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STEADY VIBRATIONS PROBLEMS IN THE THEORY OF
THERMOVISCOELASTIC POROUS MIXTURES

MAIA M. SVANADZE

Abstract. In this paper, the linear theory of thermoviscoelastic binary porous mixtures is consid-
ered and the basic boundary value problems (BVPs) of steady vibrations are investigated. Namely,
the fundamental solution of the system of equations of steady vibrations is constructed explicitly
and its basic properties are established. Green’s identities are obtained and the uniqueness theorems
for classical solutions of the internal and external basic BVPs of steady vibrations are proved. The
surface and volume potentials are constructed and their basic properties are given. The determi-
nants of symbolic matrices of the singular integral operators are calculated explicitly and the BVPs
are reduced to the always solvable singular integral equations for which Fredholm’s theorems are
valid. Finally, the existence theorems for classical solutions of the internal and external BVPs of
steady vibrations are proved by means of the potential method and the theory of singular integral
equations.

1. INTRODUCTION

The prediction of the mechanical properties of viscoelastic materials has been one of hot topics of
continuum mechanics for more than 100 years. The construction of mathematical models of viscoelastic
continua arise by an extensive use of viscous materials in many branches of engineering, technology
and biomechanics (see Lakes [19], Brinson and Brinson [5] and references therein).

In the past two decades there has been much effort to develop mathematical models of thermovis-
coelastic mixtures. Indeed, Iegan [12] has presented the theory of thermoelasticity of binary porous
mixtures in Lagrangian description, and the classical Kelvin—Voigt viscoelastic model is generalized
by using a mixture theory. The existence and exponential decay of a solution in the linear variant of
this theory is studied by Quintanilla [23]. The theory of thermoviscoelastic composites modelled as
interacting Cosserat continua is introduced by Tegan [14]. A mathematical model of porous thermovis-
coelastic binary mixtures is presented by Iegsan and Quintanilla [16], where the individual components
are modelled as Kelvin—Voigt viscoelastic materials. In [15], a nonlinear theory of heat conducting
mixtures is introduced. A mixture theory for microstretch thermoviscoelastic solids is developed by
Chirita and Galeg [6]. The theory of microstretch thermoviscoelastic composite materials is con-
structed by Passarella et al. [21]. A continuum theory for a thermoviscoelastic composite with the
help of an entropy production inequality proposed by Green and Laws is presented by Iesan and
Scalia [17]. Recently, a nonlinear theory is derived for a thermoviscoelastic diffusion composite which
is modeled as a binary mixture consisting of two Kelvin—Voigt viscoelastic materials by Aouadi et
al. [2].

The basic problems of these theories are intensively investigated by scientists of several research
groups in the series of papers [1,3,7-11,13,22]. Moreover, in [25,26], the basic properties of plane waves
are established, the uniqueness and existence theorems are proved in the theories of viscoelasticity and
thermoviscoelasticity for binary mixtures without pores. Recently, the potential method is developed
in the theory of viscoelastic binary porous mixtures by Svanadze [27].

For an extensive review of the works and basic results in the theory of mixtures see the books of
Bowen [4] and Rajagopal and Tao [24].
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In this paper, the linear theory of thermoviscoelastic binary porous mixtures (see Iesan [12]) is
considered and the basic BVPs of steady vibrations are investigated. Indeed, the fundamental solution
of the system of equations of steady vibrations in the considered theory is constructed explicitly and
its basic properties are established. Green’s identities are obtained and the uniqueness theorems
for classical solutions of the internal and external basic BVPs of steady vibrations are proved. The
surface and volume potentials are constructed and their basic properties are given. The determinants
of symbolic matrices are calculated explicitly. The BVPs are reduced to the always solvable singular
integral equations for which Fredholm’s theorems are valid. Finally, the existence theorems for classical
solutions of the internal and external BVPs of steady vibrations are proved by means of the potential
method and the theory of singular integral equations.

2. BAsiC EQUATIONS

We consider a thermoelastic binary porous mixture of constituents sV and s(? that occupies the
region Q of the Euclidean three-dimensional space R3, where s(!) and s(2) are a Kelvin-Voigt material
and an isotropic elastic solid, respectively. Let x = (21,22, 23) be a point of R? and let ¢ denote the
time variable. We assume that subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate, repeated indices are summed over the range (1,2,3)
and the dot denotes differentiation with respect to t.

Let 1(x,t) and w(x,t) be the partial displacements of constituents s(!) and s(2), respectively;
0 = (G, g, Gg), W = (i1, o, w3). We denote by @(x,t) and 1)(x,t) the changes of volume fraction
fields from the reference configuration for the constituents s() and s(), respectively. Let 6(x) be the
temperature measured from some constant absolute temperature Ty (T > 0).

The governing system of field equations of motion in the linear theory of thermoviscoelastic binary
porous mixtures consists of the following equations (see Iesan [12]):

1. The constitutive equations

tit = (A +v)erdj + 2(u+ Qeji + (o + v)grebj + (26 + Q) gt + (27 + C)guy
+m® + 1)@ 65 + (m® +1@)h 55 — (BD + BD) 0651 + N by + 207 é 51,
sj1 = ver8j + 2Cer; + agr i + 2rgi; + 2vg5 + (M@ +199) 65 — B2 05,
MY =a®e, +a®d,+bd, P =a®p,+a®d, + cody,
gV = —mWe,., —1Wg,, —¢De— B+ pM g,
g = —m@e,., —1®g, —®p @) 4@ 4,
pr=Edy+ €5 di+ 0+ eopa+ 00, pn=BVen + 8P + 61 6+ 4+ af,
q =k + f'd, 1,j=12,3,
where t;; and sj; are the components of the partial stresses of the constituents s and s®), respec-

tive]‘y; >\7 lLt7 a? fY? <7 V’ /4/7 57 5(1)7 /8(2)7 a? b7 CO7 k? b(1)7 b(2)7 m(1)7 m(2)7 l(1)7 l(2)7 a(l)’ a(2)7 a(S)) <(1)7
¢, ¢BN* p*, €%, b, f* are the constitutive coefficients and a # 0, 05 is the Kronecker delta and

%:%mm+%ﬂ,mfnm+wm di= i —n, 1,j=1,2,3, (2)
2. The equations of motion
tjij —pi=p1 (Uz - Fl(l)) , Sjl,j +Pi = p2 (ﬁ}z - Fl@)) , 1=1,2,3,
hglj) + g(l) =P (lﬂ%é - ﬁ(l)) , h;QJ) + 9(2) = p2 (527; - £(2)) ) @

where ﬁ(T), Kr, pr and F) = (Ffr), FQ(T), ﬁ}fr)) are the extrinsic equilibrated body force, the coeffi-
cient of the equilibrated inertia, the mass density and the partial body force of the constituent s,
respectively; p, > 0, kK, >0 and r =1, 2.
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3. The heat transfer equation
pLon = qii + pS, (4)

where p = p; + p2 and § is the heat source.
Substituting equations (1) and (2) into (3) and (4), we obtain the following system of equations
of motion in the linear theory of thermoviscoelastic binary porous mixtures expressed in terms of the

partial displa(fement vectors 1, w, the changes of volume fractions ¢(x,t), ¥(x,t) and the change of
temperature 6:
a1 AT+ GoVdiv i+ By AW + fo Vdivw — £(ft — W) + 01 VG + 02V — my VO = py (u - F(U) ,
B At + B Vdiv it + 71 AW + 70 Vdiv W + £(fL — W) + 1 V@ + 1 Veh — maVi = py (w - F<2>) ,
aWAG + a® AP — grdivia — mdivw — (Dg — (PP 1 Mg = py (mé - E“)) : (5)
a®AS + a(Q)Az/AJ — oodiva — mpdivw — (P — 4(2)1/3 +b20 = 02 (Hggé — I:(Q)) ,
kAD — aTof — ardiv i — agdiv w — bV Ty — BTy = —p3,
where A is the Laplacian operator,
aq =a1+u*%, Qo =a2+()\*+ﬂ*)%a é=§+f*%

and
a1 =p+26+20, am=Atpta+t2v+2y+2(, p1=27+¢(

Bo=a+v+26+C¢ m=2k vy=a+2y, m =Y +53 fp*
mq = B —b*, o1 =mW +1 —b oy =m® 1@ ¢,

n=1040, w=1%+co, ar=To(BY+52)~ [, ar=Top? +f*.

(6)

If the functions a, W, @, 1& é, F(1)7 F(2), LM, L® and 3 are postulated to have a harmonic time
variation, that is,

{0,w,5,,0. B0, B L0, L®, 5} (x,) = Re |{u, w, 0,0, 6,F F, L0, L) s}(x) =]

then from the system of equations of motion (5), we obtain the following system of equations of steady
vibrations in the theory under consideration:

(4 A +n))u+ ab Vdivu+ (B1A + £ )w + B2 Vdivw + 0,V + 05V — m VO = —p FD
(B1A+E)u+ By Vdivu+ (71 A+ n5)w + 72 Vdivw + 11V + 12 V) — maVe = —poF?),
(WA + )+ (DA = ¢y — oydiva — mydivw + 00 = —p, LD (7)
(DA =P+ (DA +12)1p — oodivu — modivw + 520 = —p, L)
(kA + a') 0 + iwaydivu + iwagdivw + iwbM Ty 4 iwb® Ty = —ps,
where
O/lzal_iwu*v O‘IZZCV?_%J()‘*—FM*)? 5/25_7;‘*)5*7
mo=pi? =&, ny=pw? =€, m=piriw® — W, (8)

N2 = P2/€2w2 - 4(2)7 a' = iwaTy

and w is the oscillation frequency (w > 0).
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We introduce the matrix differential operator A(Dx) = (Ar¢(Dx))gq, Where
82
Aij(Dy) = (ah A +07)di; +0‘28 2,03;"
0? 1o}
Apj13(Dx) = Aig3,5(Dx) = (1A +&)dy; + Prg e 01 Apr46(Dx) = —Ari61(Dx) = o
A(D)——mi Arysi13(Dx) = (A +n5)0; + o
19 x) — 1 33:1’ 1+3;5+3 Y1 772 lj 728 131']
Arrairs6(Dx) = ~Arsoira(Do) = 7o, Avsgo(Dy) = —ma o
1+3;7r4+6 x) — r+6;14+3 x) = Tr 3:51’ 1+3;9 x) = —M2 (91’[7

Az (Dy) = WA 11, Arg(Dy) = Agr(Dy) = ¥ A + ¢,

0 0
Agg(Dx) = Oz(l)A +m, Agl(Dx) = iwalaj, A9;l+3(D ) Wag —— O
l l

Ag.ri6(Dy) = iwb Ty,  Agg(Dy) =kA+d', 1,j=1,2,3, r=12.
Obviously, system (7) can be written as follows:
A(Dy)U(x) = F(x), (9)
where U = (u,w, p,1,0), F = (—p1FV) | —poF® —p LD —py L) —ps) and x € Q.
3. FUNDAMENTAL SOLUTION

In this section, the fundamental solution of system (7) is constructed explicitly and its basic prop-
erties are established.

Definition 1. The fundamental solution of system (7) is the matrix I'(x) = (I';;(x)),, o satisfying
the following equation in the class of generalized functions:

A(Dy)T(x) = d(x)J,
where 0(x) is the Dirac delta, J = (8;;),, 4 is the unit matrix and x € R?.
We denote by
ag=ay +ay, Bo=P1+ P2, o=+

10
ko = Oé(/ﬁo - 537 k1 = 0/171 - 5%7 Qo = aWal® — (04(3))2- ( )
In this section, we assume that
Oéok]fokj 7é 0. (11)
We introduce the following notation:
i)
B(A) = (Bi;(A)) 55
afA + 0 BoA + &' —01 A —0o9 A war A
BoA + ¢ Yol + 15 -1 A —TA twas A
— o1 T a(l)A + m a(S)A — 4(3) ZWb(l)TO
09 T2 a®A (B a@A+n Wb
—my —ma Sy A kA+a" ) .
ii)
1 5
A (A) = detB(A) = | [(A + A2
1( ) Ozok‘k‘o € ( ) H( + Vi )7

<
Il
—

>/z

where A3(j = 1,2,...,5) are the roots of the equation A;(—X) = 0 (with respect to A).
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iii)
/ / !
AN+ BIA+E

As(A) = — det = (A + 22 (A + )2,
2(A) " <51A+5’ 71A+77§>2X2 ( 6)( 7)

where A2 and A2 are the roots of the equation Ay(—A) = 0 (with respect to A). We assume that
ImMN >0and N # X (L,j=1,2,...,7).

iv)
5 5
1 1
A)= ——— B (A A)=——— 5855 (A
’I’L“( ) Oéokk()kh Jz::lcj lJ( )7 le( ) Oéok‘k‘okh ;C]‘FE) lj( )ﬂ
1
nlr(A) = MBI*T(A)? | = 1,2,. . .,5, T = 3,475,

where Bl*j is the cofactor of element B;; of the matrix B and

C1=B2(BiA+ &) —as(mA+13),  Co=7(B1A+E) = Ba(mA+n),
Cs=a1(mA+ny) —Ti(BA+E), Ci=0(mA+ny) —n(AhA+E),
Cs = iw[az (1A + &) —ar(mA +m3)],  Cs = aa(B1A+ &) — B0y A+ 1),
Cr=Ba(ArA+E) = r2(iA+nh), Cs=m(a4A+m) —o1(BiA+¢),

Og = TQ(O/lA + 771) - Ug(ﬁlA + f/), ClO = iw[al(ﬁlA +€l) - ag(o/lA + T]i)]

V)
A(A) = (A1 (A))gygr A11(A) = Aa(A) = -+ = Ags(A) = A2(A),
A77(A) = Agg(A) = Agg(A) = Al(A), Alj(A) =0,
I44, 1,j=1,2,...,9.
vi)

L (Dx) = (Lij (Dx))gyq >

1 2
Li; (Dx) = - (nA + 1) A1 (A) 85 + 1 () Om0;’
1 , 0
Ll;j_._g (Dx) - 7%(61A + g )Al(A) 5lj + le(A) axl(’?x )
J
1 , 0
Litsi; (Dx) = =7 (B1A + €)A1(A) 65 + nzl(A)ma (12)
J 12
1 0?
Liysjis (Dy) = Em/lA +n1)A1(A) 6y + nzz(A)m7
J
Lir (D) = 1 a(A) . Ligay (Do) = ngy—a(A) -
Ir x) — Mlir—4 al'l, HHar X a‘Tl7
9 0

Lr Dx = Np—4; A a9 Lr' Dx = Nyp—4, A )
1 (Dx) = np—ai1( )8xl 143 (Dx) = nr—a;2( )81,[
er (Dx) = nT—4;m—4(A)7 l’.] = 17 2737 r,m = 7a 85 9
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vii)
Y(X) - <Ylj(x))9><9a
7
Yll(X) = YQQ( ) — ... = }/66()() = ZnQ ry(])(x)
j=1
5 (13)
Y77(X) = }/88 (X) = YSS (X) = Z 7713’70)()(),
j=1
Yij(x) =0, 1#j, Lj=12...,9,
where
i x|
(7) __ e
T =
and
5 7
Mm = H ()\12 - /\1271)_17 772] - H ()\l2 — /\?)_1,
I=1,1#m I=1,1#j

It is not difficult to prove

Lemma 1. If the condition (11) is satisfied, then:
a) the following identity

is valid;
b) the matriz Y (x) is the fundamental solution of the operator A(A), i.e.,

AA)Y (x) = 0(x)d.
Lemma 1 leads to the following
Theorem 1. If the condition (11) is satisfied, then the matriz T'(x) = (I';j(X))q,.o defined by
I'(x)=L(Dx)Y (x) (14)

is the fundamental solution of system (7) (the fundamental matrixz of the operator A(Dy)), where the
matrices L (Dyx) and Y (x) are given by (12) and (13), respectively.

We now formulate the basic properties of the matrix I' (x). Theorem 1 has the following conse-
quences.

Theorem 2. Each column of the matriz I'(x) is a solution of the homogeneous equation
AD,)I'(x)=0
at every point x € R3, except the origin.
Theorem 3. The relations
Iy ) =0 (X)), Ton(x) =0 (1xI7"). Tow () =0 (X)),

le(x)=0(), Tyx)=0(1), Tex) =0(),
Iy (x)=0(1), l,j=12,...,6, rm=7,8, e=T1,8,9

hold in the neighborhood of the origin.

We introduce the notation:
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i)
0 ) ) 0
AO(D,) = (Alj (Dx))gxg, A (Dx) = ) Ady; +a28 T
J
2
0 0
AL (D) = Ay, (D) = 5161 + B
A0 (Dx) = 188 + 750 ARG (Dy) = alla,
AR (D) = AP (Dy) = a® A, AQ(Dy) =P, AR (Dy) = kA,
AQ (Dy) = A (Dy) = AY (Dy) = A} (Dy) = 0.
i)

© (x) = (T©
I (x) (Fl? (X))9x9 ’
1 Yo O 1 Y0 g LI
F(O) - _ b == =
iy (%) <k’0 * kil) |x| + <k70 ki) x[P
5 L (Bo B1\ miz;
@ =10 . By~ (o 4oy
i (%) Lray () = 87r ko * ko) x| 8w \ko ki) [x[*

1 [« o\ 0 1 [af o)\ z1x;
' __ - (% 915 Gy > i
rrag+s () = —go (ko ) W s\ W) X

@ 1 aB > 1 a1
ooy _«? 1 oy r<°> _ R (O 1
77 (%) dman x|’ 78 (%) s7 (%) dran x| 88 (%) dman x|
0 11 0 0
T8 00 == p i Din(Px) = TP =T (D) = T (D) =0,

where [,7=1,2,3, m=1,2,...,6,e=7,8and r =7,8,9.
Theorem 1 leads directly to the following basic properties of the matrix I'(©) (x).

Theorem 4. The fundamental solution of the equation
AV(D,UX) =0
is the matriz T®) (x), and the following relations:
iy ) =0(x™"), T =0(x"), T e =0(x"),
Lj=12,...,6, m,r=71,8
hold in the neighborhood of the origin.
Theorem 5. The relations
Iy (x) =T (x) = const +O (|x]), 1,j=1,2,...,9 (15)
hold in the neighborhood of the origin.

Thus, on the basis of Theorem 5 the matrix T'©) (x) is the singular part of the fundamental solution
I' (x) in the neighborhood of the origin.

4. BASIC BOUNDARY VALUE PROBLEMS

__Let S be the smooth closed surface surrounding the finite domain O in R?, S € c2v' o<y <1,
Qt=0TUS, Q" =R3\QF, Q- = Q7 US. We denote by n(z) the external (with respect to the
Q1) unit vector, normal to S at z.
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Definition 2. A vector function U = (u,w,p,¢,0) = (U1,Us,...,Uq) is called regular in Q~
(or Q) if:
1)
U e C*(Q)nCH Q™) (or Uj € C*(QY)ncCt(Qh)),
2)
Uj(x) = O(Ix|™"), Uj(x)=o(jx|™") for [|x[>1, (16)
where j =1,2,...,9and [ =1,2,3.
In the sequel, we use the matrix differential operators
1)
R(DX7 1'1) = (le(D)m n))9><97

0 0
R;j(Dx,n) = 0/151]-% + abyny—— + €1 M;(Dy, n),

8l‘j
0 1o}
Ri;j1+3(Dx,n) = Riy3,(Dx,n) = Bl(slj@: + Bany o + €2My;(Dx, n),
J

Riy3,543(Dx,m) = %%% + vznzaij + 3 M (Dx, m),
Ri7(Dx,n) = (m(l) + l(l)) ni, Rig(Dx,n) = (m(2) + l(2)> ny,
Rig(Dy,n) = —(BY + B ny,  Riysr(Dyn) =10, Riyss(Ds,n) =13, (17)
Riy3.0(Dy,n) = =3P 0y, Ry(Dy,n) = —Ry7y13(Dy,n) = bny,

Rg(Dy,n) = —Rg43(Dx,n) = cony, Ryr(Dx,n) = 04(1)2

On’
0 0
R78(Dx’ Il) = R87(Dxa Il) = Oé(s)a:’ R88(Dxa Il) = 04(2)67na
o 0
Rgi(Dx,n) = —Rg;43(Dx,n) = —iwf*n;, Rgg(Dy,n) = k%>

ng(Dx,n) = _RQHL(Dxan) = 07 l7.] = 17273a m = 7787

where n = (nq, na, n3), % is the derivative along the vector n and

0

=Nj— — Ny —
Jal'l 89:]-’

M,;(Dx, n) 6 =p—iwp* +2v+2(, =2+ €3=27.

The basic internal and external BVPs of steady vibrations in the linear theory of thermoviscoelastic
binary porous mixtures are formulated as follows.
Find a regular (classical) solution to (9) for x € Q% satisfying the boundary condition

Qial)itrgzeSU(X) ={U(2)}" = ()

in Problem (I);f, and

o Jim  R(Dyn(2))U(x) = {R(D,,n(z)U(z)}* = £()

in Problem (IT );f, where F and f are the prescribed nine-component vector functions and supp F is
a finite domain in Q.

5. GREEN’S IDENTITIES

In this section, Green’s identities in the linear theory of thermoviscoelasticity for binary porous mix-
tures are established.
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Let wj,w;, ¢, 9,0 (1 1,2,3) be complex functions, u' = (u},us, uf), W
U = (u/,w', ¢, ¢, 0"). We introduce the notation

3 a7 /

Ou;  Ouy Oouj 8uj
Z (ujg + up ) ( + ulj) + - Z (83;[ — &Tj) <8xl ~ s, )
1,j=1;1#j l]

)

- (wllvwé’wé)v

W(O) (u, u

.NH

W (u,u’) = %(0/1 + 3ah — 2¢p)divudivu’ + ;( — €1)curlu - curl o’
+(o) + )W (u,v) — pju -,
W (u,w') = %([31 + 382 — 2e3)divudivw’ + %(51 — ez)curlu - curl w’ (18)
+(B1 + )W (u,w') - u-w,
WO (w,w') = %(71 + 372 — 2e3)divwdivw’ + %('Yl — e3)curlw - curl w’

+(1 4 e ) WO (w, w') —hw - w'.

Using Green’s first identity of the classical theory of elasticity (see e.g., Kupradze et al. [18]), it is a
simple matter to verify that

/[Alj(Dx)ujuj—i—W(l)(u u’) dx:/le(DZ,n)uj(z)uf(z) d,S,

O+
/ {Az;j+3(D )wju) + W (w,u’ }dx /le+3 (D2, n)w;(z)u;(z) dzS,
ot o (19)
/ (A (D) wjw] + W (u, w')] dx = / Ri+3,5(Dyy m)u; (2)w](2) d, S,
o+ 5
/ |:Al+3;j+3(D )ijl + W ‘3) W W i| dx = /Rl+3 1G+3 Dz,n)w] (z)wl’(z) sz
o+ s

On the basis of (18) and identity

/ {Vgo(x)-u'(x)—l—go(x) divm] dx = / o(z)n(z) - W (z) d,S, (20)

Q+ S

from (19), it follows that

/ {(Aljuj + Apjraw; + Aprp + Agth + Agg) u) + W1 (U, u’)} dx

O+

= / [Rijuj + Rijisw; + Rirg + Risth + Rigf) ujd,S,
° (21)

—

(Agsijug + Aipsjesw; + Aipsre + Aipsisth + Apsiof) w) + Wa (U, W/)} dx

/

(Riysuj + Rigsjyswj + Ripsre + Riyssth + Riyseb) wid,S, 1=1,2,3,

e
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where
Wy (U, u') = WD (u,u) + W (w, )
+ [(m(l) + l(1>> ¢+ (m(z) + 1(2)) P — (B + 5(2))9} div o’
+V(bp + cotp + b*0) - o’

Wo(U,w') = WO (u,w') + WO (w, w') + (l(l)go P 1@y - 5@9) div w’

=V (bp + cotp +b*0) - w’
and WO (u,u’), W (w,u’) and W& (w, w’) are defined by (18).

Now, taking into account the identities (20) and

[ (260075 + Tt 90/ x =

Qt S

dp(z)
on(z)

V'(z)dy, S

we deduce that

/ [(Azjuj + Arjysw; + Arro + Az + Azo8) @' + W3(U, ¢')] dx
O+

= / (R7ju]‘ + R7;j+3w]‘ + Ry + R78¢) adzsa
S

/ [(Asjuj + Asgjysw; + Asro + Assth + Aggf) ¥ + Wy (U, ¢')] dx
O+

= / (Rsju; + Rs;jrsw; + Rsre + Rssth) ¥/d, S,
S
/ [(Agjuj + Ag,jysw; + Agrp + Aggth + Agg) 67 + W5(U, 0')] dx
O+
= /(R9juj + Ro.j+3w;j + Roof) 0'd,S,
S

where
= [V aWp 4+ a®p) 4+ b(u - W)} V'

(
+ [ (m™ + 1) divu +1Vdivw — 1o + Py — Mo }
(

V(a®p + al ¢)+c0(u—w)} -V
+ [(m(Q) + 1) divu +1Pdivw + (®p — norp — b(2)9} P,
W5(U,0') =kV0 -V —d' 00
— Ty [(ﬁ“) + ) divu + fPdivw + bW + b(2)¢} T —iwf*(u—
Finally, we combine the relations (21) and (23) to deduce the identity
/ A(Dy) U - U + W(U,U')] dx = / R(D,,n)U(z) - U'(2) d, S,

O+

where

w) - Vo'

W(U,U’) = W1 (U, ) + Wo(U,w') + W5(U, ") + Wu(U,y") + W5(U, ¢).

Hence, the following theorem is proved.

(22)

(23)
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Theorem 6. If U= (u,w,p,4,0) and U = (0, w', ¢, ¢, 0) are reqular vectors in QF, then the
identity (25) is valid, where R(Dg,n) and W (U, U’) are defined by (17) and (26), respectively.
Quite similarly as in Theorem 6, on the basis of (16), we obtain the following

Theorem 7. If U = (u,w,,1,0) and U = (0, w', ¢, 0, 0") are regular vectors in Q~, then

/ [A(Dy) U - U’ + W (U, U)] dx = —/R(Dz,n)U(z) U/ (z) d,S. (27)
Q- S

Formulas (25) and (27) are Green’s first identity in the linear theory of thermoviscoelasticity of
binary porous mixtures for domains Q% and Q~, respectively.
We introduce the matrix differential operator A (Dy), where A(Dy) = AT(—Dy) and AT is the

transpose of the matrix A. Obviously, the fundamental matrix of the operator A (Dy) is I'(x), where
I['(x) =T"(—x). (28)

Let U = (u,w,,%,0) and the vector U; be the j-th column of the matrix U = (U};)9xo. By a
direct calculation we obtain the following results.

Theorem 8. If U and ﬁj (j=1,2,...,9) are regular vectors in QT then

[ {AD)TE) V) - 06T AD,)UG)  dy
o+
— [ {R(D20)0@)] UG) - (0@ RD.0)U ()} daS. (29)
S

where the operator R(Dy,n) is defined by

R(Dxan) = (le(Dxa n))9><97 le(Dxa n) = le(Dx7 n)?

RT9(Dxa Il) = _iWTO (ﬁ(l) + ﬂ(1)> ) RT+3;9(DX7 n) = _inOﬂ(g)nrv

i ) ) 9 (30)
]%gr(]:)x7 1’1) = —Rg;r+3(Dx, 1’1) = b*nr, Rgg(Dx, 1’1) = k87n7
l,j=1,2,...,8, r=1,23.
Theorem 9. If U and Uj (j =1,2,...,9) are regular vectors in Q~, then

[ {A®)0E) V) - [O6)]TAD,)UE) v
o

— [ {IRD.0)0@)] V() - (0] R(D.0)U(a) } 5. (31)
S

Formulas (30) and (31) are Green’s second identities in the linear theory of thermoviscoelasticity
of binary porous mixtures for the domains Q% and Q~, respectively.
With the help of the relations (28), (29) and (31) we can derive the following useful consequences.

Theorem 10. If U is a reqular vector in QT , then

Ux) = / {[R(Dz, n)I'" (x — 2)] "U(z) — I'(x — z) R(D,, n)U(z)} d,S
S

+/I‘(x—y) A(Dy)U(y)dy for xeQ. (32)
O+
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Theorem 11. If U is a regular vector in 1, then

U(x) = — / {IR(D,,0)I" (x - 2)] "U(z) - T(x ~ 2) R(D,,0)U(2) } d,5

S

+ / I'x—y)ADy)U(y)dy for xeQ . (33)
o

Formulas (32) and (33) are integral representations of the regular vector (Green’s third identity)

in the linear theory of thermoviscoelasticity of binary porous mixtures for the domains QF and Q)
respectively.

6. UNIQUENESS THEOREMS

In this section, on the basis of Green’s first identity we prove the uniqueness of regular (classical)
solutions of BVPs (K )F ¢ and (K)g ¢, where K = I,II. The scalar product of two vectors U =

l __ _
(U1,Ua,...,U)) and V = (V4,V,,..., V) is denoted by U -V = " U;V;, where V; is the complex
=1

conjugate of V.
We have the following
Theorem 12. If the conditions
w* >0, 3N+ 2u" >0, & >0,
ATy > V" Ty + f*)?, o1me—oom #0 (34)

are satisfied, then the internal BVP (I )F ¢ admits at most one reqular solution.

Proof. Suppose that there are two regular solutions of the problem (I );f Then their difference U
corresponds to the zero data (F = f = 0), i.e., U is a regular solution of the homogeneous equation

AMD,)Ux)=0 (35)
for x € Q7 and satisfies the homogeneous boundary condition
{U@)}" =0 (36)
Then, employing the conditions (35) and (36), we can derive from (21) and (23)

/mUu /%Uw /% Lp)d

(37)
/wuuwmx=q /quﬁMXZQ
+ a+
where Wy, Wa, ..., W;s are defined by (22) and (24).
In view of the relations (6) and (8), we can write
o + 3ahy — 261 = g + 3ag — 2(p + 2 + 27) — iw (3N + 2u*),
o) e = o+ p+ 20+ 2y — 2w,
(38)

i ful® + 26 Refu - w)] + 7 [wl* = (p160” = €) |ul® + 26Re[u - w)
+(paw® — &) [W[* + iwg” Ju — wl?.
Obviously, on the basis of (22), (24) and (38), it follows that
Im [Wl (Ua ll) + WQ(U7 W) + W3(U7 QO) + W4(Ua ZZJ)]

—%(3/\* + 2p%) |divul? = 20W O (u, u) — we*|u — w?

<4m{kﬂ”+B®Mwﬁ+ﬂ@HWW+U”¢+U%ﬂG—NVHWu—w”, (39)
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1

ReWs(U, ) = i|ve|2 +1Im [(BY + ) divu + fPdivw 4+ bP e + by | 0
(JJTO wTO

1
+—f"Im[(u—w)- V0]
Ty
Clearly, from (39), we get

L ReWs(U,0) — Im [W1(U, 0) + Wa(U, w) + Ws(U, ) + Wi(U, )]

OJTO
= %(3)\* +2p) |divu|? 4 20W @ (u, u) + wE*|u — w? (40)
+L\V9|2 — (b + - Im[(u—w)- V0.
CUTO TO

In view of (37) and (40), we have
%(w +2p) |div u)? + 20W O (u, 1) + we |u — wl?

+wiT0|ve|2 - (b* + g) Im[(u—w)- V0] =0.
By virtue of (34), the last equation leads to the following relations:
divu(x) =0, WO(u,u) =0, u(x)=w(x),
Vo(x)=0, xecQ.
Then, employing (18), (22) and (41), we can derive from (37)

Wi(u,u) + Wy(u,u) = WO (u,u) + 203 (u,u) + WO (u,u)

(41)

= % @] — &1 +2(B1 — e2) + 71 — es] |ewrluf® — () + 26" +mp)[uf* = —p?uf* =0 (42)
and consequently, from (42), we have
u(x)=0 for xe Q. (43)
Now, taking into account (41) and (43), from (35), we deduce the system
o1V + 03V =0, 7Vp+ Vi =N0. (44)
By virtue of the last relation of (34), from (44), we obtain Vo = V¢ = 0. Combining this relation
with (41) and (43), we may further conclude that
ux) =w(x) =0, @x)=c, »x)=cy 0O(x)=c3 for xeQF, (45)

where c¢1,co and c3 are arbitrary complex numbers. Finally, in view of the homogeneous boundary
condition (36), from (45), we get ¢; = ca = ¢3 = 0. Thus, U(x) =0 for x € QF, and we have the
desired result. 0

Theorem 13. If the conditions (34) and
m —c® pD)
det | —¢® Mo b £0 (46)

1 2
p(D) b2 o/,

are satisfied, then the internal BVP (II);Cf admits at most one reqular solution.

Proof. Suppose that there are two regular solutions of problem (11 );Ef Then their difference U

corresponds to zero data (F =f = 0), i.e., U is a regular solution of problem (II)gAO. Consequently,
U is a regular solution of the system of homogeneous equations (35) satisfying the homogeneous
boundary condition

{R(D,,n(z))U(z)}" =0 for zeS.
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In a similar manner as in Theorem 12 we obtain the relations (45). We now combine (45) with (35)
to deduce the system

mey = (Pey +0Wes =0,
—(Bey +maco + 5P ez =0, (47)

b(l)cl + b(2)02 +ac3 = 0.
By virtue of (46), from (47), we obtain ¢; = ¢3 = ¢3 = 0 and, therefore, we get the relation U(x) =0
for x € Q7. Hence, the uniqueness of a regular solution to problem (17 )gf follows. O

Quite similarly, on the basis of the condition (16) and the identity (27), we obtain the following

Theorem 14. If condition (34) is satisfied, then the external BVP (K)g ¢ admits at most one reqular
solution, where K = I,11.

7. SURFACE AND VOLUME POTENTIALS
We introduce the following notation:
i) QW (x,g) = [T(x —y)g(y)dysS is the single-layer potential,
S
i) Q?(x,g) = [[R(Dy,n(y))L'"(x —y)]"g(y)dyS is the double-layer potential, and
S

iii) Q® (x, ¢, 0%F) = [ T'(x — y)¢(y)dy is the volume potential,
O*
where the matrices I'(x) and R(Dy) are given by (14) and (30), respectively; g and ¢ are the nine-
component vector functions.
Obviously, on the basis of Green’s third identities (32) and (33), the regular vector U in Q7 is
represented by the sum of the single-layer, double-layer and volume potentials as follows:
U(x) = Q¥ (x,U) - QW (x,RU) + Q¥ (x,AU, Q") for x e QF.
Similarly, the regular vector U in 2~ is represented by the sum
Ux) = -Q?(x,U) + QW (x,RU) + Q¥ (x, AU, Q") for xe Q.
On the basis of (14) and (15), we have the following results.

Theorem 15. If S € C™+' g e C™v"(S), 0 < v” < v’ <1, and m is a non-negative integer,
then:

a)
QW(,g) € C¥" (RS N C™H(@F) N C>(Q),
b)
A(Dx) Q" (x.g) =0,
0
{R(D,n(z) QV( 8)}* = F ; g(z) + R(D,.n(x) Q" (z.5) (48)
Q)

R(D,,n(z)) Q" (z,g)
is a singular integral, where z € S, x € QF and

{R(D,,n(2)) Q" (z,g)}* =  lim R(Dxn(2) Q" (x,g).

Qt>x— zeS

Theorem 16. If S € C"t1' gc Cmv"(9), 0 < v’ <v' <1, then:
a)
Q¥ (g) € O™ (AF) N C> (%),
b)
A(Dx) Q(2) (X> g) =0,
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¢)
1
QP (zg)}* =+ 382 + Q% (28 (49)

for the non-negative integer m,

d) QP (z,g) is a singular integral, where z € S,

)

{R(D.,n(2)) Q?(2,8)} " = {R(Dy,n(2)) Q) (2,8)}~

for the natural number m, where z € S, x € QF and

{QP(z,g)}*=  lim Q@(xg).

Qf>x— z€S

Theorem 17. If S e CYV', ¢ € CO*"(OF), 0 < v” < v’ <1, then:
a)
Q¥(,¢,07) e C @) nCA@) e (aF),
b)
A(Dx) Q¥ (x,¢,27) = ¢(x),
where x € QF, Qg’ is a domain in R3 and Qia' c Q.
Theorem 18. If S € CY*', suppp =Q C Q~, € CO"(Q7), 0 < v” < v’ <1, then:
a)
Q¥ (,¢.07) e C (R NCHQT) N O (),
b)
A(Dx) QY (x,6,27) = $(x),

where x € Q7, Q is a bounded domain in R® and Qg C Q™.

We here introduce the following notation:

KWg(s) = S gle) + QP (r8).  KPg(z) =~ 8(s) + R(D,.n(2)Q") (7, 8)

—_

2

KVg() = 5 82) + QP (ng),  KVgle) = 8(0) + RD,n(2)Q" (m,g),  (50)

1
K.g(z) = D) g(z) +<Q¥(z,g) for zesb,

where ¢ is a complex parameter. On the basis of Theorems 15 and 16, £9) (j = 1,2,3,4) and K, are
singular integral operators.
We introduce the notation

py = pn —iwp, = pt+E+y+20 pe =K+,
py=r+v+(  pg=py+p2+3us, € =ag+ kK-,
er=at+kr—7, e=7+tLr-7 e=P>F-Kt+7, (51)
ep =€l +eates, b= — B, by=pjp — 3,
bo :ulug—ug, bg:elleg—eg, b3 16162763.
Let o) = (Ul(ﬁ)gxg be the symbol of the singular integral operator XU) (j = 1,2,3,4). Taking
into account (50) and (51), by a long calculation for det o), we find that

, 1 koks
det () - _
g 512 koky

j = 1527374a (52)
where ko and k; are defined by (10) and

k2 = (o + 1) (vo + 1) = (Bo+ B1)?, ks = kbl + (k — 7) (b + €pbh)- (53)
On the basis of (6), (8) and (51), from (10) and (53), we have
Imky = —w(A\* 4+ 2u™ )y, Imk) = —wp*yy, Imks = —w(AN* 4+ 3u™) (v + 71),
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Imks = —w(A* + p*)brez — wp'bsyr — w(k — ) [N (noez + b2) + 1" (p2eo + bs)] .
Clearly, if
Imk; #0, 1=0,1,2,3, (54)
then from (52), it follows that
det o) £ 0 (55)
which proves that the singular integral operator £7) is of the normal type, where j = 1,2,3,4. Hence
we have the following

Theorem 19. If condition (54) is satisfied, then the singular integral operator KU is of the normal
type, where j = 1,2,3,4.

Let o¢ and ind K¢ be the symbol and the index of the operator K., respectively. It can be easily
shown that det o¢ vanishes only at four points ¢; (j = 1,2,3,4) of the complex plane. By virtue of
(55) and det oy = det V)| we get gj # 1 for j =1,2,3,4, and we obtain

ind K™ = ind K; = 0.

In a quite similar manner, we have the relation ind (2 = 0. We can easily verify that the operators
K®) and K@ are the adjoint operators for K2 and K1), respectively. Consequently, we have

indK® = —indK® =0, indk™® = —ind k™ = 0.

Hence, the singular integral operator ) (j =1,2,3,4) is of the normal type with an index equal
to zero, i.e., Fredholm’s theorems are valid for K/). Thus, we have proved the following

Theorem 20. If condition (54) is satisfied, then Fredholm’s theorems are valid for the singular integral
operator KU, where j = 1,2,3, 4.

Remark 1. The definitions of a normal type singular integral operator, the symbol and the index of
the operator are given in [18,20]. In addition, in these books, one can find the method for calculating
the symbol of singular integral operator.

8. EXISTENCE THEOREMS

In what follows, we assume that the constitutive coefficients satisfy the conditions (34), (46) and
(54). Obviously, by Theorems 17 and 18, the volume potential Q) (x, F, Q%) is a partial regular
solution of the nonhomogeneous equation (9), where F € C%'(0%), 0 < v/ < 1 and supp F is a finite
domain in 7. Therefore, in this section, we prove the existence theorems for classical solutions of the
BVPs (K)§¢ and (K)g ¢, where K = I, 11.

Problem (I )g’f. We are looking for a regular solution to this problem in the form of a double-layer
potential

Ux) = Q¥ (x,g) for xeQt, (56)
where g is the required nine-component vector function. By Theorem 16, the vector function U is
a solution of the homogeneous equation (35) for x € QF. Keeping in mind the boundary condition
{U(z)}* = f(z) and using (49), from (56), for determining the unknown vector g, we obtain a singular
integral equation

KWg(z) =f(z) for zeS. (57)

By Theorem 20, Fredholm’s theorems are valid for the operator (). We prove that (57) is always
solvable for an arbitrary vector f. Let us consider the adjoint homogeneous equation

KWhy(z) =0 for zeS, (58)

where hg is the required nine-component vector function.

Now we prove that (58) has only the trivial solution. Indeed, let hg be a solution of the homogeneous
equation (58). On the basis of Theorem 15 and equation (58), the vector function V(x) = Q™ (x,h)
is a regular solution of problem (II)q 4. Using Theorem 14, problem (/1)g o has only the trivial
solution, that is,

V(x)=0 for xeQ™. (59)
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On the other hand, by Theorem 15 and equation (59), we get {V(z)}+ = {V(z)}~ =0 for z € S,
i.e., the vector V(x) is a regular solution of problem (I)BL,U Using Theorem 12, problem (I)(Ji0 has
only the trivial solution, i.e.,

V(x)=0 for xeQt. (60)
By virtue of (59), (60) and identity (48), we obtain
ho(z) = {R(D,,n)V(z)}” — {R(D,,n)V(z)}t =0 for zecS.
Thus, the homogeneous equation (58) has only the trivial solution and, therefore, (57) is always

solvable for an arbitrary vector f.
We have thereby proved

Theorem 21. If S € C2¥', f e C'""(S), 0 < v” < v’ < 1, then a regular solution of problem
(I);{f exists, is unique and represented by the double-layer potential (56), where g is a solution of the
singular integral equation (57) which is always solvable for an arbitrary vector f.

Problem (1), ;. We are looking for a regular solution to this problem in the form of a single-layer
potential
Ux)=QW(x,h) for xeQ, (61)
where h is the required nine-component vector function. Obviously, by Theorem 15, the vector function
U is a solution of (35) for x € Q~. Keeping in mind the boundary condition {R(D,,n(z))U(z)}~ =
f(z) and using (48), from (61), for determining the unknown vector h, we obtain a singular integral
equation
KWh(z) =f(z) for z€S. (62)
It has been proved above that the corresponding homogeneous equation (58) has only the trivial
solution. Hence, it follows that (62) is always solvable.
We have thereby proved

Theorem 22. If S € C?¥', f € C’O’””(S), 0 <v” <v' <1, then a regular solution of problem
(I1)g ¢ exists, is unique and represented by a single-layer potential (61), where h is a solution of the
singular integral equation (62) which is always solvable for an arbitrary vector f.

Problem (II )(J]r’f. We are looking for a regular solution to this problem in the form of a single-layer
potential

Ux) = QW(x,h) for xeQF, (63)

where h is the required nine-component vector function. Obviously, by Theorem 15, the vector function

U is a solution of (35) for x € Q. Keeping in mind the boundary condition {R(D,,n(z))U(z)} =

f(z) and using (48), from (63), for determining the unknown vector h, we obtain a singular integral
equation

K®h(z) =f(z) for z€S. (64)

We now prove that (64) is always solvable for an arbitrary vector f. Let hy be a solution of the

homogeneous equation

K®n(z)=0 for zeS. (65)

On the basis of Theorem 15 and equation (65), the vector function V(x) = Q)(x, hy) is a regular

solution of problem (17 )g o- Using Theorem 13, problem (/7 )3,0 has only the trivial solution, that is,

V(x)=0 for xeQt. (66)

On the other hand, by Theorem 15 and equation (66), we get {V(z)}* = {V(z)}” =0 for z € S,
i.e., the vector V(x) is a regular solution of problem (I)qg . Now, using Theorem 14, problem (1)q o
has only the trivial solution, that is,

V(x)=0 for xe. (67)
By virtue of (66), (67) and identity (48), we obtain
hy(z) = {R(D,,n)V(z)}” — {R(D,,n)V(z)}T =0 for z€S.
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Thus, the homogeneous equation (65) has only the trivial solution and, therefore, (64) is always
solvable for an arbitrary vector f.
We have thereby proved

Theorem 23. If S € C2¥', £ e C%"(S), 0 < v” < v’ < 1, then a regular solution of problem
(II)(J{’f exists, is unique and represented by a single-layer potential (63), where h is a solution of the
singular integral equation (64) which is always solvable for an arbitrary vector f.

Problem (I )g’f. Finally, we are looking for a regular solution to this problem in the form of a
double-layer potential

Ux) = Q¥ (x,g) for xeQ, (68)
where g is the required nine-component vector function. Obviously, by Theorem 16, the vector function
U is a solution of (35) for x € Q7. Keeping in mind the boundary condition {U(z)}~ = f(z) and
using (49), from (68), for determining the unknown vector g, we obtain a singular integral equation

K®h(z) = f(z) for zeS. (69)

It has been proved above that the adjoint homogeneous equation (65) has only the trivial solution.
Hence, it follows that (69) is always solvable.
Thus, we have thereby proved

Theorem 24. IfS e C>' fe C'"(S),0<v" <v' <1, then a regular solution of problem (Do
exists, is unique and represented by a double-layer potential (68), where g is a solution of the singular
integral equation (69) which is always solvable for an arbitrary vector f.

9. CONCLUDING REMARKS

In this paper, the linear theory of thermoviscoelasticity for binary porous mixtures is considered
and the following results are obtained.

a) The fundamental solution of the system of equations of steady vibrations is constructed explicitly
and its basic properties are established.

b) Green’s identities are obtained.

¢) The uniqueness theorems for classical solutions of the internal and external basic BVPs of steady
vibrations are proved.

d) The surface and volume potentials are constructed and their basic properties are given.

e) The determinants of symbolic matrices are calculated explicitly.

f) The BVPs are reduced to the always solvable singular integral equations for which Fredholm’s
theorems are valid.

g) Finally, the existence theorem for classical solutions of the internal and external BVPs of steady
vibrations are proved by means of the potential method and the theory of singular integral equations.
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