields

σ̂n(x) := n

∑n
i=1 1{|x−Xi|<hn}1{Yi>yn}∑n

i=1 1{|x−Xi|<hn}
∑n
i=1 1{Yi>yn}

.

Our next result states the asymptotic normality of σ̂n(x). The more general case of a random
threshold is left for future works.

Theorem 1.2. Take the notations of Theorem 1.1, and let hn → 0 be deterministic and positive.

Assume that

npnh
d
n →∞,

√
npnhdnA (1/pn)→ 0.

Assume that the law of X is continuous on a neighborhood of x. Also assume that σ is continuous

and positive on a neighborhood of x ∈ Rd, and that some version f of the density of X also shares

those properties. Then, under assumption (3), we have√
npnhdn

(
σ̂n(x)− σ(x)

)
L−→ N

(
0,
σ(x)

f(x)

)
.

The asymptotic normality of the extreme quantile estimate q̂(αn | x) is deduced from the asymptotic
normality of γ̂n and σ̂n(x) stated respectively in Theorems 1.1 and 1.2. This is stated in our next
theorem, which has to be seen as the counterpart of [8, p.138, Theorem 4.3.8] for conditional extreme
quantiles. See also [16, p. 170, Theorem 9.8] for a similar result when log(pn/αn)→ d ∈ R.

Theorem 1.3. Under assumptions of Theorems 1.1 and 1.2, if
√
hdn log(pn/αn)→∞, we have

√
npn

log(pn/αn)
log
( q̂(αn|x)

q(αn|x)

)
L−→ N

(
0, γ2

)
.

The condition
√
hdn log(pn/αn) requires the bandwidth to be of larger order than 1/ log(pn/αn), so

the error in the estimation of σ(x) is negligible. As a consequence of Theorem 1.3, the consistency

q̂(αn|x)

q(αn|x)

P→ 1.

That condition seems to state a limit for the extrapolation: αn cannot be too small or one might lose
consistency.

2. A Coupling Approach

We will �rst prove Theorem 1.1 when yn is deterministic (i.e., yn ≡ yn). In this case, Nn is
binomial (n, pn). Moreover, Nn/npn → 1 in probability, since npn →∞.
A simple calculus shows that for each A Borel and t ≥ 1, (1) entails

P
(
Y

y
≥ t,X ∈ A

∣∣∣∣Y ≥ y

)
−→

∞∫
t

∫
A

y−1/γσ(x)dyPX(dx), as y→∞, (5)

de�ning a �limit model� for (X,Y/y), the law

Q := σ(x)PX ⊗ Pareto(1/γ)

with independent marginals. Fix n ≥ 1. Using the heuristic of (5), we shall build an explicit coupling
between (X,Y/yn) and the limit model Q. De�ne the conditional tail quantile function as Ux(t) :=
F←x (1 − 1/t) and recall that the total variation distance between two Borel probability measures on
Rd is de�ned as

||P1 − P2|| := sup
B Borel

|P1(B)− P2(B)|.
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This distance is closely related to the notion of optimal coupling detailed in [15]. The following
fundamental result is due to Dobrushin [10].

Lemma 2.1 (Dobrushin, 1970). For two probability measures P1 and P2 de�ned on the same mea-

surable space, there exist two random variables (V1, V2) on a probability set (Ω,A,P) such that

V1 ∼ P1, V2 ∼ P2 and ||P1 − P2|| = P(V1 6= V2).

This lemma will be a crucial tool of our coupling construction, which is described as follows.

Coupling construction: Fix n ≥ 1. Let (Ei,n)1≤i≤n be i.i.d. Bernoulli random variables with
P(Ei,n = 1) = F̄ (yn) and (Zi)1≤i≤n i.i.d. with distribution Pareto(1) and independent of (Ei,n)1≤i≤n.

For each 1 ≤ i ≤ n, construct (X̃i,n, Ỹi,n, X
∗
i,n, Y

∗
i,n) as follows.

I If Ei,n = 1, then

. Take X̃i,n ∼ PX|Y >yn , X
∗
i,n ∼ σ(x)PX(dx) on the same probability space, satisfy-

ing P(X̃i,n 6= X∗i,n) = ‖PX|Y >yn − σ(x)PX(dx)‖. Their existence is guaranteed by
Lemma 2.1.

. Set Ỹi,n := UX̃i,n( Zi
F̄X̃i,n

(yn)
), Y ∗i,n := ynZ

γ
i .

I If Ei,n = 0, then

. Randomly generate (X̃i,n, Ỹi,n) ∼ P(X,Y )|Y≤yn .

. Randomly generate (X∗i,n, Y
∗
i,n/yn) ∼ σ(x)PX(dx)⊗ Pareto(1/γ).

The following proposition states the properties of our coupling construction, which will play an essen-
tial role in our proof of Theorem 1.1.

Proposition 2.2. For each n ≥ 1, the coupling (X̃i,n, Ỹi,n, X
∗
i,n, Y

∗
i,n)1≤i≤n has the following proper-

ties:

(1) (X̃i,n, Ỹi,n)1≤i≤n has the same law as (Xi, Yi)1≤i≤n.

(2) (X∗i,n, Y
∗
i,n/yn) Q.

(3) (X∗i,n, Y
∗
i,n)1≤i≤n and (Ei,n)1≤i≤n are independent. Moreover, (Y ∗i,n)1≤i≤n are i.i.d. and inde-

pendent of (X̃i,n, X
∗
i,n).

(4) There exists M > 0 such that

max
1≤i≤n,
Ei,n=1

∣∣∣∣∣Y ∗i,nỸi,n
− 1

∣∣∣∣∣ ≤MA (1/pn) (6)

and

P
(
X̃1,n 6= X∗1,n|Ei,n = 1

)
≤MA (1/pn) , (7)

where A is given by assumptions (3) and (4).

Proof. To prove Point 1, it is su�cient to see that

L ((X̃1,n, Ỹ1,n)|Ei,n = 1) = L ((X,Y )|Y > yn).

Since Ux(z/(1− Fx(yn))) ≤ y if and only if 1− (1− Fx(yn))/z ≤ Fx(y), then for y ≥ yn, we have
∞∫

1

1{Ux(z/(1−Fx(yn)))≤y}
dz

z2

=

∞∫
1

1{1−(1−Fx(yn))/z≤Fx(y)}
dz

z2

=

1∫
Fx(yn)

1{t≤Fx(y)}
dt

1− Fx(yn)
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=

Fx(y)∫
Fx(yn)

dt

1− Fx(yn)
=
Fx(y)− Fx(yn)

1− Fx(yn)
,

with the second equality given by the change of variable t = 1− (1−Fx(yn))/z. We can deduce from
this computation that for a Borel set B and y ≥ yn,

P
(
X̃1,n ∈ B,UX̃1,n

(
Z

1− FX̃1,n
(yn)

)
≤ y
∣∣∣E1,n = 1

)

=

∫
x∈B

∞∫
1

1{Ux(z/(1−Fx(yn)))≤y}
dz

z2
dPX|Y >yn(x)

=

∫
x∈B

Fx(y)− Fx(yn)

1− Fx(yn)
dPX|Y >yn(x)

=

∫
x∈B

P
(
Y ≤ y|Y > yn, X = x

)
dPX|Y >yn(x)

=P
(
X ∈ B, Y ≤ y|Y > yn

)
. �

This proves Point 1. Points 2 and 3 are immediate.
Point 4 will be proved with the two following lemmas.

Lemma 2.3. Under conditions (3) and (4), we have

sup
z≥1/2

sup
x∈Rp

∣∣∣∣ 1

zγy
Ux

(
z

F̄x(y)

)
− 1

∣∣∣∣ = O

(
A

(
1

F̄ (y)

))
, as y →∞.

Proof. According to assumptions (3) and (4), there exists a constant M such that

∣∣∣∣ F̄x(y)

σ(x)F̄ (y)
− 1

∣∣∣∣ ≤MA

(
1

F̄ (y)

)
, uniformly in x ∈ Rd, and

∣∣∣∣ F̄ (zy)

z−1/γF̄ (y)
− 1

∣∣∣∣ ≤MA

(
1

F̄ (y)

)
, uniformly in z ≥ 1/2. (8)

From the de�nition of Ux, we have

Ux( Z
F̄x(y)

) = F←x

(
1− F̄x(y)

z

)
= inf

{
w ∈ R : Fx(w) ≥ 1− F̄x(y)

z

}
= inf

{
w ∈ R : z F̄x(w)

F̄x(y)
≤ 1
}
.

Hence for any w− < w+, one has

z
F̄x(w+)

F̄x(y)
< 1 < z

F̄x(w−)

F̄x(y)
⇒ Ux

(
z

F̄x(y)

)
∈
[
w−, w+

]
. (9)
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Now write ε(y) := MA(1/F̄ (y)) and choose w± := zγy (1± 4γε(y)), so one can write

z
F̄x(w−)

F̄x(y)
=z

σ(x)F̄ (ω−)(1− ε(y))

σ(x)F̄ (y)(1 + ε(y))

≥z 1− ε(y)

1 + ε(y)

1

F̄ (y)
F̄ (zγy(1− 4γε(y)))

≥z 1− ε(y)

1 + ε(y)

1

F̄ (y)
F̄ (y)(1− ε(y)) (zγ(1− 4γε(y)))

−1/γ
, by (8)

≥ (1− ε(y))2

1 + ε(y)
(1− 4γε(y))

−1/γ
.

A similar computation gives

z
F̄x(w+)

F̄x(y)
≤ (1 + ε(y))2

1− ε(y)
(1 + 4γε(y))

−1/γ
.

As a consequence, the condition before �⇒� in (9) holds if

4γ ≥ 1

ε(y)
max

{
1−

(
(1− ε(y))2

1 + ε(y)

)γ
;

(
(1 + ε(y))2

1− ε(y)

)γ
− 1

}
.

But a Taylor expansion of the right hand side shows that it is 3γ + o(1) as y → ∞. This concludes
the proof of Lemma 2.3. �

Applying Lemma 2.3 with z := Zi and y := yn, we have

max
i:Ei,n=1

∣∣∣∣∣Y ∗i,nỸi,n
− 1

∣∣∣∣∣ = O (A (1/pn)) .

Now, by the construction of (X̃1,n, X
∗
1,n), when E1,n = 1, we see that (7) is a consequence of the

following

Lemma 2.4. Under conditions (3) and (4), we have

||PX|Y >y − σ(x)PX(dx)|| = O

(
A

(
1

F̄ (y)

))
, as y →∞.

Proof. For B ∈ Rd, we have

|P (X ∈ B|Y > y)−
∫
B

σ(x)PX(dx)|

=

∣∣∣∣∣∣
∫
B
F̄x(y)PX(dx)

F̄ (y)
−
∫
B

σ(x)PX(dx)

∣∣∣∣∣∣
≤
∫
B

∣∣∣∣ F̄x(y)

F̄ (y)
− σ(x)

∣∣∣∣PX(dx)

=O

(
A

(
1

F̄ (y)

))
, by (3). �

This proves (7) and hence concludes the proof of Proposition 2.2.

3. Proofs

3.1. Proof of Theorem 1.1. Change of notation: Since for each n, the law of (X̃i,n, Ỹi,n)i=1,...,n

is P⊗nX,Y , we shall confound them with (Xi, Yi)i=1,...,n to unburden notations.
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3.1.1. Proof when yn = yn is deterministic. Fix 0 < ε < 1
2 and 0 < β < ε/(2γ). We consider the

empirical process de�ned for every x ∈ Rd and y ≥ 1/2 as

Gn(x, y) :=
√
npn(Fn(x, y)− F(x, y)),

with

Fn(x, y) :=
1

Nn

n∑
i=1

1{Xi≤x}1{Yi/yn>y}Ei,n,

and

F(x, y) := C(x)Vγ(y) = Q (]−∞, x]×]y,+∞[) ,

where Vγ(y) := y−1/γ for y ≥ 1 and Vγ(y) := 1, otherwise.
Note that neither F, nor any realisation of Fn is a cumulative distribution function in the strict sense,
since they are decreasing in y. Their roles should, however, be seen as the same as for c.d.f. Now
denote by L∞,β(Rd × [1/2,∞[) the (closed) subspace of L∞(Rd × [1/2,∞[) of all f satisfying

‖f‖∞,β := sup
x∈Rd,y≥1/2

|yβf(x, y)| <∞,

f(∞, y) := lim
min{x1,...,xd}→∞

f(x, y) exists for each y ≥ 1,

{y 7→ f(∞, y)} is Càdlàg (see e.g., [4], p. 121).

Simple arguments show that Gn takes values in L∞,β(Rd × [1/2,∞[).

First note that Ĉn − C and γ̂n − γ are images of Gn by the following map ϕ.

ϕ : L∞,β(Rd × [1/2,∞[)→ L∞(Rd)× R

f 7→
(
{x 7→ f(x, 1)},

∞∫
1

y−1f(∞, y)dy

)
,

and remark that ϕ is continuous, since β > 0. By the continuous mapping theorem, we hence see that
Theorem 1.1 will be a consequence of

Gn
L→W in L∞,β(Rd × [1/2,∞[), (10)

where W is the centered Gaussian process with a covariance function

cov
(
W(x1, y1),W(x2, y2)

)
= C(x1 ∧ x2)Vγ(y1) ∧ Vγ(y2)− C(x1)C(x2)Vγ(y1)Vγ(y2),

and where x1 ∧ x2 is understood componentwise.
The proof is divided into two steps. In step 1, we prove (10) for the counterpart of Gn, that is,

we build on the Q sample (X∗i,n, Y
∗
i,n)1≤i≤n. Our proof relies on a standard argument from empirical

processes. In step 2, we use the coupling properties of Proposition (2.2) to deduce (10) for the original
sample (Xi, Yi)1≤i≤n.
Step 1: De�ne

F∗n(x, y) :=
1

Nn

n∑
i=1

1{X∗i ≤x}1{Y ∗i,n/yn>y}Ei,n x ∈ Rd, y ≥ 1/2.

The following proposition is a Donsker theorem in weighted topology for G∗n :=
√
npn(F∗n − F).

Proposition 3.1. If (3) and (4) hold, then

G∗n
L→W, in L∞,β(Rd × [1/4,∞[).

Proof. Write δx(A) = 1 if x ∈ A and 0, otherwise.
Since (X∗i,n, Y

∗
i,n)1≤i≤n is independent of (Ei,n)1≤i≤n, Lemma 4.1 entails the following equality in laws

n∑
i=1

δ(
X∗i,n,

Y ∗
i,n
yn

)Ei,n L
=

ν(n)∑
i=1

δ(
X∗i,n,

Y ∗
i,n
yn

),
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where ν(n) ∼ B(n, pn) is independent of (X∗i,n, Y
∗
i,n)1≤i≤n.

Since (X∗i,n, Y
∗
i,n/yn)  Q and since ν(n)

P→ ∞, ν(n)/npn
P→ 1 and ν(n) independent of

(X∗i,n, Y
∗
i,n)1≤i≤n, we see that Gn

L→W will be a consequence of

√
k

(
1

k

k∑
i=1

1{Ui≤.,Vi>.} − F(., .)

)
L−→k→∞ W in L∞,β

(
Rd × [1/4,∞[

)
,

where the (Ui, Vi) are i.i.d. with distribution Q. Now consider the following class of functions on
Rd × [1/4,∞[:

Fβ :=
{
fx,y : (u, v) 7→ yβ1(−∞,x](u)1]y,∞[(v), x ∈ Rd, y ≥ 1/4

}
.

Using the isometry

L∞,β(Rd × [1/4,∞[ )→ L∞(Fβ)

g 7→ {Ψ : fx,y 7→ g(x, y)},
it is enough to prove that the abstract empirical process indexed by Fβ converges weakly to the Q-
Brownian bridge indexed by Fβ . In other words, we need to verify that Fβ is Q-Donsker. This
property can be deduced from two remarks:

(1) Fβ is a VC-subgraph class of functions (see, e.g., Van der Vaart and Wellner [18], p.141). To
see this, note that

Fβ ⊂
{
fx,s,z : (u, v) 7→ z1(−∞,x](u)1]y,∞[(v), x ∈ Rd, s ∈ [1/4,∞[, z ∈ R

}
which is a VC-subgraph class: the subgraph of each of its members is a hypercube of Rd+2.

(2) Fβ has a square integrable envelope F . This is proved by noting that for �xed (u, v) ∈
Rd × [1/4,∞[.

F 2(u, v) = sup
x∈Rd, y≥1/4

y2β1[0,x](u)1]y,∞[(v) = v2β

as a consequence F 2 is Q-integrable, since β < (2γ)−1.

This concludes the proof of Proposition 3.1. �

Step 2: We show here that the two empirical processes Gn and G∗n must have the same weak limit
by proving the next proposition.

Proposition 3.2. Under Assumptions (3) and (4), we have

sup
x∈Rd, y≥1/2

yβ
√
npn|F∗n(x, y)− Fn(x, y)| = oP(1).

Proof. Adding and subtracting

F]n(x, y) :=
1

Nn

n∑
i=1

1{Xi≤x}1{Y ∗i,n/yn>y}Ei,n

in |Fn(x, y)− F∗n(x, y)|, the triangle inequality entails, almost surely,

|Fn(x, y)− F∗n(x, y)|

=|Fn(x, y)− F]n(x, y) + F]n(x, y)− F∗n(x, y)|

≤ 1

Nn

n∑
i=1

|1{Xi≤x} − 1{X∗i,n≤x}|1
{
Y ∗
i,n
yn

>y

}Ei,n
+

1

Nn

n∑
i=1

|1{ Yiyn>y}
− 1{

Y ∗
i,n
yn

>y

}|1{Xi≤x}Ei,n
≤ 1

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n +
1

Nn

n∑
i=1

|1{ Yiyn>y}
− 1{

Y ∗
i,n
yn

>y

}|Ei,n.
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Let us �rst focus on the �rst term. Notice that

sup
x∈Rd, y≥1/2

yβ
√
npn

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n
= sup

y≥1/2

yβ
√
npn

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n
≤ sup

y≥1/2

yβ
√
npn

Nn

(
max

i=1,...,n
1{

Y ∗
i,n
yn

>y

}Ei,n
)

n∑
i=1

1{Xi 6=X∗i,n}Ei,n.

Now notice that

sup
y≥1/2

max
i=1,...,n

yβ1{
Y ∗
i,n
yn

>y

}Ei,n = max
i=1,...,n

sup
y≥1/2

yβ1[1,Y ∗i,n/yn](y)Ei,n

= max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n.

By the independence between Ei,n and Y ∗i,n/yn, Lemma 4.1 in the Appendix gives

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

L
= max

i=1,...,ν(n)

(
Y ∗i,n
yn

)β
where Y ∗i,n/yn in the right-hand side have a Pareto(1/γ) distribution, whence

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n = OP(ν(n)βγ) = OP((npn)βγ). (11)

Moreover, writing An := A(1/pn), one has

E
( n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)
= npnAn,

which entails
1

npnAn

n∑
i=1

1{Xi 6=X∗i,n}Ei,n = OP(1). (12)

As a consequence,
√
npn

Nn
max

i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

( n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)

=
npn
Nn

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

(
1

npnAn

n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)
√
npnAn

= OP(1)OP((npn)βγ)OP(1)
√
npnAn, by (11) and (12)

= oP(1), by the assumption of Theorem 1.1, and since βγ <
ε

2
.

Let us now focus on the convergence

sup
x∈Rd, y≥1/2

yβ
√
npn

1

Nn

n∑
i=1

∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n P→ 0.

We deduce from Proposition 2.2 that, almost surely, writing εn := MAn:

(1− εn)
Yi
yn
Ei,n ≤

Y ∗i,n
yn

Ei,n ≤ (1 + εn)
Yi
yn
Ei,n,

which entails, almost surely, for all y ≥ 1:

Ei,n1{
Y ∗
i,n
yn
≥(1+εn)y

} ≤ Ei,n1{ Yiyn≥y} ≤ Ei,n1{
Y ∗
i,n
yn
≥(1−εn)y

},
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implying ∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n ≤

∣∣∣∣∣1{
Y ∗
i,n
yn

>(1−εn)y

} − 1{
Y ∗
i,n
yn

>(1+εn)y

}
∣∣∣∣∣Ei,n.

This entails

sup
x∈Rd, y≥1/2

yβ
√
npn

1

Nn

n∑
i=1

∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n

≤ sup
x∈Rd, y≥1/2

yβ
√
npn |F∗n(∞, (1− εn)y)− F∗n(∞, (1 + εn)y)| .

Consequently, we have, adding and subtracting expectations:

sup
x∈Rd, y≥1/2

yβ
√
npn

1

Nn

n∑
i=1

∣∣∣∣1{ Yiyn>y} − 1{Y ∗i,nyn >y}

∣∣∣∣Ei,n
≤ sup
x∈Rd, y≥1/2

yβ
∣∣∣G̃∗n((1− εn)y)− G̃∗n((1 + εn)y)

∣∣∣ (13)

+
√
npn sup

y≥1/2

yβ(Vγ((1− εn)y)− Vγ((1 + εn)y)), (14)

where we write G̃∗n(y) := G∗n(∞, y).
We �rst prove that (14) converges to 0. For y ≥ 1, we can bound

yβ(Vγ((1− εn)y)− Vγ((1 + εn)y))

≤yβ |1− ((1 + εn)y)−1/γ |1{(1−εn)y<1}

+ yβ |((1− εn)y)−1/γ − ((1 + εn)y)−1/γ |1{(1−εn)y≥1}. (15)

In the �rst term of the right-hand side, since (1− εn)y < 1, we can write

yβ |1− ((1 +An)y)−1/γ |1{(1−εn)y<1}

≤ yβ−1/γ |y1/γ − (1 +An)−1/γ |1{(1−εn)y<1}

≤ yβ−1/γ |(1− εn)−1/γ − (1 +An)−1/γ |1{(1−εn)y<1}

≤ 4γ−1εn, since β − 1/γ < 0.

The second term of (15) is bounded by similar arguments, from where we have
√
npn sup

x∈Rd, y≥1/2

yβ |Vγ((1− εn)y)− Vγ((1 + εn)y)|

≤ 8γ−1M
√
npnAn,

which converges in probability to 0 by assumptions of Theorem 1.1.
We now prove that (13) converges to zero in probability. By Proposition 3.1, the continuous mapping
theorem together with the Portmanteau theorem entail

∀ε > 0,∀ρ > 0, lim P
(

sup
y≥1/2,δ<ρ

yβ |G̃∗n((1− δ)y)− G̃∗n((1 + δ)y)| ≥ ε
)

≤P
(

sup
y≥1/2,δ<ρ

yβ |W̃((1− δ)y)− W̃((1 + δ)y)| ≥ ε
)
,

where W̃(y) := W(∞, y) is the centered Gaussian process with the covariance function

cov(W̃(y1),W̃(y2)) := Vγ(y1) ∧ Vγ(y2)− Vγ(y1)Vγ(y2), (y1, y2) ∈ [1/4,∞[2.

With Proposition 3.1 together with the continuous mapping theorem, we see that the proof of Propo-
sition 3.2 will be concluded if we establish the following lemma.
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Lemma 3.3. We have

sup
y≥1/2,δ<ρ

yβ |W̃((1− δ)y)− W̃((1 + δ)y)| P−→
ρ→0

0.

Proof. Let B0 be the standard Brownian bridge with B0 identically zero on [1,∞[). W̃ has the same
law as {y 7→ B0(y−1/γ)} (see [17], p. 99), from where

sup
y≥1/2,δ<ρ

yβ |W̃((1− δ)y)− W̃((1 + δ)y)|

L
= sup

y≥1/2,δ<ρ

yβ
∣∣B0(((1− δ)y)−1/γ)− B0(((1 + δ)y)−1/γ)

∣∣
≤ sup

0≤y≤2,δ<ρ
y−βγ

∣∣B0((1− δ)−1/γy)− B0((1 + δ)−1/γy)
∣∣ , almost surely.

Since βγ < 1/2, the process B0 is a.s-βγ-Hölder continuous on [0,+∞[. Consequently, for an a.s �nite
random variable H one has with probability one:

sup
0≤y≤2,δ<ρ

y−βγ |B0((1− δ)−1/γy)− B0((1 + δ)−1/γy)|

≤ sup
0≤y≤2

y−βγ |(1− ρ)−1/γ − (1 + ρ)−1/γ |βγyβγH

= |2(1− ρ)−1/γ − 2(1 + ρ)−1/γ |βγH
= (4 ργ )βγH. �

The preceding lemma concludes the proof of Proposition 3.2, which, combined with Proposition (3.1),
proves (10). This concludes the proof of Theorem 1.1 when yn ≡ yn. �

3.1.2. Proof of Theorem 1.1 in the general case. We now drop the assumption yn ≡ yn and relax it to
yn
yn

P→ 1 to achieve the proof of Theorem 1.1 in its full generality. We use the results of �3.1.1. De�ne

∨
Fn(x, y) :=

1
n∑
i=1

1{Yi>yn}

n∑
i=1

1{Xi≤x}1{Yi/yn>y}

and
∨
Gn(x, y) :=

√
npn

(
∨
Fn(x, y)− F(x, y)

)
.

Now write un := yn
yn
. From �3.1.1, we know that(

∨
Gn, un

)
L→ (W, 1) in D×]0,+∞[, where D := L∞,β(Rd × [1/2,∞[).

Moreover, as pointed out in Lemma 3.3, W almost surely belongs to

D0 =

{
ϕ ∈ L∞,β(Rd × [1/2,∞[), sup

x∈Rd,y,y′>1/2

|ϕ(x, y)− ϕ(x, y′)|
|y − y′|βγ

<∞

}
.

Consider the followings maps (gn)n∈N and g from D to L∞,β(Rd × [1,∞[)

gn : (ϕ, u) 7→ √npn

(
F(., u.) + 1√

npn
ϕ(., u.)

F(∞, u) + 1√
npn

ϕ(∞, u)
− F(., .)

)
,

and

g : (ϕ, u) 7→ u1/γ
(
ϕ(., u.)− ϕ(∞, u)F(., .)

)
.

Notice that Gn = gn(
∨
Gn, un) and g(W, 1) = W. The achievement of the proof of Theorem 1.1 hence

boils down to making use of the extended continuous mapping theorem (see, e.g., Theorem 1.11.1, p.
67 in [18]) which is applicable to the sequence (gn,Gn) provided that we establish the following
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Lemma 3.4. For any sequence ϕn of elements of D that converges to some ϕ ∈ D0, and for any

sequence un → 1 one has gn(ϕn, un) → g(ϕ, 1) in L∞,β(Rd × [1,∞[). Here, the convergence in

L∞,β(Rd × [1,∞[) is understood as with respect to ‖ · ‖, the restriction of ‖ · ‖∞,β to Rd × [1,∞[.

Proof. For �xed (x, y) ∈ Rd × [1/2,∞[ and n ≥ 1, with the writing tn := (npn)−1/2, we have

|gn(ϕn, un)(x, y)− g(ϕ, 1)(x, y)|

=

∣∣∣∣ 1

tn

(
F(x, uny) + tnϕn(x, uny)

F(∞, un) + tnϕn(∞, un)
− F(x, y)

)
−
(
ϕ(x, y)− ϕ(∞, 1)F(x, y)

)∣∣∣∣ .
Now, elementary algebra using F(x, yun)/F(∞, un) = F(x, y) shows that

F(x, uny) + tnϕn(x, uny)

F(∞, un) + tnϕn(∞, un)
− F(x, y)

= F(x, y)

1 + tn
ϕn(x,uny)
F(x,uny)

1 + tn
ϕn(∞,un)
F(∞,un)

− 1


= F(x, y)

((
1 + tn

ϕn(x, uny)

F(x, uny)

)(
1− tnu1/γ

n ϕn(∞, un)(1 + εn)
)

(1 + θn(x, y))− 1

)
= F(x, y)

(
tn

(
ϕn(x, uny)

F(x, uny)
− u1/γ

n ϕn(∞, un)

)
+Rn(x, y)

)
,

with εn → 0 a sequence of real numbers, not depending on x and y, and with

Rn(x, y) := tnu
1/γ
n ϕn(∞, un)εn + (tnu

1/γ
n )2ϕn(∞, un)

ϕn(x, uny)

F(x, y)
(1 + εn).

This implies that

‖gn(ϕn, un)− g(ϕ, 1)‖ ≤ B1,n +B2,n +B3,n +B4,n,

where the four terms B1,n, . . . , B4,n are detailed below and will be proved to converge to zero as
n→∞.
First term

B1,n :=‖u1/γ
n ϕn(., un.)− ϕ(., .)‖

≤‖u1/γ
n ϕn(., un.)− ϕn(., un.) + ‖ϕn(., un.)− ϕ(., .)‖

=|u1/γ
n − 1|‖ϕn(., un.)‖+ ‖ϕn(., un.)− ϕ(., .)‖

≤|u1/γ
n − 1|‖ϕn(., un.)‖+ ‖ϕn(., un.)− ϕ(., un.)‖

+ ‖ϕ(., un.)− ϕ(., .)‖

≤|u1/γ
n − 1|‖ϕn(., un.)‖+ u−βn ||ϕn(x, y)− ϕ(x, y)||∞,β

+Hϕ|un − u|βγ ,

where Hϕ := sup{|y − y′|−βγ |ϕ(x, y)− ϕ(x, y′)|, x ∈ Rd, y, y′ ≥ 1/2} is �nite since ϕ ∈ D0. The �rst
two terms converge to 0, since un → 1 and ϕn → ϕ in D. The third term converges to zero, since Hϕ

is �nite.
Second term

B2,n :=‖(u1/γ
n ϕn(∞, un)− ϕ(∞, 1))F‖

≤
(
|u1/γ
n ϕn(∞, un)− ϕn(∞, un)|+ |ϕn(∞, un)− ϕ(∞, 1)|

)
‖F‖.

But ‖F‖ is �nite since βγ < ε < 1/2, from where B2,n → 0 by similar arguments as those used for
B1,n.
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Third term

B3,n :=‖u1/γ
n ϕn(∞, un)εnF‖ ≤ |u1/γ

n ϕn(∞, un)| × |εn| × ‖F‖.

Since ‖F‖ is �nite, since |u1/γ
n ϕn(∞, un)| is a converging sequence, and since |εn| → 0, we deduce that

B3,n → 0.
Fourth term

B4,n :=
(
1 + |εn|

)∥∥∥(tnu
1/γ
n )2ϕn(∞, un)ϕn(., un.)

∥∥∥
≤
(
1 + |εn|

)∣∣∣(tnu1/γ
n )2ϕn(∞, un)

∣∣∣× ‖ϕn(., un.)‖.

Since ϕn → ϕ in L∞,β(Rd × [1/2,∞[), the same arguments as for B3,n entail the convergence to zero
of B4,n. �

3.2. Proof of Theorem 1.2. Let x ∈ Rd, which will be kept �xed in all this section. To prove the
asymptotic normality of σ̂n(x), we �rst establish the asymptotic normality of the numerator and the
denominator separately. Note that we don't need to study their joint asymptotic normality, because
only the numerator will rule the asymptotic normality of σ̂n(x), as its rate of convergence is the
slowest.

Proposition 3.5. Assume that (pn)n≥1 and (hn)n≥1 both converge to 0 and satisfy npnh
d
n → 0. We

have

1√
npnhdn

n∑
i=1

1{|Xi−x|≤hn,Yi>yn} − P(|Xi − x| ≤ hn, Yi > yn)√
σ(x)f(x)

L→ N (0, 1), (16)

1√
nhdn

n∑
i=1

1{|Xi−x|≤hn} − P(|Xi − x| ≤ hn)√
f(x)

L→ N (0, 1), (17)

and

1
√
npn

n∑
i=1

(1{Yi>yn} − pn)
L→ N (0, 1). (18)

Proof. Note that (18) is the central limit theorem for binomial(n, pn) sequences with pn → 0 and
npn → ∞, while (17) is the well known pointwise asymptotic normality of the Parzen-Rosenblatt
density estimator. The proof of (16) is a straghtforward use of the Lindeberg-Levy Theorem (see,
e.g [3], Theorem 27.2 p. 359). First, we de�ne

Zi,n :=
1{|Xi−x|≤hn,Yi>yn} − P(|Xi − x| ≤ hn, Yi > yn)√

npnhdn
√
σ(x)f(x)

and remark that E (Zi,n) = 0. Moreover, we can write

E
(
1{|Xi−x|≤hn,Yi>yn}

)
=

∫
B(x,h)

P(Yi > yn|Xi = z)PX(dz)

≈
∫

B(x,h)

σ(z)pnPX(dz) (a)

≈σ(x)f(x)pnh
d
n, (b)

where (a) is a consequence of the uniformity in assumption (3), while equivalence (b) holds by our
assumptions upon the regularity of both f and σ in Theorem 1.2. We conclude that sup{|nVar (Zi,n)−
1|, i = 1, . . . , n} → 0. Note that we can invoke the Lindeberg-Levy Theorem if for all ε > 0, we have

n∑
i=1

∫
{Zi,n>ε}

Z2
i,nPX(dx)→ 0.
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This convergence holds since the set {Zi,n > ε} can be rewritten as{
|1{|Xi−x|≤hn,Yi>yn} − P(|Xi − x| ≤ hn, Yi > yn)| ≥ ε

√
σ(x)f(x)

√
npnhdn

}
,

which is empty when n is large enough, since npnh
d
n →∞. This proves (16). �

Now, writing

σ̂n(x) =
n∑n

i=1 1{Yi>yn}
×
∑n
i=1 1{|x−Xi|<hn}1{Yi>yn}∑n

i=1 1{|x−Xi|<hn}
,

we have

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]i,n

×

P(|X−x|≤hn,Y >yn)
pnhdn

+
√

f(x)σ(x)
npnhdn

n∑
i=1

Zi,n

P(|X−x|≤hn)
hdn

+
√

f(x)
nhdn

n∑
i=1

Z̃i,n

,

where

Z̃i,n :=
1{|Xi−x|≤hn} − P(|Xi − x| ≤ hn)√

f(x)
√
nhdn

,

and

Z]i,n :=
1{Yi>yn} − pn√

npn
.

Now, we write

σhn(x) :=
P(|X − x| ≤ hn, Y > yn)

pnhdnf(x)
.

Since f is continuous and bounded away from zero on a neighbourhood of x, we have

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]i,n

σhn(x)f(x)(1 + εn,1) +
√

f(x)σ(x)
npnhdn

n∑
i=1

Zi,n

f(x)(1 + εn,2) +
√

f(x)
nhdn

n∑
i=1

Z̃i,n

,

with |εn,1| ∨ |εn,2| → 0. Now a Taylor expansion of the denominator gives

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]i,n

(
σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n

)

×

(
1−

√
1

nhdnf(x)

n∑
i=1

Z̃i,n + oP

(√
1

nhdnf(x)

))
.

By similar arguments, remarking that (nhdn)−1 = o
(

(npnh
d
n)−1

)
, by (16) and (17), we have

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]i,n

(
σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n + oP

(
1√
npnhdn

))
.

Moreover, with one more Taylor expansion of the denominator, by (18), we have

σ̂n(x) = σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n + oP

(
1√
npnhdn

)
,

which entails √
npnhdn(σ̂n(x)− σhn(x)) =

√
σ(x)

f(x)

n∑
i=1

Zi,n + oP(1).
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The asymptotic normality of
n∑
i=1

Zi,n gives

√
npnhdn(σ̂n(x)− σhn(x))

L→ N
(

0,
σ(x)

f(x)

)
.

The proof is achieved by noticing that assumption (3) entails√
npnhdn|σhn(x)− σ(x)| =

√
npnhdn

∣∣∣∣P(|X − x| ≤ hn, Y > yn)

f(x)hdnP(Y > yn)
− σ(x)

∣∣∣∣
=
√
npnhdn

∣∣∣∣P(Y > yn|X ∈ B(x, hn))

P(Y > yn)
− σ(x)

∣∣∣∣
= O

(√
npnhdnA (1/pn)

)
→ 0.

3.3. Proof of Theorem 1.3. For the sake of clarity, we �rst express conditions (3) and (4) in terms
of the tail quantile function U : we have, uniformly in x,∣∣∣∣ Ux(1/αn)

U(σ(x)/αn)
− 1

∣∣∣∣ = O(An) and

∣∣∣∣ U(1/αn)

xU(x−1/γ/αn)
− 1

∣∣∣∣ = O(An),

where An := A(1/pn). Start the proof by splitting the quantity of interest into four parts,

log

(
q̂(αn|x)

q(αn|x)

)
= log

(
yn

q(αn|x)

(
p̂nσ̂n(x)

αn

)γ̂n)

= log

(
yn

q(αn|x)

(
pnσ̂n(x)

αn

)γ̂n ( p̂n
pn

)γ̂n)

= log

(
yn

q(αn|x)

)
+ γ̂n log

(
pn
αn

)
+ γ̂n log(σ̂n(x)) + γ̂n log

(
p̂n
pn

)
= log

(
yn

q(αn|x)

(
pn
αn

)γ)
+ (γ̂n − γ) log

(
pn
αn

)
+ γ̂n log(σ̂n(x)) + γ̂n log

(
p̂n
pn

)
.

Moreover, we can see that

log

(
yn

q(αn|x)

(
pn
αn

)γ)
= log

(
U(1/pn)

Ux(1/αn)

(
pn
αn

)γ)
= log

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ)
+ log

(
U(1/αn)

Ux(1/αn)

)
Further, we write

√
npn

log(pn/αn)
log

(
q̂(αn|x)

q(αn|x)

)
= Q1,n +Q2,n +Q3,n +Q4,n, with

Q1,n :=

√
npn

log(pn/αn)
log

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ)
,

Q2,n :=
√
npn(γ̂n − γ),

Q3,n :=

√
npn

log(pn/αn)

(
γ̂n log(σ̂n(x)) + log

(
U(1/αn)

Ux(1/αn)

))
,

Q4,n :=

√
npn

log(pn/αn)
γ̂n log

(
p̂n
pn

)
.
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First, condition (4) entails

Q1,n ∼
√
npn

log(pn/αn)

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ
− 1

)
∼

√
npn

log(pn/αn)

(
U((αn/pn)αγ/αn)

U(1/αn)

(
pn
αn

)γ
− 1

)
=

√
npn

log(pn/αn)
O(An).

Since αn = o(pn), we see that log(pn/αn)−1 → 0 together with
√
npnAn → 0 entails that Q1,n → 0.

Second, we know by Theorem 1.1 that Q2,n
L→ N (0, γ2).

Now Q3,n is studied remarking that

log

(
U(1/αn)

Ux(1/αn)

)
= log

(
U(σ(x)/αn)

Ux(1/αn)

)
+ log

(
U(1/αn)

σ(x)−γU(σ(x)/αn)

)
− γ log(σ(x)).

Together with (3) and (4), one has

log

(
U(1/αn)

Ux(1/αn)

)
= O(An)− γ log(σ(x)).

Consequently,

Q3,n =

√
npn

log(pn/αn)
O(An) +

√
npn

log(pn/αn)

(
γ̂n log(σ̂n(x))− γ log(σ(x))

)
.

Hence, the asymptotic behavior of Q3,n is ruled by that of γ̂n log(σ̂n(x))− γ log(σ(x)), which we split
into

(γ̂n − γ) log(σ̂n(x)) + γ log(σ̂n(x))− γ log(σ(x)).

Now, Theorem 1.1 entails
log(σ̂n(x))

log(pn/αn)

√
npn(γ̂n − γ)

P→ 0.

Moreover, Theorem 1.2 together with the delta-method show that
√
npn

log(pn/αn)
(γ log(σ̂n(x))− γ log(σ(x)))

=

√
npnhdn√

hdn log(pn/αn)
(γ log(σ̂n(x))− γ log(σ(x)))

P→ 0.

Finally, using the notation introduced in the proof of Theorem 1.2, we have
√
npn

log(pn/αn)
log

(
p̂n
pn

)
=

√
npn

log(pn/αn)
log

(
1 +

1
√
npn

n∑
i=1

Z]i,n

)

∼ 1

log(pn/αn)

n∑
i=1

Z]i,n + oP

(
1

log(pn/αn)

)
P→ 0,

which proves that Q4,n
P→ 0, since γ̂n

P→ γ.

4. Appendix

Lemma 4.1. For �xed n ≥ 1, let (Yi)1≤i≤n be a sequence of i.i.d. random variables taking values in

(X,X ). Let E = (Ei)1≤i≤n be an n-uple of independent Bernoulli random variables independent of

Yi. Write

ν(k) :=

k∑
i=1

Ei, k ≤ n.
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Then we have
n∑
i=1

δYiEi
L
=

ν(n)∑
i=1

δYi , (19)

where the equality in law is understood as on the sigma algebra spanned by all Borel positive functions

on (X,X ). Moreover, if the (Yi) are almost surely positive, then

max
i=1,...,n

YiEi
L
= max

i=1,...,ν(n)
Yi. (20)

Proof. Note that (19) is exactly Khinchin's equality (see [16, p. 307, (14.6)]). We shall now prove
(20). e ∈ {0, 1}n, and let g be a real measurable and positive function. Since the variables (Yi)1≤i≤n
are i.i.d. and independent of E, for any given permutation σ of J1, nK,

wehave(Y1, . . . , Yn)
L
= (Y1, . . . , Yn)|E=e

L
= (Yσ(1), . . . , Yσ(n))|E=e

by exchangeability. Now, de�ne σ by

σ(k) :=


i∑

j=1

ej if ei = 1

n−
i∑

j=1

(1− ej) if ei = 0

1 ≤ i ≤ n.

Write s(e) :=
n∑
i=1

s(ei) for the total number of ones in (e1, . . . , en). By construction, the indices i for

which ei = 1 are mapped injectively to the set of �rst indices J1, s(e)K, while those for which ei = 0
are injectively mapped into Js(e) + 1, nK. Since e has �xed and nonrandom coordinates, we have

(Y1e1, . . . , Ynen)|E=e
L
= (Yσ(1)e1, . . . , Yσ(n)en)|E=e.

Hence

max
i=1,...,n

Yiei |E=e
L
= max

i=1,...,n
Yiei

L
= max

i=1,...,n
Yσ(i)eσ(i)

L
= max

i=1,...,s(e)
Yσ(i) (a)

L
= max

i=1,...,s(e)
Yi (b)

L
= max

i=1,...,s(e)
Yi |E=e

L
= max

i=1,...,s(E)
Yi |E=e,

where (a) holds because eσ(i) = 0 for i > s(e) by construction and the Yi are a.s. positive, while (b)

is obtained by noticing that Fe(Yσ(1), . . . , Yσ(n))
L
= Fe(Y1, . . . , Yn) with

Fe : (y1, . . . , yn) 7→ max
i=1,...,s(e)

yi.

Unconditioning upon E gives (20). �
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