BASIS AND DIMENSION OF EXPONENTIAL VECTOR SPACE

JAYEETA SAHA ${ }^{1 *}$ AND SANDIP JANA ${ }^{2}$

Abstract

Exponential vector space [shortly evs] is an algebraic order extension of a vector space in the sense that every evs contains a vector space and, conversely, every vector space can be embedded into such a structure. This evs structure consists of a semigroup structure, a scalar multiplication and a partial order. In this paper, we have developed the concepts of a basis and dimension of an evs by introducing the ideas of an orderly independent set and generating set with the help of partial order and algebraic operations. We have found that like a vector space, an evs does not contain basis always. We have established a necessary and sufficient condition for an evs to have a basis. It was shown that the equality of dimension is an evs property, but the converse is not true. We have studied the dimension of a subevs and found that every evs contains a subevs with all possible lower dimensions. Lastly, we have computed the basis and dimension of some evs which help us to explore the theory of basis by creating counter-examples in different aspects.

1. Introduction

Exponential vector space is an algebraic ordered extension of a vector space. The word 'extension' is used because of the fact that every exponential vector space contains a vector space and, conversely, every vector space can be embedded into such a structure. This structure comprises a semigroup structure, a scalar multiplication and a compatible partial order. We now start with the definition of evs.
Definition $1.1([7])$. Let (X, \leq) be a partially ordered set, ' + ' be a binary operation on X [called addition] and ' $'$ ' $K \times X \longrightarrow X$ be another composition [called scalar multiplication, K being a field]. If the operations and the partial order satisfy the axioms below, then $(X,+, \cdot, \leq)$ is called an exponential vector space (in short evs) over K [This structure was initiated under the name quasi-vector space or qus by S. Ganguly et al. in [1]].

$$
\begin{aligned}
& A_{1}:(X,+) \text { is a commutative semigroup with identity } \theta \\
& . A_{2}: x \leq y(x, y \in X) \Rightarrow x+z \leq y+z \text { and } \alpha \cdot x \leq \alpha \cdot y, \forall z \in X, \forall \alpha \in K \\
& . A_{3}:(\text { i) } \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y ; \\
& \text { (ii) } \alpha \cdot(\beta \cdot x)=(\alpha \beta) \cdot x ; \\
& \text { (iii) }(\alpha+\beta) \cdot x \leq \alpha \cdot x+\beta \cdot x ; \\
& \text { (iv) } 1 \cdot x=x, \text { where ' } 1 \text { ' is the multiplicative identity in } K, \\
& \forall x, y \in X, \forall \alpha, \beta \in K ; \\
& A_{4}: \alpha \cdot x=\theta \text { iff } \alpha=0 \text { or } x=\theta ; \\
& A_{5}: x+(-1) \cdot x=\theta \text { iff } x \in X_{0}:=\{z \in X: y \not \leq z, \forall y \in X \backslash\{z\}\} ; \\
& A_{6}: \text { For each } x \in X, \exists p \in X_{0} \text { such that } p \leq x .
\end{aligned}
$$

In the above definition, axiom A_{3} (iii) indicates a rapid growth of the elements of X due to the fact that $x+x \geq 2 x$ and axiom A_{6} gives some positive sense of each element. These two facts express the exponential behaviour of the elements of an evs.

[^0]In axiom A_{5}, we can notice that X_{0} is precisely the set of all minimal elements of the evs X with respect to the partial order on X and forms the maximal vector space (within X) over the same field as that of $X([1])$. We call this vector space X_{0} as the 'primitive space' or 'zero space' of X and the elements of X_{0} as 'primitive elements'.

Also, given any vector space V over some field K, an evs X can be constructed (as is shown below) such that V is isomorphic to X_{0}. In this sense, an "exponential vector space" can be considered as an algebraic ordered extension of a vector space.
Example 1.2 (7]). Let $X:=\{(r, a) \in \mathbb{R} \times V: r \geq 0, a \in V\}$, where V is a vector space over some field K. Define operations and partial order on X as follows: for $(r, a),(s, b) \in X$ and $\alpha \in K$,
(i) $(r, a)+(s, b):=(r+s, a+b)$;
(ii) $\alpha(r, a):=(r, \alpha a)$, if $\alpha \neq 0$ and $0(r, a):=(0, \theta), \theta$ being the identity in V;
(iii) $(r, a) \leq(s, b)$, iff $r \leq s$ and $a=b$.

Then X becomes an exponential vector space over K with the primitive space $\{0\} \times V$ which is evidently isomorphic to V.

Initially, the idea of this structure was given by S. Ganguly et al. under the name "quasi-vector space" in [1] and the following example of the hyperspace was the main motivation behind this new structure.

Example $1.3(\| 1])$. Let $\mathscr{C}(\mathcal{X})$ be the topological hyperspace consisting of all non-empty compact subsets of a Hausdörff topological vector space \mathcal{X} over the field \mathbb{K} of real or complex numbers. Then $\mathscr{C}(\mathcal{X})$ becomes an evs with respect to the operations and partial order defined as follows. For $A, B \in$ $\mathscr{C}(\mathcal{X})$ and $\alpha \in \mathbb{K}$,
(i) $A+B:=\{a+b: a \in A, b \in B\}$;
(ii) $\alpha A:=\{\alpha a: a \in A\}$;
(iii) the usual set-inclusion as the partial order.

We now topologise an exponential vector space. For this we need the following concept.
Definition $1.4([5])$. Let ' \leq ' be a preorder in a topological space Z; the preorder is said to be closed if its graph $G_{\leq}(Z):=\{(x, y) \in Z \times Z: x \leq y\}$ is closed in $Z \times Z$ (endowed with the product topology). Theorem $1.5(\boxed{5]})$. A partial order ' \leq ' in a topological space Z will be a closed order iff for any $x, y \in Z$ with $x \not \leq y, \exists$ open neighbourhoods U, V of x, y respectively in Z such that $(\uparrow U) \cap(\downarrow V)=\emptyset$, where $\uparrow U:=\{z \in Z: z \geq u$ for some $u \in U\}$ and $\downarrow V:=\{z \in Z: z \leq v$ for some $v \in V\}$.
Definition $1.6(\mid 7])$. An exponential vector space X over the field \mathbb{K} of real or complex numbers is said to be a topological exponential vector space if there exists a topology on X with respect to which the addition and the scalar multiplication are continuous and the partial order ' \leq ' is closed (here, \mathbb{K} is equipped with the usual topology).
Remark 1.7. If X is a topological exponential vector space, then its primitive space X_{0} becomes a topological vector space, since the restriction of a continuous function is continuous. Moreover, the closedness of the partial order ' \leq ' in a topological exponential vector space X readily implies (in view of Theorem 1.5 that X is Hausdörff and hence X_{0} becomes a Hausdörff topological vector space.
Example $1.8([2])$. Let $X:=[0, \infty) \times V$, where V is a vector space over the field \mathbb{K} of real or complex numbers. Define operations and partial order on X as follows: for $(r, a),(s, b) \in X$ and $\alpha \in \mathbb{K}$,
(i) $(r, a)+(s, b):=(r+s, a+b)$;
(ii) $\alpha(r, a):=(|\alpha| r, \alpha a)$;
(iii) $(r, a) \leq(s, b)$ iff $r \leq s$ and $a=b$.

Then $[0, \infty) \times V$ becomes an exponential vector space with the primitive space $\{0\} \times V$ which is clearly isomorphic to V.

In this example, if we consider V as a Hausdörff topological vector space, then $[0, \infty) \times V$ becomes a topological exponential vector space with respect to the product topology, where $[0, \infty)$ is equipped with the subspace topology inherited from the real line \mathbb{R}.

If instead of V we take the trivial vector space $\{\theta\}$ in this example, then the resulting topological evs is $[0, \infty) \times\{\theta\}$ which can be clearly identified with the half-ray $[0, \infty)$ of the real line.

In this paper, we have developed the concept of the basis and dimension of an evs. We know that the basis of a vector space is a minimal part of it which generates the entire space. But in an evs it is impossible to express every element as a linear combination of some particular elements due to the exponential behaviour of its elements. In this paper, with the help of partial order we have developed the ideas of generating sets, orderly independent sets which allow us to define the basis. It has been shown that the basis of an evs is identified by a minimal generating set, whereas a maximal orderly independent set fails to form a basis [shown by a counter example], though every basis is a maximal orderly independent set. The main difference between a vector space and an evs in this respect is that an evs may not have a basis always (like a vector space). But for a topological evs, we have shown that if it has a basis, then it contains uncountably many bases. We have found out a property of every element of a basis which helped us to give a necessary and sufficient condition for an evs to have a basis. After that we have introduced the concept of dimension of an evs and shown that equality of dimension is an evs property, though two non-order-isomorphic evs may have the same dimension.

Lastly, we have studied the dimension of subevs and shown that every evs contains subevs(s) with all possible lower dimensions. In the last section of this paper, computations of the basis and dimension of some evs are given.

2. Prerequisites

In this section, we have discussed some definitions, results and examples of an exponential vector space which are very important in developing the main context. We now start with the definition of a subevs.
Definition $2.1([4])$. A subset Y of an exponential vector space X is said to be a sub-exponential vector space (subevs in short) if Y itself is an exponential vector space with respect to the compositions of X being restricted to Y.
Note $2.2([4])$. A subset Y of an exponential vector space X over a field K is a sub exponential vector space, iff Y satisfies the following:
(i) $\alpha x+y \in Y, \forall \alpha \in K, \forall x, y \in Y$;
(ii) $Y_{0} \subseteq X_{0} \bigcap Y$, where $Y_{0}:=\{z \in Y: y \not \leq z, \forall y \in Y \backslash\{z\}\}$;
(iii) for any $y \in Y, \exists p \in Y_{0}$ such that $p \leq y$.

If Y is a subevs of X, then actually $Y_{0}=X_{0} \cap Y$, since for any $Y \subseteq X$, we have $X_{0} \cap Y \subseteq Y_{0}$. $[0, \infty) \times\{\theta\}$ is, clearly, a subevs of the evs $[0, \infty) \times V$.

We have used the following result to form a non-topological exponential vector space.
Result 2.3 ([]]). In a topological evs X, if $a=a+x$ for some $a, x \in X$, then $x=\theta$.
To talk about an evs property of this space we have to know the idea of an order-morphism.
Definition $2.4([2])$. A mapping $f: X \longrightarrow Y(X, Y$ being two exponential vector spaces over the field K) is called an order-morphism if
(i) $f(x+y)=f(x)+f(y), \forall x, y \in X$;
(ii) $f(\alpha x)=\alpha f(x), \forall \alpha \in K, \forall x \in X$;
(iii) $x \leq y(x, y \in X) \Rightarrow f(x) \leq f(y)$;
(iv) $p \leq q(p, q \in f(X)) \Rightarrow f^{-1}(p) \subseteq \downarrow f^{-1}(q)$ and $f^{-1}(q) \subseteq \uparrow f^{-1}(p)$.

A bijective (injective, surjective) order-morphism is called an order-isomorphism (order-monomorphism, order-epimorphism, respectively).

If X, Y are two topological evs over \mathbb{K}, then an order-isomorphism $f: X \longrightarrow Y$ is said to be a topological order-isomorphism if f is a homeomorphism.
Definition 2.5. A property of an evs is called an evs property if it remains invariant under an order-isomorphism.

The concept of order-isomorphism is competent enough to extract the structural beauty of an evs by judging the invariance of its various properties. Since the composition of two order-isomorphisms, the inverse of an order-isomorphism and the identity map are again order-isomorphisms, the concept
thereby produces a partition on the collection of all evs over some common field; this helps one to distinguish two evs belonging to two different classes under this partition.
Definition 2.6 ([4]). In an evs X, the primitive of $x \in X$ is defined as the set

$$
P_{x}:=\left\{p \in X_{\circ}: p \leq x\right\} .
$$

Axiom A_{6} in Definition 1.1 ensures that the primitive of each element of an evs is nonempty.
Definition $2.7([4])$. An evs X is said to be a single primitive evs if P_{x} is a singleton set for each $x \in X$. Also, in a single primitive evs $X, P_{x+y}=P_{x}+P_{y}$ and $P_{\alpha x}=\alpha P_{x}, \forall x, y \in X$ and for all scalar α.

Single primitivity is an evs property [4].
Definition $2.8([4])$. An evs X is said to be a comparable evs if $\forall x, y \in X, P_{x}=P_{y} \Rightarrow x$ and y are comparable with respect to the partial order of X.

This is also an evs property 4 .
We now give some examples of an exponential vector space to build up some counter-examples of the main section.
Example 2.9 ([3]). (Arbitrary product of exponential vector spaces) Let $\left\{X_{i}: i \in \Lambda\right\}$ be an arbitrary family of exponential vector spaces over a common field K and $X:=\prod_{i \in \Lambda} X_{i}$ be the Cartesian product. Then X becomes an exponential vector space over K with respect to the following operations and partial order:

For $x=\left(x_{i}\right)_{i}, y=\left(y_{i}\right)_{i} \in X$ and $\alpha \in K$ we define (i) $x+y:=\left(x_{i}+y_{i}\right)_{i}$, (ii) $\alpha x:=\left(\alpha x_{i}\right)_{i}$, (iii) $x \ll y$ if $x_{i} \leq y_{i}, \forall i \in \Lambda$.

Here the notation $x=\left(x_{i}\right)_{i} \in X$ means that the point $x \in X$ is the map $x: i \mapsto x_{i}(i \in \Lambda)$, where $x_{i} \in X_{i}, \forall i \in \Lambda$. The additive identity of X is given by $\theta=\left(\theta_{i}\right)_{i}, \theta_{i}$ being the additive identity in X_{i}. Also, the primitive space of X is given by $X_{0}=\prod_{i \in \Lambda}\left[X_{i}\right]_{0}$.

This product space X becomes a topological exponential vector space over the field \mathbb{K} whenever each factor space X_{i} is a topological evs over \mathbb{K} and X is endowed with the product topology, which is the weakest topology on X so that each projection map $p_{i}: X \longrightarrow X_{i}$ given by $p_{i}: x \longmapsto x_{i}$ is continuous.

Thus for any cardinal number $\beta,[0, \infty)^{\beta}$ becomes a topological evs.
Example 2.10. Let X be an evs over the field \mathbb{K} (either \mathbb{R} or \mathbb{C}) and V be a vector space over the same field \mathbb{K}. We now give operations on $X \times V$ like $[0, \infty) \times V$, i.e., for $\left(x_{1}, e_{1}\right),\left(x_{2}, e_{2}\right),(x, e) \in X \times V$ and $\alpha \in \mathbb{K}$:
(i) $\left(x_{1}, e_{1}\right)+\left(x_{2}, e_{2}\right):=\left(x_{1}+x_{2}, e_{1}+e_{2}\right)$.
(ii) $\alpha(x, e):=(\alpha x, \alpha e)$.

The partial order ' \leq ' is defined as: $\left(x_{1}, e_{1}\right) \leq\left(x_{2}, e_{2}\right)$, iff $x_{1} \leq x_{2}$ and $e_{1}=e_{2}$. Then $X \times V$ becomes an evs over the field \mathbb{K}. Justification of this is straightforward.

Example 2.11. Let $\mathscr{C}_{\theta}(\mathcal{X})$ be the collection of all compact subsets of a Hausdörff topological vector space \mathcal{X} containing θ (the identity in \mathcal{X}). So, $\mathscr{C}_{\theta}(\mathcal{X}) \subseteq \mathscr{C}(\mathcal{X})$. If we take any two members $A, B \in$ $\mathscr{C}_{\theta}(\mathcal{X})$ and any $\alpha \in \mathbb{K}$, then $\alpha A+B \in \mathscr{C}_{\theta}(\mathcal{X})$. Again, $\left[\mathscr{C}_{\theta}(\mathcal{X})\right]_{0}=\{\{\theta\}\}=[\mathscr{C}(\mathcal{X})]_{0} \cap \mathscr{C}_{\theta}(\mathcal{X})$. For any $A \in \mathscr{C}_{\theta}(\mathcal{X}),\{\theta\} \subseteq A$ which shows that $\mathscr{C}_{\theta}(\mathcal{X})$ is a subevs of $\mathscr{C}(\mathcal{X})$ [by note 2.2].
Example $2.12([4])$. Let \mathcal{X} be a vector space over the field \mathbb{K} of real or complex numbers. Let $\mathscr{L}(\mathcal{X})$ be the set of all linear subspaces of \mathcal{X}. We now define $+, \cdot, \leq$ on $\mathscr{L}(\mathcal{X})$ as follows: For $\mathcal{X}_{1}, \mathcal{X}_{2} \in \mathscr{L}(\mathcal{X})$ and $\alpha \in \mathbb{K}$ we define
(i) $\mathcal{X}_{1}+\mathcal{X}_{2}:=\operatorname{span}\left(\mathcal{X}_{1} \cup \mathcal{X}_{2}\right)$, (ii) $\alpha \cdot \mathcal{X}_{1}:=\mathcal{X}_{1}$, if $\alpha \neq 0$ and $\alpha \cdot \mathcal{X}_{1}:=\{\theta\}$, if $\alpha=0$ (θ being the additive identity of \mathcal{X}), (iii) $\mathcal{X}_{1} \leq \mathcal{X}_{2}$ iff $\mathcal{X}_{1} \subseteq \mathcal{X}_{2}$.

Then $(\mathscr{L}(\mathcal{X}),+, \cdot, \leq)$ is an exponential vector space over \mathbb{K}.
Since every element of $\mathscr{L}(\mathcal{X})$ is an idempotent $\left[\because \mathcal{X}_{1}+\mathcal{X}_{1}=\mathcal{X}_{1}\right.$, for all $\left.\mathcal{X}_{1} \in \mathscr{L}(\mathcal{X})\right]$, we can say that there is no topology with respect to which $\mathscr{L}(\mathcal{X})$ can be a topological evs [since a topological evs cannot contain any idempotent element, as follows from the Result 2.3.

Example $2.13([6])$. Let us consider $\mathscr{D}^{2}([0, \infty)):=[0, \infty) \times[0, \infty)$. We define $+, \cdot, \leq$ on $\mathscr{D}^{2}([0, \infty))$ as follows:
For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathscr{D}^{2}([0, \infty))$ and $\alpha \in \mathbb{C}$, we define
(i) $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$;
(ii) $\alpha \cdot\left(x_{1}, y_{1}\right)=\left(|\alpha| x_{1},|\alpha| y_{1}\right)$;
(iii) $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Longleftrightarrow$ either $x_{1}<x_{2}$ or if $x_{1}=x_{2}$, then $y_{1} \leq y_{2}$ [dictionary order].

Then $\left(\mathscr{D}^{2}([0, \infty)),+, \cdot, \leq\right)$ becomes a non-topological exponential vector space over the complex field \mathbb{C}.

Note $2.14([6])$. For a well-ordered set I and an evs X, if we consider $\mathscr{D}(X: I):=X^{I}$, then also, like the above example, it forms a non-topological evs with dictionary order. If $I=\{1,2, \ldots, n\}$, we usually denote the evs $\mathscr{D}(X: I)$ as $\mathscr{D}^{n}(X)$. We can also generalise this by taking different evs i.e., $\mathscr{D}\left(X_{\alpha}: \alpha \in I\right):=\prod_{\alpha \in I} X_{\alpha}$, which also becomes a non-topological evs with dictionary order.

3. Basis and Dimension: General Discussion

In this section, we have introduced the concepts of a basis and dimension of an exponential vector space. These concepts are different from those already given in a vector space. Like a vector space, it is not true that every evs contains a basis, rather it behaves like a module in this respect. We have found a necessary as well as sufficient condition for an evs to have a basis. Finally, we have computed a basis and dimension of some particular evs.
Definition 3.1. Let X be an evs over the field K and $x \in X \backslash X_{0}$. Define

$$
L(x):=\left\{z \in X: z \geq \alpha x+p, \alpha \in K^{*}, p \in X_{0}\right\}, \text { where } K^{*} \equiv K \backslash\{0\} .
$$

We name these sets $L(x)$ for different x 's in $X \backslash X_{0}$ as testing sets of X.
We discuss below some properties of $L(x)$. First of all note that $L(x)=\uparrow\left(K^{*} x+X_{0}\right)$.
Proposition 3.2. (i) $\forall x \in X \backslash X_{0}, x \in L(x)$ and $\uparrow L(x)=L(x)$.
(ii) $x \leq y\left(x, y \in X \backslash X_{0}\right) \Rightarrow L(x) \supseteq L(y)$.
(iii) If $x=\alpha y+p$ for some $\alpha \in K^{*}, p \in X_{0}$ and $y \in X \backslash X_{0}$, then $L(x)=L(y)$.
(iv) $L(x) \cap X_{0}=\emptyset$.
(v) If $a \in L(b)$, then $L(a) \subseteq L(b)$.
(vi) For any $x, y \in X \backslash X_{0}, L(x) \cap L(y) \neq \emptyset$.

Proof. (i) Immediate from definition.
(ii) Let $z \in L(y) \Rightarrow \exists \alpha \in K^{*}$ and $p \in X_{0}$ such that $\alpha y+p \leq z$. Now, $x \leq y \Rightarrow \alpha x+p \leq \alpha y+p \leq z$ $\Rightarrow z \in L(x)$.
(iii) As $y \in X \backslash X_{0}$, so $x \in X \backslash X_{0}$. Therefore we can talk about $L(x)$. Let $z \in L(y) \Rightarrow \exists \alpha_{z} \in K^{*}$ and $p_{z} \in X_{0}$ such that $\alpha_{z} y+p_{z} \leq z \Rightarrow \alpha_{z} \alpha^{-1}(x-p)+p_{z} \leq z \Rightarrow \alpha_{z} \alpha^{-1} x+\left(p_{z}-\alpha_{z} \alpha^{-1} p\right) \leq z \Rightarrow$ $z \in L(x)$. Therefore $L(y) \subseteq L(x)$. Again, $x=\alpha y+p \Rightarrow y=\alpha^{-1}(x-p)$. So, by the above argument, we also have $L(x) \subseteq L(y)$. Thus $L(x)=L(y)$.
(iv) Let $y \in L(x) \Rightarrow \exists \alpha \in K^{*}$ and $p \in X_{0}$ such that $\alpha x+p \leq y$. If $y \in X_{0}$, then $\alpha x+p \in X_{0} \Rightarrow$ $x \in X_{0}$. This contradiction proves that $L(x) \cap X_{0}=\emptyset$.
(v) $a \in L(b) \Rightarrow a \in X \backslash X_{0}$ and $\exists \alpha \in K^{*}, p \in X_{0}$ such that $\alpha b+p \leq a \Rightarrow L(a) \subseteq L(\alpha b+p)=L(b)$ [by (ii) and (iii) above].
(vi) For any $p \in X_{0}$ with $p \leq y, x+p \leq x+y \Rightarrow x+y \in L(x)$. Similarly, we can say that $x+y \in L(y)$. So, $x+y \in L(x) \cap L(y) \Rightarrow L(x) \cap L(y) \neq \emptyset$.

Definition 3.3. A subset B of $X \backslash X_{0}$ is said to be a generator of $X \backslash X_{0}$ if

$$
X \backslash X_{0}=\bigcup_{x \in B} L(x)
$$

Note 3.4. The set $X \backslash X_{0}$ always generates $X \backslash X_{0}$. So, a generator always exists for $X \backslash X_{0}$. It is clear that any superset of a generator of $X \backslash X_{0}$ is also a generator of $X \backslash X_{0}$.

Definition 3.5. Two elements $x, y \in X \backslash X_{0}$ are said to be orderly dependent if either $x \in L(y)$ or $y \in L(x)$.

Definition 3.6. Two elements $x, y \in X \backslash X_{0}$ are said to be orderly independent if they are not orderly dependent, i.e., neither $x \in L(y)$, nor $y \in L(x)$.

A subset B of $X \backslash X_{0}$ is said to be orderly independent if any two members $x, y \in B$ are orderly independent.

Remark 3.7. Let Y be a subevs of an evs X. Then any two orderly dependent elements of $Y \backslash Y_{0}$ are also orderly dependent in $X \backslash X_{0}$ because of the fact that $Y_{0} \subseteq X_{0}$. In other words, any two elements of $Y \backslash Y_{0}$ which are orderly independent in $X \backslash X_{0}$ are also orderly independent in $Y \backslash Y_{0}$. But the converse is not true in general, i.e., two orderly independent elements in $Y \backslash Y_{0}$ may not be orderly independent in $X \backslash X_{0}$ [in contrast to the case of linear independence in vector space]. For example, $\{0,2,5\}$ and $\{0,-2,3\}$ are orderly independent in $\mathscr{C}_{\theta}(\mathbb{R})$ [see Example 2.11], since \ddagger any $\alpha \in \mathbb{R}^{*}$ such that $\alpha\{0,2,5\} \subseteq\{0,-2,3\}$ or $\alpha\{0,-2,3\} \subseteq\{0,2,5\}$. [Here, $\left[\mathscr{C}_{\theta}(\mathbb{R})\right]_{0}=\{\{0\}\}$]. But these two elements are not orderly independent in $\mathscr{C}(\mathbb{R})$, as we can write $\{0,-2,3\}=\{0,2,5\}+\{-2\}$, where $\{-2\} \in[\mathscr{C}(\mathbb{R})]_{0}$.

In the above context, it should thus be noted that while discussing the orderly independence of two elements of a subevs Y of an evs X, there are two types of orderly independence - one with respect to Y, and the other with respect to X; while considering orderly independence with respect to Y, the testing sets should be of the form

$$
L_{Y}(y):=\left\{z \in Y: z \geq \alpha y+p, \alpha \in K^{*}, p \in Y_{0}\right\} \text { for any } y \in Y \backslash Y_{0}
$$

and when considering orderly independence with respect to X, the testing sets should be of the form

$$
L_{X}(y):=\left\{z \in X: z \geq \alpha y+p, \alpha \in K^{*}, p \in X_{0}\right\} \text { for any } y \in Y \backslash Y_{0}
$$

Since $Y_{0} \subseteq X_{0}$, we have $L_{Y}(y) \subseteq L_{X}(y)$, for any $y \in Y \backslash Y_{0}$. Thus it follows that an orderly independent set in $Y \backslash Y_{0}$ need not be orderly independent in $X \backslash X_{0}$. However, a set $B\left(\subseteq Y \backslash Y_{0}\right)$ which is orderly independent in $X \backslash X_{0}$ must be such in $Y \backslash Y_{0}$.

Definition 3.8. A subset B of $X \backslash X_{0}$ is said to be a basis of $X \backslash X_{0}$ if B is orderly independent and generates $X \backslash X_{0}$.

Note 3.9. For each $x \in X$, either $x \in X_{0}$, or $x \in X \backslash X_{0}$. If $x \in X_{0}$, then it can be expressed as a finite linear combination of some basic vectors of some basis of X_{0} [as a vector space]. If $x \in X \backslash X_{0}$, then there exists a member of some basis [if exists] of $X \backslash X_{0}$ which generates x. So, we can say that to represent an evs X it is necessary to consider a basis of $X \backslash X_{0}$ together with a basis of X_{0} [in the sense of a vector space]. Thus a basis of an evs X should be composed of two components, one for X_{0} and the other for $X \backslash X_{0}$. To express this fact in an easiest way we shall represent a basis of an evs X as $\left[B: B_{0}\right]$, where B is a basis of $X \backslash X_{0}$ and B_{0} is a basis of X_{0} [as a vector space]. If for an evs $X, X_{0}=\{\theta\}$ then we shall consider $B_{0}=\{\theta\}$, since in that case X_{0} has no basis.

Theorem 3.10. For a topological evs $X, X \backslash X_{0}$ either has no basis or has uncountably many bases.
Proof. Let B be a basis of $X \backslash X_{0}$. Then $G_{\alpha}:=\{\alpha x: x \in B\}$ and $H_{p}:=\{x+p: x \in B\}$ are also bases of $X \backslash X_{0}$, for any $\alpha \in \mathbb{K}^{*}$ and any $p \in X_{0}$. This holds because of the result $L(x)=L(\alpha x+p)$ [Proposition 3.2]. If $G_{\alpha}=G_{\beta}$ for any $\alpha, \beta \in \mathbb{K}^{*}$, then $\alpha x=\beta x, \forall x \in B[\because \alpha x \neq \beta y$ for any $x, y \in B$ as B is orderly independent]. If we choose $\alpha, \beta \in \mathbb{K}^{*}$ such that $|\alpha|<|\beta|$, then using the continuity of the scalar multiplication of the topological evs X, we must have $x=\theta\left[\because \alpha x=\beta x \Rightarrow\left(\alpha \beta^{-1}\right)^{n} x=x\right.$, $\forall n \in \mathbb{N}$ which implies by taking limit $n \rightarrow \infty$ that $x=\theta$, as $\left.\left|\alpha \beta^{-1}\right|<1\right]$ is a contradiction. Thus, it follows that for any $\alpha, \beta \in \mathbb{K}^{*}$ with $|\alpha|<|\beta|$ we must have $G_{\alpha} \neq G_{\beta}$. This immediately justifies that there are uncountably many bases of $X \backslash X_{0}$.

If X_{0} contains more than one element, then for $p, q \in X_{0}$ we may consider H_{p}, H_{q}. If $H_{p}=H_{q}$, then B, being orderly independent, we must have $x+p=x+q, \forall x \in B$. Then by Result 2.3 it follows that $p=q$. Since X is a topological evs, X_{0} is a Hausdörff topological vector space. So, if $X_{0} \neq\{\theta\}$, then it should be uncountable and hence ensure the existence of uncountably many bases of $X \backslash X_{0}$.

For a non-topological evs it may happen that $G_{\alpha}=B$ for every $\alpha \in K^{*}$ [this will be discussed in the next section]. However, an evs (topological or not) need not have a basis. We show in the next section that the evs $\mathscr{D}([0, \infty): \mathbb{N})$ discussed in Note 2.14 cannot have a basis. The following result shows that having a basis is an evs property.
Result 3.11. Let $\phi: X \longrightarrow Y$ be an order-isomorphism. Then
(1) for any generator B of $X \backslash X_{0}, \phi(B)$ is a generator of $Y \backslash Y_{0}$;
(2) for any orderly independent subset B of $X \backslash X_{0}, \phi(B)$ is also an orderly independent subset of $Y \backslash Y_{0}$.

Thus, for a basis B of $X \backslash X_{0}, \phi(B)$ becomes a basis of $Y \backslash Y_{0}$.
Proof. (1) $B \subseteq X \backslash X_{0} \Rightarrow \phi(B) \subseteq Y \backslash Y_{0}\left[\right.$ As $\left.\phi\left(X_{0}\right)=Y_{0}\right]$. Let $y \in Y \backslash Y_{0} \Rightarrow \phi^{-1}(y) \in X \backslash X_{0}$ $\Rightarrow \exists b \in B$ and $\alpha \in K^{*}, p \in X_{0}$ such that $\phi^{-1}(y) \geq \alpha b+p \Rightarrow y \geq \alpha \phi(b)+\phi(p) \Rightarrow y \in L(\phi(b)) \subseteq$ $\bigcup_{b \in B} L(\phi(b))$. Therefore $Y \backslash Y_{0} \subseteq \bigcup_{b \in B} L(\phi(b))$. Again, by Proposition 3.2 $L(\phi(b)) \cap Y_{0}=\emptyset, \forall b \in B$. So $Y \backslash Y_{0}=\bigcup_{b \in B} L(\phi(b))$. Thus $\phi(B)$ is a generator of $Y \backslash Y_{0}$.
(2) We first show that for any two orderly dependent members y_{1}, y_{2} of $Y \backslash Y_{0}, \phi^{-1}\left(y_{1}\right), \phi^{-1}\left(y_{2}\right)$ are orderly dependent in $X \backslash X_{0}$. As y_{1}, y_{2} are orderly dependent, so without loss of generality, we can take $y_{1} \in L\left(y_{2}\right) \Rightarrow \exists \alpha \in K^{*}$ and $p \in Y_{0}$ such that $\alpha y_{2}+p \leq y_{1}$. Then ϕ^{-1}, also being an order-isomorphism, we have $\phi^{-1}\left(\alpha y_{2}+p\right) \leq \phi^{-1}\left(y_{1}\right) \Rightarrow \alpha \phi^{-1}\left(y_{2}\right)+\phi^{-1}(p) \leq \phi^{-1}\left(y_{1}\right) \Rightarrow \phi^{-1}\left(y_{1}\right) \in L\left(\phi^{-1}\left(y_{2}\right)\right.$) [as $\left.\phi^{-1}(p) \in X_{0}\right]$. This justifies our assertion. Then contra-positively, the result follows.

The next theorem characterises a basis (if exists) of $X \backslash X_{0}$, for any evs X.
Theorem 3.12. A subset of $X \backslash X_{0}$ is a basis of $X \backslash X_{0}$, iff it is a minimal generating subset of $X \backslash X_{0}$. [Here, a minimal generating subset B of $X \backslash X_{0}$ means that there does not exist any proper subset of B which can generate $X \backslash X_{0}$.]
Proof. Suppose B is a basis of $X \backslash X_{0}$. Then B generates $X \backslash X_{0}$. Now B, being an orderly independent subset of $X \backslash X_{0}$, if we take an element $x \in B$ then $\forall y \in B \backslash\{x\}, x$ and y are orderly independent. Therefore $x \notin L(y), \forall y \in B \backslash\{x\}$. This shows that $B \backslash\{x\}$ cannot generate $X \backslash X_{0}$ and this holds for any $x \in B$. Therefore B is a minimal generator of $X \backslash X_{0}$.

Conversely, suppose B is a minimal generator of $X \backslash X_{0}$. For any two members $x, y \in B$ if $x \in L(y)$ then by Proposition $3.2, L(x) \subseteq L(y) \Longrightarrow B \backslash\{x\}$ also generates $X \backslash X_{0}$, which contradicts that B is a minimal generator of $X \backslash X_{0}$. Again, if $y \in L(x)$, we get a similar contradiction. So, neither $x \in L(y)$, nor $y \in L(x) \Longrightarrow x, y$ are orderly independent. Arbitrariness of x, y shows that B is an orderly independent subset of $X \backslash X_{0}$. Consequently, B is a basis of $X \backslash X_{0}$.
Result 3.13. Every basis of $X \backslash X_{0}$ is a maximal orderly independent subset of $X \backslash X_{0}$. [Here, a maximal orderly independent subset B of $X \backslash X_{0}$ means that there does not exist any orderly independent subset of $X \backslash X_{0}$ containing B.]
Proof. Let B be a basis of $X \backslash X_{0}$. Then for any $x \in X \backslash\left(B \cup X_{0}\right), \exists b \in B$ such that $x \in L(b)$. This shows that $B \cup\{x\}$ is not orderly independent. Thus B is maximal orderly independent in $X \backslash X_{0}$.

The converse of the above result is not true in general, i.e., a maximal orderly independent subset of $X \backslash X_{0}$ may not be a basis of $X \backslash X_{0}$. For example, in the evs $\mathscr{C}_{\theta}(\mathcal{X})$ [discussed in 2.11, let us consider the collection

$$
\mathscr{G}:=\left\{A \in \mathscr{C}_{\theta}(\mathcal{X}): A \text { consists of three distinct elements of } \mathcal{X}\right\} .
$$

Then $\mathscr{G} \subset \mathscr{C}_{\theta}(\mathcal{X}) \backslash\{\{\theta\}\}$. Now we define a relation ' \sim ' on \mathscr{G} by " $A \sim B$, iff $A=\alpha B$ for some $\alpha \in \mathbb{K}^{*}$ ". Then this relation becomes an equivalence relation on \mathscr{G}. Let us consider the subcollection \mathscr{H} of \mathscr{G} taking exactly one member from each equivalence class produced by the equivalence relation ' \sim '. Then \mathscr{H} becomes an orderly independent subset of $\mathscr{C}_{\theta}(\mathcal{X}) \backslash\{\{\theta\}\}$, because any two elements $A, B \in \mathscr{G}$ are orderly dependent, iff $A=\alpha B$ for some $\alpha \in \mathbb{K}^{*}$ and hence belong to the same equivalence class. For any member $C \in \mathscr{C}_{\theta}(\mathcal{X}) \backslash\left(\mathscr{H} \cup\left[\mathscr{C}_{\theta}(\mathcal{X})\right]_{0}\right)$ if $\operatorname{card}(C) \geq 3$, then there exists a member $A_{C} \in \mathscr{H}$ and $\alpha \in \mathbb{K}^{*}$ such that $\alpha A_{C} \subseteq C$. If $\operatorname{card}(C)=2$, then also there exists $\beta \in \mathbb{K}^{*}$ and $A_{C} \in \mathscr{H}$ such
that $C \subseteq \beta A_{C}$. This shows that $\mathscr{H} \cup\{C\}$ is orderly dependent. So, we can say that \mathscr{H} forms a maximal orderly independent set in $\mathscr{C}_{\theta}(\mathcal{X}) \backslash\{\{\theta\}\}$. But it does not generate $\mathscr{C}_{\theta}(\mathcal{X}) \backslash\{\{\theta\}\}$. In fact, for any $D \in \mathscr{C}_{\theta}(\mathcal{X})$ with $\operatorname{card}(D)=2$ there does not exist any $A \in \mathscr{H}$ such that $D \in L(A)$, since each member of $L(A)$ contains three or more elements of \mathcal{X}. Hence \mathscr{H} cannot be a basis of $\mathscr{C}_{\theta}(\mathcal{X}) \backslash\left[\mathscr{C}_{\theta}(\mathcal{X})\right]_{0}$, although it is maximal orderly independent $\left[\right.$ note here that $\left.\left[\mathscr{C}_{\theta}(\mathcal{X})\right]_{0}=\{\{\theta\}\}\right]$.

Remark 3.14. If A is an orderly independent set in $X \backslash X_{0}$, then for any $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ neither $a_{1} \in L\left(a_{2}\right)$, nor $a_{2} \in L\left(a_{1}\right)$. In other words, if $a_{1} \in L\left(a_{2}\right)$ for some $a_{1}, a_{2} \in A$, then $a_{1}=a_{2}$. Moreover, any two elements of an orderly independent set A must be incomparable with respect to the partial order ' \leq ' of the evs X; in fact, $x \leq y \Rightarrow y \in L(x)$.
Lemma 3.15. Let A and B be two bases of $X \backslash X_{0}$. Then for any $a \in A$, there exists one and only one $b_{a} \in B$ such that $L(a)=L\left(b_{a}\right)$.

Proof. As B is a basis of $X \backslash X_{0}$, so for the member $a \in A$, there must exist some $b \in B$ such that $a \in L(b)$. Let us suppose, $\exists b_{1}, b_{2} \in B$ such that $a \in L\left(b_{1}\right) \cap L\left(b_{2}\right) \Rightarrow L(a) \subseteq L\left(b_{1}\right) \cap L\left(b_{2}\right)$ [by Proposition 3.2-(*). Again, $a \in L\left(b_{1}\right) \Rightarrow \exists \alpha \in K^{*}$ and $p \in X_{0}$ such that $\alpha b_{1}+p \leq a-(* *)$. Now, since A is a basis, so for $b_{1}, b_{2} \in B, \exists a_{1}, a_{2} \in A$ such that $b_{1} \in L\left(a_{1}\right)$ and $b_{2} \in L\left(a_{2}\right) \Rightarrow L\left(b_{1}\right) \subseteq L\left(a_{1}\right)$ and $L\left(b_{2}\right) \subseteq L\left(a_{2}\right)$ [by Proposition 3.2. By $(*), L(a) \subseteq L\left(a_{1}\right)$ and $L(a) \subseteq L\left(a_{2}\right) \Rightarrow a \in L\left(a_{1}\right)$ and $a \in L\left(a_{2}\right)$. As a, a_{1}, a_{2} are the members of the basis A, so we can say that $a_{2}=a=a_{1}$ [by the above Re$\operatorname{mark} 3.14$. Therefore $b_{1}, b_{2} \in L(a) \Rightarrow \exists \alpha_{1}, \alpha_{2} \in K^{*}$ and $p_{1}, p_{2} \in X_{0}$ such that $\alpha_{1} a+p_{1} \leq b_{1}$ and $\alpha_{2} a+$ $p_{2} \leq b_{2}-(* * *)$. From $(* *)$ and $(* * *)$, we get $b_{2} \geq \alpha_{2} a+p_{2} \geq \alpha_{2}\left(\alpha b_{1}+p\right)+p_{2}=\alpha_{2} \alpha b_{1}+\left(\alpha_{2} p+p_{2}\right)$. $\therefore b_{2} \in L\left(b_{1}\right)$ [as $\alpha_{2} \alpha \in K^{*}$ and $\left.\alpha_{2} p+p_{2} \in X_{0}\right]$. Since b_{1}, b_{2} are the members of the basis B so $b_{2}=b_{1}$ [by the above Remark 3.14]. Thus there exists one and only one member (say) $b_{a} \in B$ such that $a \in L\left(b_{a}\right)$ and also, $b_{a} \in L(a) \Rightarrow L(a) \subseteq L\left(b_{a}\right)$ and $L\left(b_{a}\right) \subseteq L(a) \Rightarrow L(a)=L\left(b_{a}\right)$.

Theorem 3.16. If A and B are two bases of $X \backslash X_{0}$, then $\operatorname{card}(A)=\operatorname{card}(B)$.
Proof. From the proof of the above Lemma 3.15, we can say that for each $a \in A, \exists$ unique $b \in B$ such that $L(b)=L(a)$. This property creates a one-to-one correspondence between A and B. Hence the theorem is complete.

This theorem motivates us to introduce the concept of dimension of an evs.
Definition 3.17. For an evs X we define dimension of $X \backslash X_{0}$ as
$\operatorname{dim}\left(X \backslash X_{0}\right):=\operatorname{card}(B)$, where B is a basis of $X \backslash X_{0}$.
Then we represent dimension of the evs X as $\operatorname{dim} X:=\left[\operatorname{dim}\left(X \backslash X_{0}\right): \operatorname{dim} X_{0}\right]$. If $X_{0}=\{\theta\}$, dimension of X_{0} will be taken as 0 , since then X_{0} has no basis [as a vector space].

Note 3.18. Theorem 3.16 makes the above definition well-defined. From Result 3.11 we can say that if X and Y are order-isomorphic evs, then $\operatorname{dim} X=\operatorname{dim} Y$. Here, by " $\operatorname{dim} X=\operatorname{dim} Y$ " we mean that $\operatorname{dim}\left(X \backslash X_{0}\right)=\operatorname{dim}\left(Y \backslash Y_{0}\right)$, as well as $\operatorname{dim} X_{0}=\operatorname{dim} Y_{0}$. However, the converse of this is not true in general, i.e., there are the evs X, Y such that $\operatorname{dim} X=\operatorname{dim} Y$, but X, Y are not order-isomorphic. This will be clear in the next section, in computing the dimension of some particular evs.
Result 3.19. Let X be an evs and B be a basis of $X \backslash X_{0}$. Then $\downarrow x \backslash X_{0} \subseteq L(x)$, for each $x \in B$.
Proof. Let $x \in B$ and $y \in \downarrow x \backslash X_{0}$. Since B is a basis of $X \backslash X_{0}, \exists x_{1} \in B$ such that $y \in L\left(x_{1}\right) \Rightarrow$ $\exists \alpha_{1} \in K^{*}$ and $p_{1} \in X_{0}$ such that $\alpha_{1} x_{1}+p_{1} \leq y \Rightarrow \alpha_{1} x_{1}+p_{1} \leq x[\because y \leq x] \Rightarrow x \in L\left(x_{1}\right)$. Since B is orderly independent and both $x, x_{1} \in B$, we can say by Remark 3.14 that $x=x_{1}$. Therefore $y \in L(x)$. Thus $\downarrow x \backslash X_{0} \subseteq L(x)$, for each $x \in B$.

This result reveals an important property of each member of a basis of $X \backslash X_{0}$ which helps us to set up a precise domain of basic elements of $X \backslash X_{0}$. The collection of all x in $X \backslash X_{0}$ satisfying the property stated in the above Result 3.19 makes our task of finding a basis of $X \backslash X_{0}$ easier. To make this assertion precise, let us consider the following.

For an evs X, let

$$
Q(X):=\left\{x \in X \backslash X_{0}:\left(\downarrow x \backslash X_{0}\right) \subseteq L(x)\right\}
$$

From Result 3.19, we can say that $B \subseteq Q(X)$, for any basis B of $X \backslash X_{0}$. It is thus enough to find
any basis of $X \backslash X_{0}$ within $Q(X)$. We call this set $Q(X)$ as a feasible set of X. At this point it is important to note that $Q(X)$ may be empty; in fact, if for an evs $X, Q(X)=\emptyset$, then such evs X cannot have any basis (as we have claimed earlier). We shall encounter such evs later. If for an evs $X, Q(X) \neq \emptyset$, then also X may not have a basis. In fact, we shall prove a theorem shortly in terms of $Q(X)$ which identifies an evs when it has a basis or not. We now prove a lemma that will be useful in the sequel.

Lemma 3.20. For an evs X, if $x \in Q(X)$ then for each $y \in \downarrow x \backslash X_{0}, L(x)=L(y)$.
Proof. $y \in \downarrow x \backslash X_{0} \Rightarrow y \leq x$. So, by Proposition 3.2, we have $L(x) \subseteq L(y)$. Again, by the construction of $Q(X), x \in Q(X) \Rightarrow \downarrow x \backslash X_{0} \subseteq L(x) \Rightarrow y \in L(x) \Rightarrow L(y) \subseteq L(x)$ [by Proposition 3.2. Thus $L(x)=L(y)$.

The following theorem may be compared with the so-called 'Replacement theorem' in the context of the basis of a vector space.
Theorem 3.21. For an evs X, let B be a basis of $X \backslash X_{0}$ and $x \in B$. Then for any $y \in \downarrow x \backslash X_{0}$, $(B \backslash\{x\}) \cup\{y\}$ is also a basis of $X \backslash X_{0}$.
Proof. Let $A=(B \backslash\{x\}) \cup\{y\}$. As $y \in \downarrow x \backslash X_{0}$ and $x \in B \subseteq Q(X)$ so, by Lemma 3.20, $L(x)=L(y)$. Therefore $X \backslash X_{0}=\bigcup_{z \in B} L(z)=\bigcup_{z \in A} L(z) \Rightarrow A$ generates $X \backslash X_{0}$. To show that A is orderly independent it is sufficient to show that for any $z \in B \backslash\{x\}, z, y$ are orderly independent. If not, then for some $z_{1} \in B \backslash\{x\}$ either $y \in L\left(z_{1}\right)$ or $z_{1} \in L(y)$. Now, if $y \in L\left(z_{1}\right)$, then by Proposition 3.2, $L(y) \subseteq L\left(z_{1}\right) \Rightarrow x \in L(x)=L(y) \subseteq L\left(z_{1}\right)$ which contradicts that x, z_{1} are two members of the basis B. Again, if $z_{1} \in L(y)$, then $z_{1} \in L(y)=L(x)$ which again contradicts that x, z_{1} are orderly independent. Thus it follows that A is orderly independent.

The above theorem makes it convenient to construct a new basis from the old one. The following theorem is the key to ensure the existence of a basis of an evs.

Theorem 3.22. An evs X has a basis, iff $Q(X)$ is a generator of $X \backslash X_{0}$.
Proof. Suppose that X has a basis $\left[B: B_{0}\right]$, where B and B_{0} are bases of $X \backslash X_{0}$ and X_{0} respectively. Then by Result $3.19 B \subseteq Q(X)$. As B is a generator of $X \backslash X_{0}$, so $Q(X)$ is also a generator of $X \backslash X_{0}$.

Conversely, suppose $Q(X)$ is a generator of $X \backslash X_{0} \Rightarrow Q(X) \neq \emptyset$. We now give a relation \sim in $Q(X)$ as follows: For $x, y \in Q(X)$, we say $x \sim y \Leftrightarrow L(x)=L(y)$. Then, obviously, this becomes an equivalence relation on $Q(X)$. Let us consider a collection taking exactly one representative from each equivalence class and denote this collection as B. Then $B \subseteq Q(X) \subseteq X \backslash X_{0}$. Also, $x, y \in B$ with $x \neq y \Leftrightarrow x, y \in Q(X)$ and $L(x) \neq L(y)$. We claim that B is a basis of $X \backslash X_{0}$. Let $z \in X \backslash X_{0} \Rightarrow \exists x_{z} \in Q(X)[\because Q(X)$ is a generator $]$ such that $z \in L\left(x_{z}\right) \Rightarrow \exists$ an element $x_{z}^{\prime} \in B$ such that $L\left(x_{z}\right)=L\left(x_{z}^{\prime}\right)$ and hence $z \in L\left(x_{z}^{\prime}\right) \Rightarrow B$ generates $X \backslash X_{0}$. Now, we have to show that B is orderly independent. Suppose not, then \exists two distinct elements $x_{1}, x_{2} \in B$ such that they are orderly dependent. So, without loss of generality, we can think that $x_{1} \in L\left(x_{2}\right)$. Now, $x_{1} \in L\left(x_{2}\right) \Rightarrow \exists \alpha \in \mathbb{K}^{*}$ and $p \in X_{0}$ such that $\alpha x_{2}+p \leq x_{1}$. Since $x_{1} \in Q(X)$ [as $\left.B \subseteq Q(X)\right]$ and $\alpha x_{2}+p \in \downarrow x_{1} \backslash X_{0}$, using Lemma 3.20 we can say that $L\left(\alpha x_{2}+p\right)=L\left(x_{1}\right)$ and then by Proposition 3.2, we have $L\left(x_{2}\right)=L\left(\alpha x_{2}+p\right)=L\left(x_{1}\right)$ which contradicts that x_{1}, x_{2} are two distinct elements of B. Thus B becomes a basis of $X \backslash X_{0}$. Let us take any basis B_{0} of X_{0}. Then [$B: B_{0}$] becomes a basis of X.

From the proof of the above theorem it is clear that the hypothesis of $Q(X)$, being a generator of $X \backslash X_{0}$, is used only to justify that B, constructed by using the equivalence relation \sim within $Q(X)$, is a generator of $X \backslash X_{0}$; to ensure the orderly independence of B, the structure of $Q(X)$ is enough. Thus we can conclude that for any evs $X, Q(X)$ (if nonempty) always contains an orderly independent set like B (as constructed in the proof of the above Theorem 3.22 . This orderly independent set is also a maximal orderly independent set in $Q(X)$. In fact, if D is another orderly independent set in
$Q(X)$ such that $B \subset D$, then for any $x \in D, \exists z \in B$ such that $L(x)=L(z) \Rightarrow x=z[\because x, z \in D$ and D is orderly independent] and hence $x \in B$. Thus $B=D$. Summarising all these facts, we get the following

Theorem 3.23. For an evs X, if $Q(X) \neq \emptyset$, then it contains a maximal orderly independent set.
The next theorem is useful in finding a basis of $X \backslash X_{0}$, for any evs X.
Theorem 3.24. For an evs X, every maximal orderly independent set of $Q(X)$ is a basis of $X \backslash X_{0}$, provided $Q(X)$ generates $X \backslash X_{0}$.
Proof. Let B be a maximal orderly independent set in $Q(X)$. Since $Q(X)$ generates $X \backslash X_{0}$, for any $x \in X \backslash X_{0}, \exists z \in Q(X)$ such that $x \in L(z)$. If $z \in B$, we are done. If $z \notin B$, then B, being a maximal orderly independent set in $Q(X), B \cup\{z\}$ is orderly dependent. So, $\exists b \in B$ such that either $z \in L(b)$ or $b \in L(z)$. If $z \in L(b)$ then by Proposition $3.2, x \in L(z) \subseteq L(b)$. If $b \in L(z), \exists \alpha \in \mathbb{K}^{*}$ and $p \in X_{0}$ such that $b \geq \alpha z+p$, then $b \in B \subseteq Q(X) \Rightarrow L(z)=L(b)$ [by Lemma 3.20] $\Rightarrow x \in L(b)$. Thus B generates $X \backslash X_{0}$. Consequently, B is a basis of $X \backslash X_{0}$.

The above Theorem 3.24 shows the converse of Result 3.13 to some extent; as we have explained, just after Result 3.13, through the example of $\mathscr{C}_{\theta}(\mathcal{X})$ that every maximal orderly independent subset of $X \backslash X_{0}$ need not be a basis of $X \backslash X_{0}$, the above Theorem 3.24 shows that every maximal orderly independent subset of $Q(X)$ [but not only of $X \backslash X_{0}$] becomes a basis of $X \backslash X_{0}$, provided of course, $Q(X)$ generates $X \backslash X_{0}$ [note that the necessity of $Q(X)$ being a generator of $X \backslash X_{0}$ is the principal key for an evs X to have a basis]. From Remark 3.14 we may recall one more point that while finding a basis of $X \backslash X_{0}$, we have to gather only suitable incomparable elements from $Q(X)$. In this context it should also be noted that any two elements of $Q(X)$ need not be orderly independent. In fact, for any $x \in Q(X)$, if $y \in \downarrow x \backslash X_{0}$, then $y \in Q(X)$, as well [see Result 3.26 (ii)]. Clearly, these x, y are orderly dependent, since $L(x)=L(y)$.
Result 3.25. If X and Y are order-isomorphic, then $Q(X)$ and $Q(Y)$ are in a one-to-one correspondence.

Proof. Let $\phi: X \longrightarrow Y$ be an order-isomorphism. We now show that $\phi(Q(X))=Q(Y)$. Let $x_{0} \in Q(X) \Rightarrow \downarrow x_{0} \backslash X_{0} \subseteq L\left(x_{0}\right)$. Also let $y \in \downarrow \phi\left(x_{0}\right) \backslash Y_{0} \Rightarrow y \leq \phi\left(x_{0}\right)$ and $y \notin Y_{0} \Rightarrow \phi^{-1}(y) \leq x_{0}$ and $\phi^{-1}(y) \notin X_{0} \Rightarrow \phi^{-1}(y) \in \downarrow x_{0} \backslash X_{0} \subseteq L\left(x_{0}\right) \Rightarrow \exists \alpha \in \mathbb{K}^{*}$ and $p \in X_{0}$ such that $\alpha x_{0}+p \leq \phi^{-1}(y)$ $\Rightarrow \alpha \phi\left(x_{0}\right)+\phi(p) \leq y \Rightarrow y \in L\left(\phi\left(x_{0}\right)\right)\left[\because \phi(p) \in Y_{0}\right]$. Therefore $\downarrow \phi\left(x_{0}\right) \backslash Y_{0} \subseteq L\left(\phi\left(x_{0}\right)\right) \Rightarrow$ $\phi(Q(X)) \subseteq Q(Y)$. Similarly, we can say that $\phi^{-1}(Q(Y)) \subseteq Q(X)\left[\because \phi^{-1}\right.$ is an order-isomorphism from Y onto $X] \Rightarrow Q(Y) \subseteq \phi(Q(X))$.
$\therefore \phi(Q(X))=Q(Y)$. Thus $Q(X)$ and $Q(Y)$ are in a one-to-one correspondence.
Result 3.26. (i) If $x \in Q(X)$, then for any $\alpha \in \mathbb{K}^{*}$ and $p \in X_{0}, \alpha x+p \in Q(X)$, i.e., $Q(X)$ is closed under dilation and translation by primitive elements.
(ii) If $x \in Q(X)$, then $\downarrow x \backslash X_{0} \subseteq Q(X)$, i.e., $\downarrow Q(X) \backslash X_{0} \subseteq Q(X)$.

Proof. (i) $x \in Q(X) \Rightarrow \downarrow x \backslash X_{0} \subseteq L(x)$. We now show that $\downarrow(\alpha x+p) \backslash X_{0} \subseteq L(\alpha x+p)$. Let $y \in \downarrow(\alpha x+p) \backslash X_{0} \Rightarrow y \leq \alpha x+p$ and $y \notin X_{0} \Rightarrow \alpha^{-1}(y-p) \leq x$ and $y \notin X_{0} \Rightarrow \alpha^{-1}(y-p) \in \downarrow x \backslash X_{0}$ $\Rightarrow \alpha^{-1}(y-p) \in L(x) \Rightarrow \exists \beta \in \mathbb{K}^{*}$ and $q \in X_{0}$ such that $\beta x+q \leq \alpha^{-1}(y-p) \Rightarrow \alpha(\beta x+q)+p \leq y \Rightarrow$ $\alpha \beta x+\alpha q+p \leq y \Rightarrow y \in L(x)\left[\because \alpha q+p \in X_{0}\right] \Rightarrow y \in L(\alpha x+p)[\because L(\alpha x+p)=L(x)$, by Proposition 3.2. Therefore $\alpha x+p \in Q(X)$.
(ii) Let $y \in \downarrow x \backslash X_{0}$. Then by Lemma $3.20 L(x)=L(y)$. Now, for each $z \in \downarrow y \backslash X_{0}$, we have $z \leq y \leq x$ with $z \notin X_{0} \Rightarrow L(z)=L(x)$ [by Lemma 3.20$] \Rightarrow z \in L(x)=L(y)$. Thus $\downarrow y \backslash X_{0} \subseteq L(y)$. Consequently, $y \in Q(X)$ and hence $\downarrow x \backslash X_{0} \subseteq Q(X)$.

As we have explained in Remark 3.7 regarding orderly independence in a subevs of an evs, the theory of basis of a subevs does not behave nicely like the theory of basis of a subspace of a vector space. However, we have the following theorems and examples which reveal some technical aspects of the dimension theory of evs.

Theorem 3.27. Every evs contains a subevs of dimension $[1: 0]$.

Proof. Let X be an evs over \mathbb{K} and $B(x):=\left\{\sum_{i=1}^{n} \alpha_{i} x: \alpha_{i} \in \mathbb{K}, n \in \mathbb{N}\right\}$, where $x \in \uparrow \theta \backslash\{\theta\}$. Then for any $\alpha, \beta \in \mathbb{K}$ and any $\sum_{i=1}^{n} \alpha_{i} x, \sum_{j=1}^{m} \beta_{j} x \in B(x)$, we have $\alpha \sum_{i=1}^{n} \alpha_{i} x+\beta \sum_{j=1}^{m} \beta_{j} x=\sum_{i=1}^{n} \alpha \alpha_{i} x+\sum_{j=1}^{m} \beta \beta_{j} x \in$ $B(x)$. Also, $[B(x)]_{0}=\{\theta\}=B(x) \cap X_{0}$ and for any $y \in B(x), \theta \leq y[\because \theta \leq x]$. So, $B(x)$ forms a subevs of X for any $x \in \uparrow \theta \backslash\{\theta\}$. In this case, $\{x\}$ forms a basis of $B(x) \backslash[B(x)]_{0}$. In fact, for any $\sum_{i=1}^{n} \alpha_{i} x \in B(x), \alpha_{j} x+\theta \leq \sum_{i=1}^{n} \alpha_{i} x$ for some $j \in\{1,2, \ldots, n\}$ for which $\alpha_{j} \neq 0$. Again, any singleton set consisting of non-zero elements is always orderly independent. So, we can say that $\operatorname{dim} B(x)=[1: 0]$.

The following example shows that corresponding to any cardinal α, there exists an evs of dimension [$\alpha: 0]$.
Example 3.28. For any cardinal number α, let us consider the evs $[0, \infty)^{\alpha}$, discussed in Example 2.9. Let us take a set I such that $\operatorname{card}(I)=\alpha$. We now show that $B:=\left\{e_{i}: i \in I\right\}$ is a basis of $[0, \infty)^{\alpha}$, where $e_{i}=\left(\delta_{j}^{i}\right)_{j \in I}$ and $\delta_{j}^{i}=\left\{\begin{array}{l}1, \text { when } i=j, \\ 0, \text { when } i \neq j .\end{array}\right.$
For any $x \in[0, \infty)^{\alpha} \backslash\left[[0, \infty)^{\alpha}\right]_{0}\left[\right.$ here $\left[[0, \infty)^{\alpha}\right]_{0}=\{\theta\}$ and $\theta=\left(z_{j}\right)_{j \in I}$, where $\left.z_{j}=0, \forall j \in I\right]$ with representation $x=\left(x_{j}\right)_{j \in I}, \exists p \in I$ such that $x_{p} \neq 0 \Rightarrow x_{p} e_{p} \leq x\left[\because x_{j} \geq 0, \forall j \in I\right] \Rightarrow x_{p} e_{p}+\theta \leq x$ $\Rightarrow x \in L\left(e_{p}\right) \Rightarrow B$ generates $[0, \infty)^{\alpha} \backslash\left[[0, \infty)^{\alpha}\right]_{0}$. Now clearly, any two members of B are orderly independent in $[0, \infty)^{\alpha} \backslash\left[[0, \infty)^{\alpha}\right]_{0}$. This shows that B is a basis of $[0, \infty)^{\alpha} \backslash\left[[0, \infty)^{\alpha}\right]_{0}$. Therefore $\operatorname{dim}[0, \infty)^{\alpha}=[\alpha: 0]$, since $\operatorname{card}(B)=\operatorname{card}(I)=\alpha$ and $\operatorname{dim}\left[[0, \infty)^{\alpha}\right]_{0}=\operatorname{dim}\{\theta\}=0$.

Thus any two cardinal numbers α, β with $\alpha \neq \beta,[0, \infty)^{\alpha}$ and $[0, \infty)^{\beta}$ cannot be order-isomorphic, since they are of different dimension. We now show that for any two cardinal numbers α, β, there exists an evs of dimension $[\alpha: \beta]$. Toward this end, we need first the following

Theorem 3.29. For an evs X and a vector space V, both being over the common field \mathbb{K}, the evs $Y:=X \times V$ has a basis, iff the evs X has a basis. [The evs $X \times V$ is discussed in Example 2.10. Also, $\operatorname{dim}(X \times V)=\left[\operatorname{dim}\left(X \backslash X_{0}\right): \operatorname{dim} X_{0}+\operatorname{dim} V\right]$.
Proof. Let X has a basis. We first show that $A:=\left\{\left(b, \theta_{V}\right): b \in B\right\}$ is a basis of $Y \backslash Y_{0}$, where B is a basis of $X \backslash X_{0}$ and θ_{V} is the identity of V. As B is orderly independent in $X \backslash X_{0}$, we can say that any two members of A are orderly independent $\Rightarrow A$ is an orderly independent set in $Y \backslash Y_{0}$. Let $(x, v) \in Y \backslash Y_{0} \Rightarrow x \in X \backslash X_{0}\left[\because Y_{0}=X_{0} \times V\right]$. Since B generates $X \backslash X_{0}$, for this $x, \exists b \in B$ such that $x \in L(b) \Rightarrow \alpha b+p \leq x$ for some $\alpha \in \mathbb{K}^{*}$ and $p \in X_{0} \Rightarrow \alpha\left(b, \theta_{V}\right)+(p, v)=(\alpha b+p, v) \leq(x, v)$ and $(p, v) \in[X \times V]_{0} \Rightarrow(x, v) \in L\left(\left(b, \theta_{V}\right)\right) \Rightarrow A$ is a generator of $Y \backslash Y_{0}$. So A becomes a basis of $Y \backslash Y_{0}$. Consequently, Y has a basis. Now $\operatorname{dim}\left(Y \backslash Y_{0}\right)=\operatorname{card}(A)=\operatorname{card}(B)=\operatorname{dim}\left(X \backslash X_{0}\right)$ and $\operatorname{dim}[X \times V]_{0}=\operatorname{dim}\left(X_{0} \times V\right)=\operatorname{dim} X_{0}+\operatorname{dim} V$. Therefore $\operatorname{dim}(X \times V)=\left[\operatorname{dim}\left(X \backslash X_{0}\right)\right.$: $\left.\operatorname{dim} X_{0}+\operatorname{dim} V\right]$.

Conversely, suppose $Y:=X \times V$ has a basis. Let B be a basis of $Y \backslash Y_{0}$. Now consider $B^{\prime}:=\{x$: $\left(x, v_{x}\right) \in B$ for some $\left.v_{x} \in V\right\}$. Then $x \in B^{\prime} \Rightarrow x \notin X_{0}$. Therefore $B^{\prime} \subseteq X \backslash X_{0}$. We now show that B^{\prime} forms a basis of $X \backslash X_{0}$. For any $z \in X \backslash X_{0},\left(z, \theta_{V}\right) \in Y \backslash Y_{0}$. As B is a basis of $Y \backslash Y_{0}, \exists$ $\left(x, v_{x}\right) \in B$ such that $\alpha\left(x, v_{x}\right)+(p, v) \leq\left(z, \theta_{V}\right)$ for some $\alpha \in \mathbb{K}^{*}$ and $(p, v) \in[X \times V]_{0}=X_{0} \times V \Rightarrow$ $\left(\alpha x+p, \alpha v_{x}+v\right) \leq\left(z, \theta_{V}\right) \Rightarrow \alpha x+p \leq z \Rightarrow z \in L(x)$. So, B^{\prime} generates $X \backslash X_{0}$. If two members of B^{\prime}, say x^{\prime}, z^{\prime}, are orderly dependent, then without loss of generality, we can take $x^{\prime} \in L\left(z^{\prime}\right) \Rightarrow \exists \alpha \in \mathbb{K}^{*}$ and $p \in X_{0}$ such that $\alpha z^{\prime}+p \leq x^{\prime} \Rightarrow \alpha\left(z^{\prime}, v_{z^{\prime}}\right)+\left(p, v_{x^{\prime}}-\alpha v_{z^{\prime}}\right) \leq\left(x^{\prime}, v_{x^{\prime}}\right) \Rightarrow\left(x^{\prime}, v_{x^{\prime}}\right)$ and $\left(z^{\prime}, v_{z^{\prime}}\right)$ are orderly dependent in $Y \backslash Y_{0}$. Therefore we can say that B^{\prime} is orderly independent in $X \backslash X_{0}$ as B is orderly independent in $Y \backslash Y_{0}$. So B^{\prime} becomes a basis of $X \backslash X_{0}$. Consequently, X has a basis.

Example 3.30. For any two cardinal numbers α, β there exists an evs X such that $\operatorname{dim} X=[\alpha: \beta]$. For example, if we consider the evs $X:=Y \times E$, where Y is an evs whose dimension is [$\alpha: 0$] (existence
of such evs has been established in Example 3.28) and E is a vector space with dimension β, then by the above Theorem 3.29, $\operatorname{dim} X=[\alpha: \beta]$.
Theorem 3.31. Let X be an evs whose dimension is $[\alpha: \beta]$. Also, let γ and δ be two cardinal numbers such that $\gamma \leq \alpha$ and $\delta \leq \beta$. Then \exists a subevs Y of X such that $\operatorname{dim} Y=[\gamma: \delta]$.

Proof. Let B be a basis of $X \backslash X_{0}$. Then $\operatorname{card}(B)=\alpha$. Since $\gamma \leq \alpha$, there exists $C \subseteq B$ such that $\operatorname{card}(C)=\gamma$. For each $c \in C$, we choose one element $p_{c} \in P_{c}$ and fix it.
Case 1: If $\delta<\gamma$, then $\exists E \varsubsetneqq C$ such that $\operatorname{card}(E)=\delta$. Consider the set

$$
D:=E \cup\left\{c-p_{c}: c \in C \backslash E\right\} .
$$

Since C is orderly independent, it follows that $\operatorname{card}(D)=\operatorname{card}(C)=\gamma$. As $L\left(c-p_{c}\right)=L(c)$, it follows that D is an orderly independent set in $X \backslash X_{0}$. Also, consider for any $d \in D, q_{d}=p_{d}$ if $d \in E$, otherwise $q_{d}=\theta$. Then there exists a subspace W of the vector space X_{0} such that $q_{d} \in W, \forall d \in D$ and $\operatorname{dim} W=\delta$.
Case 2: If $\gamma \leq \delta$, then consider $D=C$ and $q_{d}=p_{d}, \forall d \in D$. Then also there exists a subspace W of X_{0} such that $q_{d} \in W, \forall d \in D$ and $\operatorname{dim} W=\delta$.
Thus for both cases we get
(i) an orderly independent set D in $X \backslash X_{0}$ whose cardinality is γ.
(ii) a subspace W of X_{0} such that $q_{d} \in W$, where $q_{d}<d{ }^{1} \forall d \in D$ and $\operatorname{dim} W=\delta$.

Now we consider the set

$$
G(D):=\left\{\sum_{i=1}^{n} \alpha_{i} d_{i}+p: \alpha_{i} \in \mathbb{K}, d_{i} \in D, p \in W, n \in \mathbb{N}\right\}
$$

Step 1: In this step we prove that $G(D)$ becomes a subevs of X with $D \subseteq G(D)$ and $[G(D)]_{0}=W$. For any $d \in D, d=1 . d+\theta \in G(D) \Rightarrow D \subseteq G(D)$. Also, for any $p \in W, 0 . d+p \in G(D) \Rightarrow$ $W \subseteq G(D)$. For any two elements $x=\sum_{i=1}^{m} \alpha_{i} d_{i}+p, y=\sum_{j=1}^{n} \beta_{j} d_{j}+q$ in $G(D)$ and any two scalars α, β, $\alpha x+\beta y=\sum_{i=1}^{m} \alpha \alpha_{i} d_{i}+\sum_{j=1}^{n} \beta \beta_{j} d_{j}+(\alpha p+\beta q) \in G(D)[$ as W is a subspace $]$. Let $y \in[G(D)]_{0}$. Then y is a minimal element of $G(D)$. As $y \in G(D), y$ can be written as $y=\sum_{i=1}^{n} \alpha_{i} d_{i}+p$. Our claim is that all $\alpha_{i}=0$. If not, there exists $j \in\{1,2, \ldots, n\}$ such that $\alpha_{j} \neq 0$. Then there exists $q_{d_{j}} \in W$ such that $q_{d_{j}}<d_{j} \Rightarrow \sum_{i=1}^{n} \alpha_{i} q_{d_{i}}+p<y$ which contradicts that $y \in[G(D)]_{0}$, as $\sum_{i=1}^{n} \alpha_{i} q_{d_{i}}+p \in W \subseteq G(D)$. So, all $\alpha_{i}=0$. Therefore $y=p \in W \Rightarrow[G(D)]_{0} \subseteq W \subseteq G(D) \cap X_{0}$, and hence $[G(D)]_{0}=G(D) \cap X_{0}=W$ [by Note 2.2. Also, for any $x=\sum_{i=1}^{n} \alpha_{i} d_{i}+p \in G(D), \sum_{i=1}^{n} \alpha_{i} q_{d_{i}}+p \in W=[G(D)]_{0}$ such that $x \geq \sum_{i=1}^{n} \alpha_{i} q_{d_{i}}+p$. Thus it follows that $G(D)$ is a subevs of X.
Step 2: In this step we show that D is a basis of $G(D) \backslash[G(D)]_{0}$. Since D is an orderly independent subset of $X \backslash X_{0}$ and $G(D)$ is a subevs of X containing D, by Remark 3.7, we can say that D is orderly independent in $G(D) \backslash[G(D)]_{0}$. Now, let $y \in G(D) \backslash[G(D)]_{0}$. Then y can be written as $y=\sum_{i=1}^{n} \alpha_{i} d_{i}+p$, where not all $\alpha_{i}=0$. Let $\alpha_{j} \neq 0$. Then $\alpha_{j} d_{j}+\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} \alpha_{i} q_{d_{i}}+p\right) \leq y$. As $\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} \alpha_{i} q_{d_{i}}+p\right) \in W=[G(D)]_{0}$, so $y \in L\left(d_{j}\right)$ in $G(D) \backslash[G(D)]_{0}$. Thus D becomes a basis of

[^1]$G(D) \backslash[G(D)]_{0}$.
Therefore $\operatorname{dim} G(D)=[\operatorname{card}(D): \operatorname{dim} W]=[\gamma: \delta]$.

4. Computation of Basis and Dimension of Some Exponential Vector Space

In this section, we discuss the existence of a basis of some particular evs and thereby compute their dimensions. We show that there are evs which do not have basis.

Theorem 4.1. Let X be a single-primitive comparable topological evs. Then X has a basis and $\operatorname{dim} X=\left[1: \operatorname{dim} X_{0}\right]$.

Proof. Since X is single-primitive, for each $z \in X$ let us write $P_{z}=\left\{p_{z}\right\}$. Let $x \in \uparrow \theta$ with $x \neq \theta$. Then $P_{x}=\left\{p_{x}\right\}=\{\theta\}$. Now for $y \in X \backslash X_{0}, y-p_{y} \in \uparrow \theta$. Then X, being comparable evs, x and $y-p_{y}$ are comparable as $P_{x}=P_{y-p_{y}}=\{\theta\}$. If $x \leq y-p_{y}$, then $x+p_{y} \leq y \Rightarrow y \in L(x)$. If $x>y-p_{y}$, our claim is that there exists $\alpha \in \mathbb{K}^{*}$ such that $\alpha x \leq y-p_{y}$ with $|\alpha|<1$. For, otherwise we can choose a sequence $\left\{\alpha_{n}\right\}$ in \mathbb{K}^{*} such that $y-p_{y}<\alpha_{n} x \forall n \in \mathbb{N}$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since X is a topological evs, we then have $y-p_{y} \leq \theta$ [taking the limit $n \rightarrow \infty$], which is a contradiction. So, there must exist one $\alpha \in \mathbb{K}^{*}$ such that $\alpha x \leq y-p_{y} \Rightarrow y \in L(x)$. Thus $L(x)=X \backslash X_{0}$. Clearly, $\{x\}$ is orderly independent. Therefore $\{x\}$ is a basis of $X \backslash X_{0}$. Consequently, X has a basis and $\operatorname{dim} X=\left[1: \operatorname{dim} X_{0}\right]$.

As the evs $[0, \infty) \times V$ is a single primitive comparable evs by the above theorem, we can say that $\operatorname{dim}([0, \infty) \times V)=[1: \operatorname{dim} V]$, for any Hausdörff topological vector space V. So, in particular, if $V=\{\theta\}$, then the resulting evs is order-isomorphic to $[0, \infty)$ and hence $\operatorname{dim}[0, \infty)=[1: 0]$. We have shown in the previous section that $\operatorname{dim}[0, \infty)^{\alpha}=[\alpha: 0]$, for any cardinal α. This can also be justified from the following more general example.
Example 4.2. Let $\left\{X_{i}: i \in I\right\}$ be an arbitrary collection of exponential vector spaces, over the common field \mathbb{K}, each having a basis. Let B_{i} be a basis of $X_{i} \backslash\left[X_{i}\right]_{0}, \forall i \in I$. Consider the product $\operatorname{evs} X:=\prod_{i \in I} X_{i}[$ see Example 2.9$]$. Then $X_{0}=\prod_{i \in I}\left[X_{i}\right]_{0}$. For any $j \in I$, consider the set $D_{j}:=\prod_{i \in I} C_{i}$, where $C_{i}:=\left\{\begin{array}{ll}\left\{\theta_{X_{i}}\right\}, & \text { when } i \neq j, \\ B_{j}, & \text { when } i=j .\end{array}\right.$ Here, $\theta_{X_{i}}$ is the identity in X_{i}. Then $D_{j} \subseteq X \backslash X_{0}, \forall j \in I$. Let $D:=\bigcup_{j \in I} D_{j}$. Then $D \subseteq X \backslash X_{0}$. Now, two different members in different D_{i} are orderly independent. As each B_{i} is a basis of X_{i}, so two different members of one D_{i} are orderly independent. Thus any two different members of D are orderly independent and hence D is orderly independent in $X \backslash X_{0}$. We now show that D is a basis of $X \backslash X_{0}$. For any $x=\left(x_{i}\right)_{i \in I} \in X \backslash X_{0}, \exists$ some $k \in I$ such that $x_{k} \in X_{k} \backslash\left[X_{k}\right]_{0} \Rightarrow \exists b_{k} \in B_{k}, \alpha_{k} \in \mathbb{K}^{*}$ and $p_{k} \in\left[X_{k}\right]_{0}$ such that $\alpha_{k} b_{k}+p_{k} \leq x_{k}$. Now for $i \neq k, \exists$ $p_{i} \in\left[X_{i}\right]_{0}$ such that $p_{i} \leq x_{i}$. Let $b=\left(b_{i}\right)_{i \in I}$, where $b_{i}=\theta_{X_{i}}$ for $i \neq k$ and $p=\left(p_{i}\right)_{i \in I} \in X_{0}$. Then $\alpha_{k} b+p=\left(\alpha_{k} b_{i}+p_{i}\right)_{i \in I} \leq\left(x_{i}\right)_{i \in I}=x$ and $b \in D_{k} \subset D \Rightarrow x \in L(b)$. This shows that D generates $X \backslash X_{0}$ and hence is a basis of $X \backslash X_{0}$. Consequently, X has a basis and $\operatorname{dim} X=\left[\operatorname{card}(D): \operatorname{dim} X_{0}\right]$.

If I is finite, then $\operatorname{card}(D)=\sum_{i \in I} \operatorname{card}\left(D_{i}\right)=\sum_{i \in I} \operatorname{card}\left(B_{i}\right)=\sum_{i \in I} \operatorname{dim}\left(X_{i} \backslash\left[X_{i}\right]_{0}\right)$ and $\operatorname{dim} X_{0}=$ $\sum_{i \in I} \operatorname{dim}\left[X_{i}\right]_{0}$. For any four cardinal number $\alpha, \beta, \gamma, \delta$, if we use the notation $[\alpha+\gamma: \beta+\delta]=[\alpha:$ $\beta]+[\gamma: \delta]$, then we can write

$$
\operatorname{dim} \prod_{i \in I} X_{i}=\left[\sum_{i \in I} \operatorname{dim}\left(X_{i} \backslash\left[X_{i}\right]_{0}\right): \sum_{i \in I} \operatorname{dim}\left[X_{i}\right]_{0}\right]=\sum_{i \in I}\left[\operatorname{dim}\left(X_{i} \backslash\left[X_{i}\right]_{0}\right): \operatorname{dim}\left[X_{i}\right]_{0}\right] .
$$

If I is infinite, then also we get the similar expression as above, provided the sums (over I) are properly defined.

If all X_{i} 's are the same, say $X_{i}=Y, \forall i \in I$ and $\operatorname{card}(I)=\alpha$, then we have

$$
\operatorname{dim}\left(Y^{\alpha}\right)=\left[\alpha \cdot \operatorname{dim}\left(Y \backslash Y_{0}\right): \alpha \cdot \operatorname{dim} Y_{0}\right]
$$

Thus it follows that for any cardinal α, $\operatorname{dim}[0, \infty)^{\alpha}=[\alpha: 0]$, since $\operatorname{dim}[0, \infty)=[1: 0]$.

Theorem 4.3. For every Hausdörff topological vector space $\mathcal{X}, \mathscr{C}(\mathcal{X})$ [discussed in 1.3 has a basis.
Proof. Let us consider the relation ' \sim ' on $\mathcal{X} \backslash\{\theta\}$, defined as

$$
x \sim y \Leftrightarrow \exists \alpha \in \mathbb{K}^{*} \text { such that } x=\alpha y .
$$

Then ' \sim ' becomes an equivalence relation on $\mathcal{X} \backslash\{\theta\}$. Let us construct a set \mathcal{X} ' taking exactly one representative from each equivalence class, relative to ' \sim ', and consider the set

$$
\mathscr{N}:=\left\{\{\theta, x\}: x \in \mathcal{X}^{\prime}\right\} .
$$

We now show that \mathscr{N} becomes a basis of $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(\mathcal{X})]_{0}$. If $A \in \mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(\mathcal{X})]_{0}$, then there must exist two elements x, y of \mathcal{X} with $\{x, y\} \subseteq A$ and $x \neq y$. Then $\{\theta, x-y\}+\{y\}=\{x, y\} \subseteq A$. Now, $x-y \in \mathcal{X} \backslash\{\theta\} \Rightarrow \exists z \in \mathcal{X}^{\prime}$ and $\alpha \in \mathbb{K}^{*}$ such that $x-y=\alpha z$. So we can write $\alpha\{\theta, z\}+\{y\} \subseteq A$ $\Rightarrow A \in L(\{\theta, z\})$. Therefore \mathscr{N} generates $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(\mathcal{X})]_{0}$. We now show that \mathscr{N} is an orderly independent set in $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(X)]_{0}$. For any two elements $\{\theta, x\}$ and $\{\theta, y\}$ in \mathscr{N}, if $\{\theta, x\} \in L(\{\theta, y\})$, then $\exists \alpha \in K^{*}$ such that $\alpha\{\theta, y\}+\{z\} \subseteq\{\theta, x\}$ for some $z \in \mathcal{X} \Rightarrow\{z, \alpha y+z\}=\{\theta, x\}[\because z \neq \alpha y+z]$ \Rightarrow either $z=\theta$ or $z=x$. If $z=\theta$, then $\alpha y=x$ which means that x, y belong to the same equivalence class, relative to ' \sim ', and hence $\{\theta, x\},\{\theta, y\}$ cannot be two distinct elements of \mathscr{N}, which is not the case. If $z=x$, then $\alpha y+x=\theta \Rightarrow x=-\alpha y$ which again leads to the same contradiction. This proves that any two elements of \mathscr{N} are orderly independent. Therefore \mathscr{N} is orderly independent in $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(X)]_{0}$ and hence becomes a basis of $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(\mathcal{X})]_{0}$. Consequently, $\mathscr{C}(\mathcal{X})$ has a basis and $\operatorname{dim} \mathscr{C}(\mathcal{X})=[\operatorname{card}(\mathscr{N}): \operatorname{dim} \mathcal{X}]$.

Remark 4.4. We have shown in the above Theorem 4.3 that \mathscr{N} forms a basis of $\mathscr{C}(\mathcal{X}) \backslash[\mathscr{C}(\mathcal{X})]_{0}$. We now show that this basis depends on a basis (as vector space) of \mathcal{X}.
(i) If \mathcal{X} is a Hausdörff topological vector space of dimension 1, then any non-zero element of \mathcal{X} is a scalar multiple of a single basic vector of \mathcal{X} and hence \mathscr{N} contains exactly one element. So, $\operatorname{dim} \mathscr{C}(\mathcal{X})=[1: 1]$. For that reason dimension of $\mathscr{C}(\mathbb{R})$ over \mathbb{R} is $[1: 1]$ and dimension of $\mathscr{C}(\mathbb{C})$ over \mathbb{C} is $[1: 1]$.
(ii) Let \mathcal{X} be a Hausdörff topological vector space of dimension 2 and $B=\{a, b\}$ be a basis of \mathcal{X}. We first show that $\mathcal{X}^{\prime}=\{a+\beta b: \beta \in \mathbb{K}\} \cup\{b\}$, where \mathcal{X}^{\prime} is as defined in the proof of Theorem 4.3 Any two distinct elements $a+\beta_{1} b, a+\beta_{2} b \in \mathcal{X} \backslash\{\theta\}$ must lie in two different equivalence classes, relative to ' \sim ', since for any $\alpha \in \mathbb{K}^{*}$, if $\alpha\left(a+\beta_{1} b\right)=a+\beta_{2} b$, we have $\alpha=1$ and hence $\beta_{1}=\beta_{2}$ [as $\{a, b\}$ is a linearly independent subset of $\mathcal{X}]$ - this contradicts that $a+\beta_{1} b \neq a+\beta_{2} b$. Also, the linear independence of a, b implies that $a+\beta b$ and b must lie in two different equivalence classes, relative to ' \sim ', for any $\beta \in \mathbb{K}$. Now, for any non-zero element $x \in \mathcal{X}, \exists \alpha, \beta \in \mathbb{K}$ (not both zero) such that $x=\alpha a+\beta b$ [since $\{a, b\}$ is a basis of $\mathcal{X}]$. If $\alpha \neq 0$, then $x=\alpha\left(a+\beta \alpha^{-1} b\right) \Rightarrow x$ lies in the class (relative to ' \sim '), whose representative is $\left(a+\beta \alpha^{-1} b\right.$). If $\alpha=0$, then x lies in the equivalence class (relative to ' \sim '), whose representative is b. Therefore $\mathcal{X}^{\prime}=\{a+\beta b: \beta \in \mathbb{K}\} \cup\{b\}$. Now, the map $\alpha \longmapsto a+\alpha b$ creates a bijection between \mathbb{K} and $\mathcal{X}^{\prime} \backslash\{b\}$. So, we can say that the cardinality of \mathcal{X}^{\prime} and hence that of \mathscr{N} is c, the cardinality of the set of real numbers \mathbb{R}. Therefore $\operatorname{dim} \mathscr{C}(\mathcal{X})=[c: 2]$. For that reason dimension of $\mathscr{C}(\mathbb{C})$ over \mathbb{R} is $[c: 2]$.
(iii) In a similar manner as above, we can show that for a well-ordered basis B of a Hausdörff topological vector space \mathcal{X},

$$
\mathcal{X}^{\prime}=\left(e_{1}+<B_{1}>\right) \cup\left(e_{2}+<B_{2}>\right) \cup \cdots \cup\left(e_{n}+<B_{n}>\right) \cup \cdots
$$

where $B=\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}, B_{1}=B \backslash\left\{e_{1}\right\}, B_{n}=B_{n-1} \backslash\left\{e_{n}\right\}, \forall n \geq 2$ and $<B_{i}>$ denotes the linear span of B_{i} in $\mathcal{X}, \forall i$.

Theorem 4.5. For every vector space \mathcal{X}, the evs $\mathscr{L}(\mathcal{X})$ has a basis. [The evs $\mathscr{L}(\mathcal{X})$ is discussed in Example 2.12

Proof. Let \mathscr{T} be the collection of all one-dimensional subspaces of \mathcal{X}. We now show that \mathscr{T} forms a basis of $\mathscr{L}(\mathcal{X}) \backslash[\mathscr{L}(\mathcal{X})]_{0}$. For any non-trivial subspace \mathcal{Y} of \mathcal{X}, there exists a non-zero element $x \in \mathcal{Y}$ such that $<x>\subseteq \mathcal{Y}[$ here,$<x>$ denotes the linear span of x in $\mathcal{X}]$. So, $\mathcal{Y} \in L(<x>)$. Also, $<x>\in \mathscr{T}$. Thus \mathscr{T} generates $\mathscr{L}(\mathcal{X}) \backslash[\mathscr{L}(\mathcal{X})]_{0}$. For any two distinct elements $\langle x\rangle,<y>\in \mathscr{T}$, if $\alpha<x>\subseteq<y>$ for some $\alpha \in \mathbb{K}^{*}$, then $\langle x>=\alpha<x>\subseteq<y>\Rightarrow<x\rangle=<y>$ which contradicts that $\langle x\rangle$ and $\langle y>$ are distinct. So, we can say that \mathscr{T} is an orderly independent
subset of $\mathscr{L}(\mathcal{X}) \backslash[\mathscr{L}(\mathcal{X})]_{0}$. Therefore \mathscr{T} forms a basis of $\mathscr{L}(\mathcal{X}) \backslash[\mathscr{L}(\mathcal{X})]_{0}$. Consequently, $\mathscr{L}(\mathcal{X})$ has a basis and $\operatorname{dim} \mathscr{L}(\mathcal{X})=[\operatorname{card}(\mathscr{T}): 0]$, since $[\mathscr{L}(\mathcal{X})]_{0}=\{\{\theta\}\}$.

From the above theorem, we can immediately get the following result. Also, \mathscr{T} is the only basis of $\mathscr{L}(\mathcal{X}) \backslash[\mathscr{L}(\mathcal{X})]_{0}$.
Result 4.6. $\operatorname{dim} \mathscr{L}(\mathcal{X})=[1: 0]$, when $\operatorname{dim} \mathcal{X}=1$ and $\operatorname{dim} \mathscr{L}(\mathcal{X})=[c: 0]$, when $\operatorname{dim} \mathcal{X}=2$, c being the cardinality of the set of all reals \mathbb{R}.
Note 4.7. From the previous result we can say that $\operatorname{dim} \mathscr{L}(\mathbb{R})=[1: 0]$ which is the same with the $\operatorname{dim}[0, \infty)$. But $\mathscr{L}(\mathbb{R})$ and $[0, \infty)$ are not order-isomorphic as the first one is non-topological evs, whereas the second one is a topological evs and, being topological, is an evs property. This example shows that a converse part of the statement that equality of dimension is an evs property which we have discussed in 3.18, is not true.

Theorem 4.8. For any $n \in \mathbb{N}$, $\mathscr{D}^{n}[0, \infty)$ has a basis and $\operatorname{dim} \mathscr{D}^{n}[0, \infty)=[1: 0]$.
Proof. We first show that $(0,0, \ldots, 0,1)$ generates $\mathscr{D}^{n}[0, \infty) \backslash\left[\mathscr{D}^{n}[0, \infty)\right]_{0}$. Let
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{D}^{n}[0, \infty) \backslash\left[\mathscr{D}^{n}[0, \infty)\right]_{0}$. Since $\left[\mathscr{D}^{n}[0, \infty)\right]_{0}=\{(0, \ldots, 0)\}$, there exists $i \in\{1,2, \ldots, n\}$ such that $x_{i} \neq 0$ and $x_{j}=0$, for all $j<i$. If $i<n$, then, obviously, $(0,0, \ldots, 0,1) \leq x$. If $i=n$, then $\frac{x_{i}}{2}(0,0, \ldots, 0,1) \leq x$. In any case, $x \in L((0,0, \ldots, 1))$. Since $\{(0, \ldots, 0,1)\}$ is orderly independent, it follows that $\{(0, \ldots, 0,1)\}$ is a basis of $\mathscr{D}^{n}[0, \infty) \backslash\left[\mathscr{D}^{n}[0, \infty)\right]_{0}$ and hence $\operatorname{dim} \mathscr{D}^{n}[0, \infty)=[1: 0]$.

The following example shows that there exists an evs which has no basis.
Theorem 4.9. $X:=\mathscr{D}([0, \infty): \mathbb{N})$ has no basis.
Proof. Let $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in X \backslash X_{0}$. Since here $X_{0}=\{(0,0, \ldots)\}$, there must exist a least positive integer p such that $x_{p} \neq 0$. If we consider $y=\left(y_{i}\right)_{i \in \mathbb{N}}$, where $y_{i}=x_{i}, \forall i \neq p, p+1$ and $y_{p}=0$, $y_{p+1}=1$, then $y \leq x$ and $y \notin X_{0}$; but there does not exist any $\alpha \in \mathbb{K}^{*}$ such that $\alpha x \leq y$, which means that $y \notin L(x)$. This shows that $x \notin Q(X)$ and this holds for any non-zero element x of X. Therefore $Q(X)=\emptyset$. So, $\mathscr{D}([0, \infty): \mathbb{N})$ has no basis.

Looking at the proof of the above theorems, we can get the following generalised theorem.
Theorem 4.10. For a well-ordered set $I, \mathscr{D}(X: I)$ has a basis, iff I has a maximum element.

References

1. S. Ganguly, S. Mitra, S. Jana, An associated structure of a topological vector space. Bull. Calcutta Math. Soc. 96 (2004), no. 6, 489-498.
2. S. Ganguly, S. Mitra, More on topological quasi-vector space. Rev. Acad. Canaria Cienc. 22 (2010), no. 1-2, 45-58 (2011).
3. S. Ganguly, S. Mitra, A note on topological quasi-vector space. Revista de la Academia Canaria de Ciencias 23 (2011), no. 1-2, 9-25.
4. S. Jana, J. Saha, A study of topological quasi-vector spaces. Revista de la Academia Canaria de Ciencias 24 (2012), no. 1, 7-23.
5. L. Nachbin, Topology and Order. Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, no. 4 D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto, Ont.-London 1965.
6. J. Saha, S. Jana, A study of balanced quasi-vector space. Revista de la Academia Canaria de Ciencias 27 (2015), no. 2, 9-28.
7. P. Sharma, S. Jana, An algebraic ordered extension of vector space. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part B, 545-558. https://doi.org/10.1016/j.trmi.2018.02.002
(Received 08.11.2019)
${ }^{1}$ Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata-700063, India
${ }^{2}$ Department of Pure Mathematics, University of Calcutta, Kolkata-700019, INDIA
E-mail address: jayeetasaha09@gmail.com
E-mail address: sjpm@caluniv.ac.in

[^0]: 2020 Mathematics Subject Classification. 08A99, 06F99, 15A99.
 Key words and phrases. Vector space; Exponential vector space; Testing set; Generator; Orderly independent set; Basis; Dimension; Feasible set.

 * Corresponding author.

[^1]: ${ }^{1}$ Here the notation ' $q_{d}<d$ ' is used to mean that $q_{d} \leq d$ but $q_{d} \neq d$.

