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STEADY VIBRATIONS PROBLEMS IN THE THEORY OF

THERMOVISCOELASTIC POROUS MIXTURES

MAIA M. SVANADZE

Abstract. In this paper, the linear theory of thermoviscoelastic binary porous mixtures is consid-
ered and the basic boundary value problems (BVPs) of steady vibrations are investigated. Namely,

the fundamental solution of the system of equations of steady vibrations is constructed explicitly

and its basic properties are established. Green’s identities are obtained and the uniqueness theorems
for classical solutions of the internal and external basic BVPs of steady vibrations are proved. The

surface and volume potentials are constructed and their basic properties are given. The determi-

nants of symbolic matrices of the singular integral operators are calculated explicitly and the BVPs
are reduced to the always solvable singular integral equations for which Fredholm’s theorems are

valid. Finally, the existence theorems for classical solutions of the internal and external BVPs of
steady vibrations are proved by means of the potential method and the theory of singular integral

equations.

1. Introduction

The prediction of the mechanical properties of viscoelastic materials has been one of hot topics of
continuum mechanics for more than 100 years. The construction of mathematical models of viscoelastic
continua arise by an extensive use of viscous materials in many branches of engineering, technology
and biomechanics (see Lakes [19], Brinson and Brinson [5] and references therein).

In the past two decades there has been much effort to develop mathematical models of thermovis-
coelastic mixtures. Indeed, Ieşan [12] has presented the theory of thermoelasticity of binary porous
mixtures in Lagrangian description, and the classical Kelvin–Voigt viscoelastic model is generalized
by using a mixture theory. The existence and exponential decay of a solution in the linear variant of
this theory is studied by Quintanilla [23]. The theory of thermoviscoelastic composites modelled as
interacting Cosserat continua is introduced by Ieşan [14]. A mathematical model of porous thermovis-
coelastic binary mixtures is presented by Ieşan and Quintanilla [16], where the individual components
are modelled as Kelvin–Voigt viscoelastic materials. In [15], a nonlinear theory of heat conducting
mixtures is introduced. A mixture theory for microstretch thermoviscoelastic solids is developed by
Chiriţǎ and Galeş [6]. The theory of microstretch thermoviscoelastic composite materials is con-
structed by Passarella et al. [21]. A continuum theory for a thermoviscoelastic composite with the
help of an entropy production inequality proposed by Green and Laws is presented by Ieşan and
Scalia [17]. Recently, a nonlinear theory is derived for a thermoviscoelastic diffusion composite which
is modeled as a binary mixture consisting of two Kelvin–Voigt viscoelastic materials by Aouadi et
al. [2].

The basic problems of these theories are intensively investigated by scientists of several research
groups in the series of papers [1,3,7–11,13,22]. Moreover, in [25,26], the basic properties of plane waves
are established, the uniqueness and existence theorems are proved in the theories of viscoelasticity and
thermoviscoelasticity for binary mixtures without pores. Recently, the potential method is developed
in the theory of viscoelastic binary porous mixtures by Svanadze [27].

For an extensive review of the works and basic results in the theory of mixtures see the books of
Bowen [4] and Rajagopal and Tao [24].
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In this paper, the linear theory of thermoviscoelastic binary porous mixtures (see Ieşan [12]) is
considered and the basic BVPs of steady vibrations are investigated. Indeed, the fundamental solution
of the system of equations of steady vibrations in the considered theory is constructed explicitly and
its basic properties are established. Green’s identities are obtained and the uniqueness theorems
for classical solutions of the internal and external basic BVPs of steady vibrations are proved. The
surface and volume potentials are constructed and their basic properties are given. The determinants
of symbolic matrices are calculated explicitly. The BVPs are reduced to the always solvable singular
integral equations for which Fredholm’s theorems are valid. Finally, the existence theorems for classical
solutions of the internal and external BVPs of steady vibrations are proved by means of the potential
method and the theory of singular integral equations.

2. Basic Equations

We consider a thermoelastic binary porous mixture of constituents s(1) and s(2) that occupies the
region Ω of the Euclidean three-dimensional space R3, where s(1) and s(2) are a Kelvin–Voigt material
and an isotropic elastic solid, respectively. Let x = (x1, x2, x3) be a point of R3 and let t denote the
time variable. We assume that subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate, repeated indices are summed over the range (1,2,3)
and the dot denotes differentiation with respect to t.

Let û(x, t) and ŵ(x, t) be the partial displacements of constituents s(1) and s(2), respectively;

û = (û1, û2, û3), ŵ = (ŵ1, ŵ2, ŵ3). We denote by ϕ̂(x, t) and ψ̂(x, t) the changes of volume fraction

fields from the reference configuration for the constituents s(1) and s(2), respectively. Let θ̂(x) be the
temperature measured from some constant absolute temperature T0 (T0 > 0).

The governing system of field equations of motion in the linear theory of thermoviscoelastic binary
porous mixtures consists of the following equations (see Ieşan [12]):

1. The constitutive equations

tjl = (λ+ ν)errδjl + 2(µ+ ζ)ejl + (α+ ν)grrδjl + (2κ+ ζ)gjl + (2γ + ζ)glj

+(m(1) + l(1))ϕ̂ δjl + (m(2) + l(2))ψ̂ δjl − (β(1) + β(2)) θ̂ δjl + λ∗ėrrδjl + 2µ∗ėjl,

sjl = νerrδjl + 2ζelj + αgrrδjl + 2κglj + 2γgjl + (l(1)ϕ̂+ l(2)ψ̂) δjl − β(2) θ̂ δjl,

h
(1)
l = α(1)ϕ̂,l + α(3)ψ̂,l + b dl, h

(2)
l = α(3)ϕ̂,l + α(2)ψ̂,l + c0dl,

g(1) = −m(1)err − l(1)grr − ζ(1)ϕ̂− ζ(3)ψ̂ + b(1) θ̂,

g(2) = −m(2)err − l(2)grr − ζ(3)ϕ̂− ζ(2)ψ̂ + b(2) θ̂,

pl = ξdl + ξ∗ḋl + bϕ̂,l + c0ϕ̂,l + b∗θ̂,l, ρη = β(1)err + β(2)grr + b(1) ϕ̂+ b(2) ψ̂ + aθ̂,

ql = kθ,l + f∗ḋl, l, j = 1, 2, 3,

(1)

where tjl and sjl are the components of the partial stresses of the constituents s(1) and s(2), respec-

tively; λ, µ, α, γ, ζ, ν, κ, ξ, β(1), β(2), a, b, c0, k, b(1), b(2), m(1), m(2), l(1), l(2), α(1), α(2), α(3), ζ(1),
ζ(2), ζ(3), λ∗, µ∗, ξ∗, b∗, f∗ are the constitutive coefficients and a 6= 0, δjl is the Kronecker delta and

elj =
1

2
(ûl,j + ûj,l), glj = ûj,l + ŵl,j , dl = ûl − ŵl, l, j = 1, 2, 3. (2)

2. The equations of motion

tjl,j − pl = ρ1

(
¨̂ul − F̂ (1)

l

)
, sjl,j + pl = ρ2

(
¨̂wl − F̂ (2)

l

)
, l = 1, 2, 3,

h
(1)
j,j + g(1) = ρ1

(
κ1

¨̂ϕ− L̂(1)
)
, h

(2)
j,j + g(2) = ρ2

(
κ2

¨̂
ψ − L̂(2)

)
,

(3)

where L̂(r), κr, ρr and F̂(r) = (F̂
(r)
1 , F̂

(r)
2 , F̂

(r)
3 ) are the extrinsic equilibrated body force, the coeffi-

cient of the equilibrated inertia, the mass density and the partial body force of the constituent s(r),
respectively; ρr > 0, κr > 0 and r = 1, 2.
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3. The heat transfer equation

ρT0η̇ = ql,l + ρŝ, (4)

where ρ = ρ1 + ρ2 and ŝ is the heat source.
Substituting equations (1) and (2) into (3) and (4), we obtain the following system of equations

of motion in the linear theory of thermoviscoelastic binary porous mixtures expressed in terms of the

partial displacement vectors û, ŵ, the changes of volume fractions ϕ̂(x, t), ψ̂(x, t) and the change of

temperature θ̂:

α̂1∆û + α̂2∇div û + β1 ∆ŵ + β2∇div ŵ − ξ̂(û− ŵ) + σ1∇ϕ̂+ σ2∇ψ̂ −m1∇θ̂ = ρ1

(
¨̂u− F̂(1)

)
,

β1 ∆û + β2∇div û + γ1 ∆ŵ + γ2∇div ŵ + ξ̂(û− ŵ) + τ1∇ϕ̂+ τ2∇ψ̂ −m2∇θ̂ = ρ2

(
¨̂w − F̂(2)

)
,

α(1)∆ϕ̂+ α(3)∆ψ̂ − σ1div û− τ1div ŵ − ζ(1)ϕ̂− ζ(3)ψ̂ + b(1)θ̂ = ρ1

(
κ1

¨̂ϕ− L̂(1)
)
, (5)

α(3)∆ϕ̂+ α(2)∆ψ̂ − σ2div û− τ2div ŵ − ζ(3)ϕ̂− ζ(2)ψ̂ + b(2)θ̂ = ρ2

(
κ2

¨̂ϕ− L̂(2)
)
,

k∆θ̂ − aT0
˙̂
θ − a1div ˙̂u− a2div ˙̂w − b(1)T0ϕ̂− b(2)T0ψ̂ = −ρŝ,

where ∆ is the Laplacian operator,

α̂1 = α1 + µ∗
∂

∂t
, α̂2 = α2 + (λ∗ + µ∗)

∂

∂t
, ξ̂ = ξ + ξ∗

∂

∂t

and

α1 = µ+ 2κ+ 2ζ, α2 = λ+ µ+ α+ 2ν + 2γ + 2ζ, β1 = 2γ + ζ,

β2 = α+ ν + 2κ+ ζ, γ1 = 2κ, γ2 = α+ 2γ, m1 = β(1) + β(2) + b∗,

m2 = β(2) − b∗, σ1 = m(1) + l(1) − b, σ2 = m(2) + l(2) − c0,

τ1 = l(1) + b, τ2 = l(2) + c0, a1 = T0(β(1) + β(2))− f∗, a2 = T0β
(2) + f∗.

(6)

If the functions û, ŵ, ϕ̂, ψ̂, θ̂, F̂(1), F̂(2), L̂(1), L̂(2) and ŝ are postulated to have a harmonic time
variation, that is,

{û, ŵ, ϕ̂, ψ̂, θ̂, F̂(1), F̂(2), L̂(1), L̂(2), ŝ} (x, t) = Re
[
{u,w, ϕ, ψ, θ,F(1),F(2), L(1), L(2), s}(x) e−iωt

]
,

then from the system of equations of motion (5), we obtain the following system of equations of steady
vibrations in the theory under consideration:

(α′1∆ + η′1)u + α′2∇div u + (β1∆ + ξ′)w + β2∇div w + σ1∇ϕ+ σ2∇ψ −m1∇θ = −ρ1F
(1),

(β1 ∆ + ξ′)u + β2∇div u + (γ1 ∆ + η′2)w + γ2∇div w + τ1∇ϕ+ τ2∇ψ −m2∇θ = −ρ2F
(2),

(α(1)∆ + η1)ϕ+ (α(3)∆− ζ(3))ψ − σ1div u− τ1div w + b(1)θ = −ρ1L
(1), (7)

(α(3)∆− ζ(3))ϕ+ (α(2)∆ + η2)ψ − σ2div u− τ2div w + b(2)θ = −ρ2L
(2),

(k∆ + a′) θ + iωa1div u + iωa2div w + iωb(1)T0ϕ+ iωb(2)T0ψ = −ρs,

where

α′1 = α1 − iωµ∗, α′2 = α2 − iω(λ∗ + µ∗), ξ′ = ξ − iω ξ∗,

η′1 = ρ1ω
2 − ξ′, η′2 = ρ2ω

2 − ξ′, η1 = ρ1κ1ω
2 − ζ(1), (8)

η2 = ρ2κ2ω
2 − ζ(2), a′ = iωaT0

and ω is the oscillation frequency (ω > 0).
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We introduce the matrix differential operator A(Dx) = (Arq(Dx))9×9, where

Alj(Dx) = (α′1∆ + η′1)δlj + α′2
∂2

∂xl∂xj
,

Al;j+3(Dx) = Al+3;j(Dx) = (β1∆ + ξ′)δlj + β2
∂2

∂xl∂xj
, Al;r+6(Dx) = −Ar+6;l(Dx) = σr

∂

∂xl
,

Al9(Dx) = −m1
∂

∂xl
, Al+3;j+3(Dx) = (γ1∆ + η′2)δlj + γ2

∂2

∂xl∂xj
,

Al+3;r+6(Dx) = −Ar+6;l+3(Dx) = τr
∂

∂xl
, Al+3;9(Dx) = −m2

∂

∂xl
,

A77(Dx) = α(1)∆ + η1, A78(Dx) = A87(Dx) = α(3)∆ + ζ(3),

A88(Dx) = α(1)∆ + η1, A9l(Dx) = iωa1
∂

∂xl
, A9;l+3(Dx) = iωa2

∂

∂xl
,

A9;r+6(Dx) = iωb(r)T0, A99(Dx) = k∆ + a′, l, j = 1, 2, 3, r = 1, 2.

Obviously, system (7) can be written as follows:

A(Dx)U(x) = F(x), (9)

where U = (u,w, ϕ, ψ, θ), F = (−ρ1F
(1),−ρ2F

(2),−ρ1L
(1),−ρ2L

(2),−ρs) and x ∈ Ω.

3. Fundamental Solution

In this section, the fundamental solution of system (7) is constructed explicitly and its basic prop-
erties are established.

Definition 1. The fundamental solution of system (7) is the matrix Γ(x) = (Γlj(x))9×9 satisfying
the following equation in the class of generalized functions:

A(Dx)Γ(x) = δ(x)J,

where δ(x) is the Dirac delta, J = (δlj)9×9 is the unit matrix and x ∈ R3.

We denote by

α′0 = α′1 + α′2, β0 = β1 + β2, γ0 = γ1 + γ2,

k0 = α′0γ0 − β2
0 , k1 = α′1γ1 − β2

1 , α0 = α(1)α(2) −
(
α(3)

)2
.

(10)

In this section, we assume that
α0kk0k1 6= 0. (11)

We introduce the following notation:
i)

B(∆) = (Blj(∆))5×5

=



α′0∆ + η′1 β0∆ + ξ′ −σ1∆ −σ2∆ iωa1∆

β0∆ + ξ′ γ0∆ + η′2 −τ1∆ −τ2∆ iωa2∆

σ1 τ1 α(1)∆ + η1 α(3)∆− ζ(3) iωb(1)T0

σ2 τ2 α(3)∆− ζ(3) α(2)∆ + η2 iωb(2)T0

−m1 −m2 b(1) b(2) k∆ + a′


5×5

.

ii)

Λ1(∆) =
1

α0kk0
detB(∆) =

5∏
j=1

(∆ + λ2
j ),

where λ2
j (j = 1, 2, . . . , 5) are the roots of the equation Λ1(−λ̃) = 0 (with respect to λ̃).
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iii)

Λ2(∆) =
1

k1
det

(
α′1∆ + η′1 β1∆ + ξ′

β1∆ + ξ′ γ1∆ + η′2

)
2×2

= (∆ + λ2
6)(∆ + λ2

7),

where λ2
6 and λ2

7 are the roots of the equation Λ2(−λ̃) = 0 (with respect to λ̃). We assume that
Imλl > 0 and λl 6= λj (l, j = 1, 2, . . . , 7).

iv)

nl1(∆) =
1

α0kk0k1

5∑
j=1

CjB
∗
lj(∆), nl2(∆) =

1

α0kk0k1

5∑
j=1

Cj+5B
∗
lj(∆),

nlr(∆) =
1

α0kk0
B∗lr(∆), l = 1, 2, . . . , 5, r = 3, 4, 5,

where B∗lj is the cofactor of element Blj of the matrix B and

C1 = β2(β1∆ + ξ′)− α′2(γ1∆ + η′2), C2 = γ2(β1∆ + ξ′)− β2(γ1∆ + η′2),

C3 = σ1(γ1∆ + η′2)− τ1(β1∆ + ξ′), C4 = σ2(γ1∆ + η′2)− τ2(β1∆ + ξ′),

C5 = iω[a2(β1∆ + ξ′)− a1(γ1∆ + η′2)], C6 = α′2(β1∆ + ξ′)− β2(α′1∆ + η′1),

C7 = β2(β1∆ + ξ′)− γ2(α′1∆ + η′1), C8 = τ1(α′1∆ + η′1)− σ1(β1∆ + ξ′),

C9 = τ2(α′1∆ + η′1)− σ2(β1∆ + ξ′), C10 = iω[a1(β1∆ + ξ′)− a2(α′1∆ + η′1)].

v)

Λ(∆) = (Λlj (∆))9×9 , Λ11(∆) = Λ22(∆) = · · · = Λ66(∆) = Λ2(∆),

Λ77(∆) = Λ88(∆) = Λ99(∆) = Λ1(∆), Λlj(∆) = 0,

l 6= j, l, j = 1, 2, . . . , 9.

vi)

L (Dx) = (Llj (Dx))9×9 ,

Llj (Dx) =
1

k
(γ1∆ + η′2)Λ1(∆) δlj + n11(∆)

∂2

∂xl∂xj
,

Ll;j+3 (Dx) = −1

k
(β1∆ + ξ′)Λ1(∆) δlj + n12(∆)

∂2

∂xl∂xj
,

Ll+3;j (Dx) = −1

k
(β1∆ + ξ′)Λ1(∆) δlj + n21(∆)

∂2

∂xl∂xj
,

Ll+3;j+3 (Dx) =
1

k
(α′1∆ + η′1)Λ1(∆) δlj + n22(∆)

∂2

∂xl∂xj
,

Llr (Dx) = n1;r−4(∆)
∂

∂xl
, Ll+3;r (Dx) = n2;r−4(∆)

∂

∂xl
,

Lrl (Dx) = nr−4;1(∆)
∂

∂xl
, Lr;l+3 (Dx) = nr−4;2(∆)

∂

∂xl
,

Lrm (Dx) = nr−4;m−4(∆), l, j = 1, 2, 3, r,m = 7, 8, 9.

(12)
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vii)

Y(x) = (Ylj(x))9×9 ,

Y11(x) = Y22(x) = · · · = Y66(x) =

7∑
j=1

η2jγ
(j)(x),

Y77(x) = Y88(x) = Y88(x) =

5∑
j=1

η1jγ
(j)(x),

Ylj(x) = 0, l 6= j, l, j = 1, 2, . . . , 9,

(13)

where

γ(j)(x) = −e
iλj |x|

4π |x|
and

η1m =

5∏
l=1, l 6=m

(λ2
l − λ2

m)−1, η2j =

7∏
l=1, l 6=j

(λ2
l − λ2

j )
−1,

m = 1, 2, . . . , 5, j = 1, 2 . . . , 7.

It is not difficult to prove

Lemma 1. If the condition (11) is satisfied, then:
a) the following identity

A(Dx) L(Dx) = Λ(∆)

is valid;
b) the matrix Y(x) is the fundamental solution of the operator Λ(∆), i.e.,

Λ(∆)Y(x) = δ(x)J.

Lemma 1 leads to the following

Theorem 1. If the condition (11) is satisfied, then the matrix Γ(x) = (Γlj(x))9×9 defined by

Γ (x) = L (Dx) Y (x) (14)

is the fundamental solution of system (7) (the fundamental matrix of the operator A(Dx)), where the
matrices L (Dx) and Y (x) are given by (12) and (13), respectively.

We now formulate the basic properties of the matrix Γ (x). Theorem 1 has the following conse-
quences.

Theorem 2. Each column of the matrix Γ(x) is a solution of the homogeneous equation

A(Dx)Γ(x) = 0

at every point x ∈ R3, except the origin.

Theorem 3. The relations

Γlj (x) = O
(
|x|−1

)
, Γrm (x) = O

(
|x|−1

)
, Γ99 (x) = O

(
|x|−1

)
,

Γle (x) = O (1) , Γel (x) = O (1) , Γr9 (x) = O (1) ,

Γ9r (x) = O (1) , l, j = 1, 2, . . . , 6, r,m = 7, 8, e = 7, 8, 9

hold in the neighborhood of the origin.

We introduce the notation:



STEADY VIBRATIONS PROBLEMS 129

i)

A(0)(Dx) =
(
A

(0)
lj (Dx)

)
9×9

, A
(0)
lj (Dx) = α′1∆δlj + α′2

∂2

∂xl∂xj
,

A
(0)
l;j+3(Dx) = A

(0)
l+3;j(Dx) = β1∆δlj + β2

∂2

∂xl∂xj
,

A
(0)
l+3;j+3(Dx) = γ1∆δlj + γ2

∂2

∂xl∂xj
, A

(0)
77 (Dx) = α(1)∆,

A
(0)
78 (Dx) = A

(0)
87 (Dx) = α(3)∆, A

(0)
88 (Dx) = α(2)∆, A

(0)
99 (Dx) = k∆,

A(0)
mr(Dx) = A(0)

rm(Dx) = A
(0)
e9 (Dx) = A

(0)
9e (Dx) = 0.

ii)

Γ(0) (x) =
(

Γ
(0)
lj (x)

)
9×9

,

Γ
(0)
lj (x) = − 1

8π

(
γ0

k0
+
γ1

k1

)
δlj
|x|

+
1

8π

(
γ0

k0
− γ1

k1

)
xlxj
|x|3

,

Γ
(0)
l;j+3 (x) = Γ

(0)
l+3;j (x) =

1

8π

(
β0

k0
+
β1

k1

)
δlj
|x|
− 1

8π

(
β0

k0
− β1

k1

)
xlxj
|x|3

,

Γ
(0)
l+3;j+3 (x) = − 1

8π

(
α′0
k0

+
α′1
k1

)
δlj
|x|

+
1

8π

(
α′0
k0
− α′1
k1

)
xlxj
|x|3

,

Γ
(0)
77 (x) = − α(2)

4πα0

1

|x|
, Γ

(0)
78 (x) = Γ

(0)
87 (x) =

α(3)

4πα0

1

|x|
, Γ

(0)
88 (x) = − α(1)

4πα0

1

|x|
,

Γ
(0)
99 (x) = − 1

4πk

1

|x|
, Γ(0)

mr(Dx) = Γ(0)
rm(Dx) = Γ

(0)
e9 (Dx) = Γ

(0)
9e (Dx) = 0,

where l, j = 1, 2, 3, m = 1, 2, . . . , 6, e = 7, 8 and r = 7, 8, 9.
Theorem 1 leads directly to the following basic properties of the matrix Γ(0) (x).

Theorem 4. The fundamental solution of the equation

A(0)(Dx)U(x) = 0

is the matrix Γ(0) (x) , and the following relations:

Γ
(0)
lj (x) = O

(
|x|−1

)
, Γ(0)

mr (x) = O
(
|x|−1

)
, Γ

(0)
99 (x) = O

(
|x|−1

)
,

l, j = 1, 2, . . . , 6, m, r = 7, 8

hold in the neighborhood of the origin.

Theorem 5. The relations

Γlj (x)− Γ
(0)
lj (x) = const +O (|x|) , l, j = 1, 2, . . . , 9 (15)

hold in the neighborhood of the origin.

Thus, on the basis of Theorem 5 the matrix Γ(0) (x) is the singular part of the fundamental solution
Γ (x) in the neighborhood of the origin.

4. Basic Boundary Value Problems

Let S be the smooth closed surface surrounding the finite domain Ω+ in R3, S ∈ C2,ν ′ , 0 < ν ′ ≤ 1;
Ω+ = Ω+ ∪ S, Ω− = R3 \ Ω+, Ω− = Ω− ∪ S. We denote by n(z) the external (with respect to the
Ω+) unit vector, normal to S at z.
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Definition 2. A vector function U = (u,w, ϕ, ψ, θ) = (U1, U2, . . . , U9) is called regular in Ω−

(or Ω+) if:
1)

Uj ∈ C2(Ω−) ∩ C1(Ω−) (or Uj ∈ C2(Ω+) ∩ C1(Ω+)),

2)

Uj(x) = O(|x|−1), Uj,l(x) = o(|x|−1) for |x| � 1, (16)

where j = 1, 2, . . . , 9 and l = 1, 2, 3.

In the sequel, we use the matrix differential operators
1)

R(Dx,n) = (Rlj(Dx,n))9×9,

Rlj(Dx,n) = α′1δlj
∂

∂n
+ α′2nl

∂

∂xj
+ ε1Mlj(Dx,n),

Rl;j+3(Dx,n) = Rl+3;j(Dx,n) = β1δlj
∂

∂n
+ β2nl

∂

∂xj
+ ε2Mlj(Dx,n),

Rl+3;j+3(Dx,n) = γ1δlj
∂

∂n
+ γ2nl

∂

∂xj
+ ε3Mlj(Dx,n),

Rl7(Dx,n) =
(
m(1) + l(1)

)
nl, Rl8(Dx,n) =

(
m(2) + l(2)

)
nl,

Rl9(Dx,n) = −(β(1) + β(2))nl, Rl+3;7(Dx,n) = l(1)nl, Rl+3;8(Dx,n) = l(2)nl, (17)

Rl+3;9(Dx,n) = −β(2) nl, R7l(Dx,n) = −R7;l+3(Dx,n) = b nl,

R8l(Dx,n) = −R8;l+3(Dx,n) = c0 nl, R77(Dx,n) = α(1) ∂

∂n
,

R78(Dx,n) = R87(Dx,n) = α(3) ∂

∂n
, R88(Dx,n) = α(2) ∂

∂n
,

R9l(Dx,n) = −R9;l+3(Dx,n) = −iωf∗ nl, R99(Dx,n) = k
∂

∂n
,

Rm9(Dx,n) = −R9m(Dx,n) = 0, l, j = 1, 2, 3, m = 7, 8,

where n = (n1, n2, n3), ∂
∂n is the derivative along the vector n and

Mlj(Dx,n) = nj
∂

∂xl
− nl

∂

∂xj
, ε1 = µ− iωµ∗ + 2γ + 2ζ, ε2 = 2κ+ ζ, ε3 = 2γ.

The basic internal and external BVPs of steady vibrations in the linear theory of thermoviscoelastic
binary porous mixtures are formulated as follows.

Find a regular (classical) solution to (9) for x ∈ Ω± satisfying the boundary condition

lim
Ω±3x→z∈S

U(x) ≡ {U(z)}± = f(z)

in Problem (I)±F,f , and

lim
Ω±3x→z∈S

R(Dx,n(z))U(x) ≡ {R(Dz,n(z))U(z)}± = f(z)

in Problem (II)±F,f , where F and f are the prescribed nine-component vector functions and supp F is

a finite domain in Ω−.

5. Green’s Identities

In this section, Green’s identities in the linear theory of thermoviscoelasticity for binary porous mix-
tures are established.
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Let u′l, w
′
l, ϕ
′, ψ′, θ′ (l = 1, 2, 3) be complex functions, u′ = (u′1, u

′
2, u
′
3), w′ = (w′1, w

′
2, w

′
3),

U′ = (u′,w′, ϕ′, ψ′, θ′). We introduce the notation

W (0)(u,u′) =
1

4

3∑
l,j=1; l 6=j

(uj,l + ul,j)
(
u′j,l + u′l,j

)
+

1

6

3∑
l,j=1

(
∂ul
∂xl
− ∂uj
∂xj

)(
∂u′l
∂xl
−
∂u′j
∂xj

)
,

W (1)(u,u′) =
1

3
(α′1 + 3α′2 − 2ε1)div u div u′ +

1

2
(α′1 − ε1)curl u · curl u′

+(α′1 + ε1)W (0)(u,u′)− η′1u · u′,

W (2)(u,w′) =
1

3
(β1 + 3β2 − 2ε2)div u div w′ +

1

2
(β1 − ε2)curl u · curl w′ (18)

+(β1 + ε2)W (0)(u,w′)− ξ′u ·w′,

W (3)(w,w′) =
1

3
(γ1 + 3γ2 − 2ε3)div w div w′ +

1

2
(γ1 − ε3)curl w · curl w′

+(γ1 + ε3)W (0)(w,w′)− η′2w ·w′.

Using Green’s first identity of the classical theory of elasticity (see e.g., Kupradze et al. [18]), it is a
simple matter to verify that

∫
Ω+

[
Alj(Dx)uju′l +W (1)(u,u′)

]
dx =

∫
S

Rlj(Dz,n)uj(z)u′l(z) dzS,

∫
Ω+

[
Al;j+3(Dx)wju′l +W (2)(w,u′)

]
dx =

∫
S

Rl;j+3(Dz,n)wj(z)u′l(z) dzS,

∫
Ω+

[
Al+3;j(Dx)ujw′l +W (2)(u,w′)

]
dx =

∫
S

Rl+3;j(Dz,n)uj(z)w′l(z) dzS,

∫
Ω+

[
Al+3;j+3(Dx)wjw′l +W (3)(w,w′)

]
dx =

∫
S

Rl+3;j+3(Dz,n)wj(z)w′l(z) dzS.

(19)

On the basis of (18) and identity

∫
Ω+

[
∇ϕ(x) · u′(x) + ϕ(x) div u′(x)

]
dx =

∫
S

ϕ(z)n(z) · u′(z) dzS, (20)

from (19), it follows that

∫
Ω+

[
(Aljuj +Al;j+3wj +Al7ϕ+Al8ψ +Al9θ)u′l +W1(U,u′)

]
dx

=

∫
S

[Rljuj +Rl;j+3wj +Rl7ϕ+Rl8ψ +Rl9θ]u′ldzS,∫
Ω+

[
(Al+3;juj +Al+3;j+3wj +Al+3;7ϕ+Al+3;8ψ +Al+3;9θ)w′l +W2(U,w′)

]
dx

=

∫
S

(Rl+3;juj +Rl+3;j+3wj +Rl+3;7ϕ+Rl+3;8ψ +Rl+3;9θ)w′ldzS, l = 1, 2, 3,

(21)
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where

W1(U,u′) = W (1)(u,u′) +W (2)(w,u′)

+
[(
m(1) + l(1)

)
ϕ+

(
m(2) + l(2)

)
ψ − (β(1) + β(2))θ

]
div u′

+∇(bϕ+ c0ψ + b∗θ) · u′, (22)

W2(U,w′) = W (2)(u,w′) +W (3)(w,w′) +
(
l(1)ϕ+ l(2)ψ − β(2)θ

)
div w′

−∇(bϕ+ c0ψ + b∗θ) ·w′

and W (1)(u,u′),W (2)(w,u′) and W (3)(w,w′) are defined by (18).
Now, taking into account the identities (20) and∫

Ω+

[
∆ϕ(x)ψ′(x) +∇ϕ(x) · ∇ψ′(x)

]
dx =

∫
S

∂ϕ(z)

∂n(z)
ψ′(z) dz, S

we deduce that ∫
Ω+

[
(A7juj +A7;j+3wj +A77ϕ+A78ψ +A79θ)ϕ′ +W3(U, ϕ′)

]
dx

=

∫
S

(R7juj +R7;j+3wj +R77ϕ+R78ψ)ϕ′dzS,∫
Ω+

[
(A8juj +A8;j+3wj +A87ϕ+A88ψ +A89θ)ψ′ +W4(U, ψ′)

]
dx

=

∫
S

(R8juj +R8;j+3wj +R87ϕ+R88ψ)ψ′dzS,∫
Ω+

[
(A9juj +A9;j+3wj +A97ϕ+A98ψ +A99θ) θ′ +W5(U, θ′)

]
dx

=

∫
S

(R9juj +R9;j+3wj +R99θ) θ′dzS,

(23)

where

W3(U, ϕ′) =
[
∇(α(1)ϕ+ α(3)ψ) + b(u−w)

]
· ∇ϕ′

+
[
(m(1) + l(1))div u + l(1)div w − η1ϕ+ ζ(3)ψ − b(1)θ

]
ϕ′,

W4(U, ψ′) =
[
∇(α(3)ϕ+ α(2)ψ) + c0(u−w)

]
· ∇ψ′

+
[
(m(2) + l(2))div u + l(2)div w + ζ(3)ϕ− η2ψ − b(2)θ

]
ψ′,

W5(U, θ′) =k∇θ · ∇θ′ − a′θθ′

− iωT0

[
(β(1) + β(2))div u + β(2)div w + b(1)ϕ+ b(2)ψ

]
θ′ − iωf∗(u−w) · ∇θ′.

(24)

Finally, we combine the relations (21) and (23) to deduce the identity∫
Ω+

[A(Dx) U ·U′ +W (U,U′)] dx =

∫
S

R(Dz,n)U(z) ·U′(z) dzS, (25)

where

W (U,U′) = W1(U,u′) +W2(U,w′) +W3(U, ϕ′) +W4(U, ψ′) +W5(U, θ′). (26)

Hence, the following theorem is proved.
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Theorem 6. If U = (u,w, ϕ, ψ, θ) and U′ = (u′,w′, ϕ′, ψ′, θ′) are regular vectors in Ω+, then the
identity (25) is valid, where R(Dz,n) and W (U,U′) are defined by (17) and (26), respectively.

Quite similarly as in Theorem 6, on the basis of (16), we obtain the following

Theorem 7. If U = (u,w, ϕ, ψ, θ) and U′ = (u′,w′, ϕ′, ψ′, θ′) are regular vectors in Ω−, then∫
Ω−

[A(Dx) U ·U′ +W (U,U′)] dx = −
∫
S

R(Dz,n)U(z) ·U′(z) dzS. (27)

Formulas (25) and (27) are Green’s first identity in the linear theory of thermoviscoelasticity of
binary porous mixtures for domains Ω+ and Ω−, respectively.

We introduce the matrix differential operator Ã(Dx), where Ã(Dx) = A>(−Dx) and A> is the

transpose of the matrix A. Obviously, the fundamental matrix of the operator Ã(Dx) is Γ̃(x), where

Γ̃(x) = Γ>(−x). (28)

Let U = (u,w, ϕ, ψ, θ) and the vector Ũj be the j-th column of the matrix Ũ = (Ũlj)9×9. By a
direct calculation we obtain the following results.

Theorem 8. If U and Ũj (j = 1, 2, . . . , 9) are regular vectors in Ω+, then∫
Ω+

{
[Ã(Dy)Ũ(y)]>U(y)− [Ũ(y)]>A(Dy)U(y)

}
dy

=

∫
S

{
[R̃(Dz,n)Ũ(z)]>U(z)− [Ũ(z)]>R(Dz,n)U(z)

}
dzS, (29)

where the operator R̃(Dz,n) is defined by

R̃(Dx,n) = (R̃lj(Dx,n))9×9, R̃lj(Dx,n) = Rlj(Dx,n),

R̃r9(Dx,n) = −iωT0

(
β(1) + β(1)

)
nr, R̃r+3;9(Dx,n) = −iωT0β

(2)nr,

R̃9r(Dx,n) = −R̃9;r+3(Dx,n) = b∗nr, R̃99(Dx,n) = k
∂

∂n
,

l, j = 1, 2, . . . , 8, r = 1, 2, 3.

(30)

Theorem 9. If U and Ũj (j = 1, 2, . . . , 9) are regular vectors in Ω−, then∫
Ω−

{
[Ã(Dy)Ũ(y)]>U(y)− [Ũ(y)]>A(Dy)U(y)

}
dy

= −
∫
S

{
[R̃(Dz,n)Ũ(z)]>U(z)− [Ũ(z)]>R(Dz,n)U(z)

}
dzS. (31)

Formulas (30) and (31) are Green’s second identities in the linear theory of thermoviscoelasticity
of binary porous mixtures for the domains Ω+ and Ω−, respectively.

With the help of the relations (28), (29) and (31) we can derive the following useful consequences.

Theorem 10. If U is a regular vector in Ω+, then

U(x) =

∫
S

{
[R̃(Dz,n)Γ>(x− z)]>U(z)− Γ(x− z) R(Dz,n)U(z)

}
dzS

+

∫
Ω+

Γ(x− y) A(Dy)U(y)dy for x ∈ Ω+. (32)
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Theorem 11. If U is a regular vector in Ω−, then

U(x) = −
∫
S

{
[R̃(Dz,n)Γ>(x− z)]>U(z)− Γ(x− z) R(Dz,n)U(z)

}
dzS

+

∫
Ω−

Γ(x− y)A(Dy)U(y)dy for x ∈ Ω−. (33)

Formulas (32) and (33) are integral representations of the regular vector (Green’s third identity)
in the linear theory of thermoviscoelasticity of binary porous mixtures for the domains Ω+ and Ω−,
respectively.

6. Uniqueness Theorems

In this section, on the basis of Green’s first identity we prove the uniqueness of regular (classical)
solutions of BVPs (K)+

F,f and (K)−F,f , where K = I, II. The scalar product of two vectors U =

(U1, U2, . . . , Ul) and V = (V1, V2, . . . , Vl) is denoted by U · V =
l∑

j=1

UjVj , where Vj is the complex

conjugate of Vj .
We have the following

Theorem 12. If the conditions

µ∗ > 0, 3λ∗ + 2µ∗ > 0, ξ∗ > 0,

4kξ∗T0 > (b∗T0 + f∗)
2
, σ1τ2 − σ2τ1 6= 0

(34)

are satisfied, then the internal BVP (I)+
F,f admits at most one regular solution.

Proof. Suppose that there are two regular solutions of the problem (I)+
F,f . Then their difference U

corresponds to the zero data (F = f = 0), i.e., U is a regular solution of the homogeneous equation

A(Dx)U(x) = 0 (35)

for x ∈ Ω+ and satisfies the homogeneous boundary condition

{U(z)}+ = 0. (36)

Then, employing the conditions (35) and (36), we can derive from (21) and (23)∫
Ω+

W1(U,u)dx = 0,

∫
Ω+

W2(U,w)dx = 0,

∫
Ω+

W3(U, ϕ)dx = 0,

∫
Ω+

W4(U, ψ)dx = 0,

∫
Ω+

W5(U, θ)dx = 0,

(37)

where W1,W2, . . . ,W5 are defined by (22) and (24).
In view of the relations (6) and (8), we can write

α′1 + 3α′2 − 2ε1 = α1 + 3α2 − 2(µ+ 2ζ + 2γ)− iω(3λ∗ + 2µ∗),

α′1 + ε1 = α1 + µ+ 2ζ + 2γ − 2iωµ∗,

η′1 |u|
2

+ 2ξ′Re [u ·w)] + η′2 |w|
2

= (ρ1ω
2 − ξ) |u|2 + 2ξRe [u ·w)]

+(ρ2ω
2 − ξ) |w|2 + iωξ∗ |u−w|2 .

(38)

Obviously, on the basis of (22), (24) and (38), it follows that

Im [W1(U,u) +W2(U,w) +W3(U, ϕ) +W4(U, ψ)]

= −ω
3

(3λ∗ + 2µ∗) |div u|2 − 2ωW (0)(u,u)− ωξ∗|u−w|2

−Im
{[

(β(1) + β(2))div u + β(2)div w + b(1)ϕ+ b(2)ψ
]
θ − b∗∇θ · (u−w)

}
, (39)
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1

ωT0
ReW5(U, θ) =

k

ωT0
|∇θ|2 + Im

[
(β(1) + β(2))div u + β(2)div w + b(1)ϕ+ b(2)ψ

]
θ

+
1

T0
f∗Im [(u−w) · ∇θ] .

Clearly, from (39), we get

1

ωT0
ReW5(U, θ)− Im [W1(U,u) +W2(U,w) +W3(U, ϕ) +W4(U, ψ)]

=
ω

3
(3λ∗ + 2µ∗) |div u|2 + 2ωW (0)(u,u) + ωξ∗|u−w|2 (40)

+
k

ωT0
|∇θ|2 −

(
b∗ +

f∗

T0

)
Im [(u−w) · ∇θ] .

In view of (37) and (40), we have

ω

3
(3λ∗ + 2µ∗) |div u|2 + 2ωW (0)(u,u) + ωξ∗|u−w|2

+
k

ωT0
|∇θ|2 −

(
b∗ +

f∗

T0

)
Im [(u−w) · ∇θ] = 0.

By virtue of (34), the last equation leads to the following relations:

div u(x) = 0, W (0)(u,u) = 0, u(x) = w(x),

∇θ(x) = 0, x ∈ Ω+.
(41)

Then, employing (18), (22) and (41), we can derive from (37)

W1(u,u) +W2(u,u) = W (1)(u,u) + 2W (2)(u,u) +W (3)(u,u)

=
1

2
[α′1 − ε1 + 2(β1 − ε2) + γ1 − ε3] |curl u|2 − (η′1 + 2ξ′ + η′2)|u|2 = −ρω2|u|2 = 0 (42)

and consequently, from (42), we have

u(x) ≡ 0 for x ∈ Ω+. (43)

Now, taking into account (41) and (43), from (35), we deduce the system

σ1∇ϕ+ σ2∇ψ = 0, τ1∇ϕ+ τ2∇ψ = 0. (44)

By virtue of the last relation of (34), from (44), we obtain ∇ϕ = ∇ψ = 0. Combining this relation
with (41) and (43), we may further conclude that

u(x) = w(x) ≡ 0, ϕ(x) = c1, ψ(x) = c2, θ(x) = c3 for x ∈ Ω+, (45)

where c1, c2 and c3 are arbitrary complex numbers. Finally, in view of the homogeneous boundary
condition (36), from (45), we get c1 = c2 = c3 = 0. Thus, U(x) ≡ 0 for x ∈ Ω+, and we have the
desired result. �

Theorem 13. If the conditions (34) and

det


η1 −ζ(3) b(1)

−ζ(3) η2 b(2)

b(1) b(2) a


3×3

6= 0 (46)

are satisfied, then the internal BVP (II)+
F,f admits at most one regular solution.

Proof. Suppose that there are two regular solutions of problem (II)+
F,f . Then their difference U

corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem (II)+
0,0. Consequently,

U is a regular solution of the system of homogeneous equations (35) satisfying the homogeneous
boundary condition

{R(Dz,n(z))U(z)}+ = 0 for z ∈ S.
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In a similar manner as in Theorem 12 we obtain the relations (45). We now combine (45) with (35)
to deduce the system

η1c1 − ζ(3)c2 + b(1)c3 = 0,

−ζ(3)c1 + η2c2 + b(2)c3 = 0, (47)

b(1)c1 + b(2)c2 + ac3 = 0.

By virtue of (46), from (47), we obtain c1 = c2 = c3 = 0 and, therefore, we get the relation U(x) ≡ 0
for x ∈ Ω+. Hence, the uniqueness of a regular solution to problem (II)+

F,f follows. �

Quite similarly, on the basis of the condition (16) and the identity (27), we obtain the following

Theorem 14. If condition (34) is satisfied, then the external BVP (K)−F,f admits at most one regular
solution, where K = I, II.

7. Surface and Volume Potentials

We introduce the following notation:
i) Q(1)(x,g) =

∫
S

Γ(x− y)g(y)dyS is the single-layer potential,

ii) Q(2)(x,g) =
∫
S

[R̃(Dy,n(y))Γ>(x− y)]>g(y)dyS is the double-layer potential, and

iii) Q(3)(x,φ,Ω±) =
∫

Ω±
Γ(x− y)φ(y)dy is the volume potential,

where the matrices Γ(x) and R̃(Dx) are given by (14) and (30), respectively; g and φ are the nine-
component vector functions.

Obviously, on the basis of Green’s third identities (32) and (33), the regular vector U in Ω+ is
represented by the sum of the single-layer, double-layer and volume potentials as follows:

U(x) = Q(2)(x,U)−Q(1)(x,RU) + Q(3)(x,AU,Ω+) for x ∈ Ω+.

Similarly, the regular vector U in Ω− is represented by the sum

U(x) = −Q(2)(x,U) + Q(1)(x,RU) + Q(3)(x,AU,Ω−) for x ∈ Ω−.

On the basis of (14) and (15), we have the following results.

Theorem 15. If S ∈ Cm+1,ν ′ , g ∈ Cm,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, and m is a non-negative integer,
then:

a)

Q(1)(·,g) ∈ C0,ν ′′(R3) ∩ Cm+1,ν ′′(Ω±) ∩ C∞(Ω±),

b)

A(Dx) Q
(1)

(x,g) = 0,

c)

{R(Dz,n(z)) Q
(1)

(z,g)}± = ∓ 1

2
g(z) + R(Dz,n(z)) Q

(1)
(z,g), (48)

d)

R(Dz,n(z)) Q
(1)

(z,g)

is a singular integral, where z ∈ S, x ∈ Ω± and

{R(Dz,n(z)) Q
(1)

(z,g)}± ≡ lim
Ω±3x→ z∈S

R(Dx,n(z)) Q
(1)

(x,g).

Theorem 16. If S ∈ Cm+1,ν ′ , g ∈ Cm,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, then:
a)

Q(2)(·,g) ∈ Cm,ν
′′
(Ω±) ∩ C∞(Ω±),

b)

A(Dx) Q
(2)

(x,g) = 0,
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c)

{Q(2)(z,g)}± = ± 1

2
g(z) + Q(2)(z,g) (49)

for the non-negative integer m,
d) Q(2)(z,g) is a singular integral, where z ∈ S,
e)

{R(Dz,n(z)) Q
(2)

(z,g)}+ = {R(Dz,n(z)) Q
(2)

(z,g)}−

for the natural number m, where z ∈ S, x ∈ Ω± and

{Q(2)(z,g)}± ≡ lim
Ω±3x→ z∈S

Q(2)(x,g).

Theorem 17. If S ∈ C1,ν ′ , φ ∈ C0,ν ′′(Ω+), 0 < ν ′′ < ν ′ ≤ 1, then:
a)

Q(3)(·,φ,Ω+) ∈ C1,ν ′′(R3) ∩ C2(Ω+) ∩ C2,ν ′′
(

Ω+
0

)
,

b)

A(Dx) Q
(3)

(x,φ,Ω+) = φ(x),

where x ∈ Ω+, Ω+
0 is a domain in R3 and Ω+

0 ⊂ Ω+.

Theorem 18. If S ∈ C1,ν ′ , suppφ = Ω ⊂ Ω−, φ ∈ C0,ν ′′(Ω−), 0 < ν ′′ < ν ′ ≤ 1, then:
a)

Q(3)(·,φ,Ω−) ∈ C1,ν ′′(R3) ∩ C2(Ω−) ∩ C2,ν ′′(Ω−0 ),

b)

A(Dx) Q
(3)

(x,φ,Ω−) = φ(x),

where x ∈ Ω−, Ω is a bounded domain in R3 and Ω−0 ⊂ Ω−.

We here introduce the following notation:

K(1)g(z) ≡ 1

2
g(z) + Q(2)(z,g), K(2)g(z) ≡ −1

2
g(z) + R(Dz,n(z))Q

(1)
(z,g),

K(3)g(z) ≡ −1

2
g(z) + Q(2)(z,g), K(4)g(z) ≡ 1

2
g(z) + R(Dz,n(z))Q

(1)
(z,g), (50)

Kςg(z) ≡ −1

2
g(z) + ς Q(2)(z,g) for z ∈ S,

where ς is a complex parameter. On the basis of Theorems 15 and 16, K(j) (j = 1, 2, 3, 4) and Kς are
singular integral operators.

We introduce the notation

µ′1 = µ1 − iωµ∗, µ1 = µ+ κ+ γ + 2ζ, µ2 = κ+ γ,

µ3 = κ+ γ + ζ, µ′0 = µ′1 + µ2 + 3µ3, e′1 = α′2 + κ− γ,
e1 = α2 + κ− γ, e2 = γ2 + κ− γ, e3 = β2 − κ+ γ, (51)

e′0 = e′1 + e2 + e3, b1 = α1γ1 − β2
1 , b′2 = µ′1µ2 − µ2

3,

b2 = µ1µ2 − µ2
3, b′3 = e′1e2 − e2

3, b3 = e1e2 − e2
3.

Let σ(j) = (σ
(j)
lm)9×9 be the symbol of the singular integral operator K(j) (j = 1, 2, 3, 4). Taking

into account (50) and (51), by a long calculation for det σ(j), we find that

det σ(j) = − 1

512

k2k3

k0k1
, j = 1, 2, 3, 4, (52)

where k0 and k1 are defined by (10) and

k2 = (α′0 + α1)(γ0 + γ1)− (β0 + β1)2, k3 = k1b
′
3 + (κ− γ)(µ′0b

′
3 + e′0b

′
2). (53)

On the basis of (6), (8) and (51), from (10) and (53), we have

Imk0 = −ω(λ∗ + 2µ∗)γ0, Imk1 = −ωµ∗γ1, Imk2 = −ω(λ∗ + 3µ∗)(γ0 + γ1),
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Imk3 = −ω(λ∗ + µ∗)b1e2 − ωµ∗b3γ1 − ω(κ− γ) [λ∗(µ0e2 + b2) + µ∗(µ2e0 + b3)] .

Clearly, if
Imkl 6= 0, l = 0, 1, 2, 3, (54)

then from (52), it follows that

det σ(j) 6= 0 (55)

which proves that the singular integral operator K(j) is of the normal type, where j = 1, 2, 3, 4. Hence
we have the following

Theorem 19. If condition (54) is satisfied, then the singular integral operator K(j) is of the normal
type, where j = 1, 2, 3, 4.

Let σς and indKς be the symbol and the index of the operator Kς , respectively. It can be easily
shown that detσς vanishes only at four points ςj (j = 1, 2, 3, 4) of the complex plane. By virtue of

(55) and detσ1 = detσ(1), we get ςj 6= 1 for j = 1, 2, 3, 4, and we obtain

indK(1) = indK1 = 0.

In a quite similar manner, we have the relation indK(2) = 0. We can easily verify that the operators
K(3) and K(4) are the adjoint operators for K(2) and K(1), respectively. Consequently, we have

indK(3) = −indK(2) = 0, indK(4) = −indK(1) = 0.

Hence, the singular integral operator K(j) (j = 1, 2, 3, 4) is of the normal type with an index equal
to zero, i.e., Fredholm’s theorems are valid for K(j). Thus, we have proved the following

Theorem 20. If condition (54) is satisfied, then Fredholm’s theorems are valid for the singular integral
operator K(j), where j = 1, 2, 3, 4.

Remark 1. The definitions of a normal type singular integral operator, the symbol and the index of
the operator are given in [18,20]. In addition, in these books, one can find the method for calculating
the symbol of singular integral operator.

8. Existence Theorems

In what follows, we assume that the constitutive coefficients satisfy the conditions (34), (46) and
(54). Obviously, by Theorems 17 and 18, the volume potential Q(3)(x,F,Ω±) is a partial regular

solution of the nonhomogeneous equation (9), where F ∈ C0,ν ′(Ω±), 0 < ν ′ ≤ 1 and supp F is a finite
domain in Ω−. Therefore, in this section, we prove the existence theorems for classical solutions of the
BVPs (K)+

0,f and (K)−0,f , where K = I, II.

Problem (I)+
0,f . We are looking for a regular solution to this problem in the form of a double-layer

potential
U(x) = Q(2)(x,g) for x ∈ Ω+, (56)

where g is the required nine-component vector function. By Theorem 16, the vector function U is
a solution of the homogeneous equation (35) for x ∈ Ω+. Keeping in mind the boundary condition
{U(z)}+ = f(z) and using (49), from (56), for determining the unknown vector g, we obtain a singular
integral equation

K(1)g(z) = f(z) for z ∈ S. (57)

By Theorem 20, Fredholm’s theorems are valid for the operator K(1). We prove that (57) is always
solvable for an arbitrary vector f . Let us consider the adjoint homogeneous equation

K(4)h0(z) = 0 for z ∈ S, (58)

where h0 is the required nine-component vector function.
Now we prove that (58) has only the trivial solution. Indeed, let h0 be a solution of the homogeneous

equation (58). On the basis of Theorem 15 and equation (58), the vector function V(x) = Q(1)(x,h0)
is a regular solution of problem (II)−0,0. Using Theorem 14, problem (II)−0,0 has only the trivial
solution, that is,

V(x) ≡ 0 for x ∈ Ω−. (59)
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On the other hand, by Theorem 15 and equation (59), we get {V(z)}+ = {V(z)}− = 0 for z ∈ S,
i.e., the vector V(x) is a regular solution of problem (I)+

0,0. Using Theorem 12, problem (I)+
0,0 has

only the trivial solution, i.e.,

V(x) ≡ 0 for x ∈ Ω+. (60)

By virtue of (59), (60) and identity (48), we obtain

h0(z) = {R(Dz,n)V(z)}− − {R(Dz,n)V(z)}+ ≡ 0 for z ∈ S.
Thus, the homogeneous equation (58) has only the trivial solution and, therefore, (57) is always
solvable for an arbitrary vector f .

We have thereby proved

Theorem 21. If S ∈ C2,ν ′ , f ∈ C1,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, then a regular solution of problem
(I)+

0,f exists, is unique and represented by the double-layer potential (56), where g is a solution of the

singular integral equation (57) which is always solvable for an arbitrary vector f .

Problem (II)−0,f . We are looking for a regular solution to this problem in the form of a single-layer
potential

U(x) = Q(1)(x,h) for x ∈ Ω−, (61)

where h is the required nine-component vector function. Obviously, by Theorem 15, the vector function
U is a solution of (35) for x ∈ Ω−. Keeping in mind the boundary condition {R(Dz,n(z))U(z)}− =
f(z) and using (48), from (61), for determining the unknown vector h, we obtain a singular integral
equation

K(4)h(z) = f(z) for z ∈ S. (62)

It has been proved above that the corresponding homogeneous equation (58) has only the trivial
solution. Hence, it follows that (62) is always solvable.

We have thereby proved

Theorem 22. If S ∈ C2,ν ′ , f ∈ C0,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, then a regular solution of problem
(II)−0,f exists, is unique and represented by a single-layer potential (61), where h is a solution of the

singular integral equation (62) which is always solvable for an arbitrary vector f .

Problem (II)+
0,f . We are looking for a regular solution to this problem in the form of a single-layer

potential

U(x) = Q(1)(x,h) for x ∈ Ω+, (63)

where h is the required nine-component vector function. Obviously, by Theorem 15, the vector function
U is a solution of (35) for x ∈ Ω+. Keeping in mind the boundary condition {R(Dz,n(z))U(z)}+ =
f(z) and using (48), from (63), for determining the unknown vector h, we obtain a singular integral
equation

K(2)h(z) = f(z) for z ∈ S. (64)

We now prove that (64) is always solvable for an arbitrary vector f . Let h0 be a solution of the
homogeneous equation

K(2)h(z) = 0 for z ∈ S. (65)

On the basis of Theorem 15 and equation (65), the vector function V(x) = Q(1)(x,h0) is a regular
solution of problem (II)+

0,0. Using Theorem 13, problem (II)+
0,0 has only the trivial solution, that is,

V(x) ≡ 0 for x ∈ Ω+. (66)

On the other hand, by Theorem 15 and equation (66), we get {V(z)}+ = {V(z)}− = 0 for z ∈ S,
i.e., the vector V(x) is a regular solution of problem (I)−0,0. Now, using Theorem 14, problem (I)−0,0
has only the trivial solution, that is,

V(x) ≡ 0 for x ∈ Ω−. (67)

By virtue of (66), (67) and identity (48), we obtain

h0(z) = {R(Dz,n)V(z)}− − {R(Dz,n)V(z)}+ ≡ 0 for z ∈ S.
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Thus, the homogeneous equation (65) has only the trivial solution and, therefore, (64) is always
solvable for an arbitrary vector f .

We have thereby proved

Theorem 23. If S ∈ C2,ν ′ , f ∈ C0,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, then a regular solution of problem
(II)+

0,f exists, is unique and represented by a single-layer potential (63), where h is a solution of the

singular integral equation (64) which is always solvable for an arbitrary vector f .

Problem (I)−0,f . Finally, we are looking for a regular solution to this problem in the form of a
double-layer potential

U(x) = Q(2)(x,g) for x ∈ Ω−, (68)

where g is the required nine-component vector function. Obviously, by Theorem 16, the vector function
U is a solution of (35) for x ∈ Ω−. Keeping in mind the boundary condition {U(z)}− = f(z) and
using (49), from (68), for determining the unknown vector g, we obtain a singular integral equation

K(3)h(z) = f(z) for z ∈ S. (69)

It has been proved above that the adjoint homogeneous equation (65) has only the trivial solution.
Hence, it follows that (69) is always solvable.

Thus, we have thereby proved

Theorem 24. If S ∈ C2,ν ′ , f ∈ C1,ν ′′(S), 0 < ν ′′ < ν ′ ≤ 1, then a regular solution of problem (I)−0,f
exists, is unique and represented by a double-layer potential (68), where g is a solution of the singular
integral equation (69) which is always solvable for an arbitrary vector f .

9. Concluding Remarks

In this paper, the linear theory of thermoviscoelasticity for binary porous mixtures is considered
and the following results are obtained.

a) The fundamental solution of the system of equations of steady vibrations is constructed explicitly
and its basic properties are established.

b) Green’s identities are obtained.
c) The uniqueness theorems for classical solutions of the internal and external basic BVPs of steady

vibrations are proved.
d) The surface and volume potentials are constructed and their basic properties are given.
e) The determinants of symbolic matrices are calculated explicitly.
f) The BVPs are reduced to the always solvable singular integral equations for which Fredholm’s

theorems are valid.
g) Finally, the existence theorem for classical solutions of the internal and external BVPs of steady

vibrations are proved by means of the potential method and the theory of singular integral equations.
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