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COMPLEX REPRESENTATION IN THE PLANE THEORY OF

VISCOELASTICITY AND ITS APPLICATIONS

TSIALA JAMASPISHVILI

Abstract. The complex representation in the plane theory of viscoelasticity and Kolosov–Muskhe-
lishvili’s type formulas in the conditions of plane deformation and in the plane stressed state are

obtained. Investigation of various possible forms of viscoelastic correlations can be found in [1–4,

6–9, 11]. Certain contact problems of viscoelastic bodies and the corresponding integro-differential
equations are studied in [5,12,13]. The present paper considers the problem of a rigid punch on the

boundary of a half-plane in the presence of fraction.

1. Introduction

Basic equations of the creep theory expressing the connection between stresses and deformations
of hereditary aging media under small deformations have the form [1,4, 11]

2eij (t, r) =
sij (t, r)

G (t)
−

t∫
t0

sij (τ, r)K1 (t, τ) dτ ((i, j) = 1, 2, 3) ,

ε (t, r) =
σ (t, r)

E∗ (t)
−

t∫
t0

σ (τ, r)K2 (t, τ) dτ,

(1.1)

where t is time, r is the radius-vector of the point, t0 is the age of the material element at the
moment of loading, sij(t, r) and eij(t, r) are, respectively, the tensor deviator components of stress
and deformation, G(t) is the instantaneous shear modulus, E∗(t) is the instantaneous volumetric
deformation, ε (t, r) is the mean deformaton, σ (t, r) is the mean stress, K1 (t, τ) and K2 (t, τ) are the
kernels of shearing and volumetric creep deformation, respectively, which can be represented in the
form

K1 (t, τ) =
∂

∂τ

[
1

G (τ)
+ ω (t, τ)

]
, K2 (t, τ) =

∂

∂τ

[
1

E∗ (τ)
+ C∗ (t, τ)

]
,

where ω (t, τ) and C∗ (t, τ), are the creep measures of shearing and volumetric deformation. As
is known, the components of stress and deformation tensors σij and εij are connected with the
components of the corresponding deviator as follows:

sij = σij − σδij , σ =
1

3
σii, eij = εij − εδij , ε =

1

3
εii;

here, δij is the Kronecker symbol.
For one-dimensional stressed state of tension-compression we have

εii (t, r) =
σii (t, r)

E (t)
−

t∫
t0

σii (τ, r)K (t, τ) dτ, (1.2)

K (t, τ) = ∂
∂τ

[
1

E(τ) + C (t, τ)
]

is the creep kernel of tension-compression deformation, E(t) is the

instantaneous Young modulus, C(t, τ) is the creep measure of tension-compression deformation. The
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following correlations are known:

G (t) =
E (t)

2 (1 + ν1 (t))
, E∗ (t) =

E (t)

1− 2ν1 (t)
,

ω (t, τ) = 2 [1 + ν2 (t, τ)]C (t, τ) , C∗ (t, τ) = [1 + 2ν2 (t, τ)]C (t, τ) ,

where ν1 (t) is the Poisson coefficient of elasto-instantaneous deformation, ν2 (t, τ) is the Poisson
coefficient of creep deformation.

Elasto-instantaneous modules are the positive, continuous, bounded and monotonically increasing
functions on every t0 ≤ τ <∞, therefore they may satisfy the following conditions:

dE (τ)

dτ
> 0 (τ <∞) , E (τ) ∼ E0 <∞ (τ →∞) , E (t0) > 0,

where E0 is an elastic modulus of the material, rather large in age. Creep measures are the nonnegative,
continuous functions of two variables with the following properties: t0 ≤ τ ≤ t ≤ ∞.

C (t, t) = 0, C (t, τ) ∼ ϕ (τ) (t→∞) ,

C (t, τ) ∼ ψ (t− τ) (τ →∞, τ ≤ t) , ∂C (t, τ)

∂t
> 0,

∂C (t, τ)

∂τ
< 0 (τ ≤ t <∞) .

ϕ (τ) defines the aging process of the material, and the function ψ (y) characterizes hereditary prop-
erties of the material, moreover,

dϕ (τ)

dτ
< 0 (τ <∞) , ϕ (τ) ∼ C0 > 0 (τ →∞) , ϕ (t0) <∞,

dψ (y)

dy
> 0 (y <∞) , ψ (y) ∼ C0 (y →∞) , ψ (0) = 0,

where C0 is the limiting creeping measure for the material, highly large in age.
In view of the above-mentioned properties, the creeping measure C(t, τ) is usually representable in

the form [4]:

C (t, τ) = ϕ (τ)
(

1− e−γ(t−τ)
)
, γ = const . (1.3)

The correlations expressing stress components through deformation components are obtained from
(1.1) and (1.2) by solving the Volterra integral equations. From (1.2) we get [11]:

σii (t, r)

E (t)
= εii (t, r) +

t∫
t0

εii (τ, r)R (t, τ)dτ.

Here, R (t, τ) is called a kernel of relaxation, or in other words, the resolvent of creeping kernel K (t, τ).

2. Complex Representations in the Plane Theory of Viscoelasticity

(a) For a plane stressed state σ13 = σ23 = σ33 = 0, all the rest components of stresses together
with the components of deformation are the functions of variables (t, x, y), therefore correlations (1.1)
take the form

εij (t, x, y) =
1 + ν1 (t)

E (t)
σij −

t∫
t0

σij
∂

∂τ

[
1 + ν1 (τ)

E (τ)
+ (1 + ν2 (t, τ))C (t, τ)

]
dτ

−δij
ν1 (t)

E (t)
(σ11 + σ22) + δij

t∫
t0

∂

∂τ

[
ν1 (τ)

E (τ)
+ ν2 (t, τ)C (t, τ)

]
(σ11 + σ22) dτ, i, j = 1, 2, (2.1)

ε33 (t, x, y) = −ν1 (t)

E (t)
(σ11 + σ22) +

t∫
t0

∂

∂τ

[
ν1 (τ)

E (τ)
+ ν2 (t, τ)C (t, τ)

]
(σ11 + σ22) dτ.
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(b) For a plane deformation, ε11 and ε22 are independent of z, ε33 (t, x, y) = 0. Assuming E (t) =
E = const, ν1 (t) = ν2 (t, τ) = ν = const, we obtain σ33 = ν (σ11 + σ22), and equalities (1.1) take the
form

εij (t, x, y) =
1 + ν

E
σij − (1 + ν)

t∫
t0

σij
∂

∂τ
C (t, τ) dτ − δij

ν (1 + ν)

E
(σ11 + σ22)

+δijν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) (σ11 + σ22) dτ, i, j = 1, 2. (2.2)

Expressions (2.1) and (2.2) are the analogues of Hook’s law in the theory of viscoelasticity, i.e., they
establish a connection between the components of deformation and stress tensors in the conditions of
plane deformation and plane stressed state, respectively.

In the absence of body forces, the equilibrium equations take the form

∂σ11 (t, x, y)

∂x
+
∂σ12 (t, x, y)

∂y
= 0,

∂σ21 (t, x, y)

∂x
+
∂σ22 (t, x, y)

∂y
= 0.

As is known [10], these equalities result in

σ11 (t, x, y) =
∂2U (t, x, y)

∂y2
, σ22 (t, x, y) =

∂2U (t, x, y)

∂x2
, σ12 (t, x, y) = −∂

2U (t, x, y)

∂x∂y
,

where U (t, x, y) is the stress function or the Airy function. ∆∆U = 0, ∆ ≡ ∂2

∂x2 + ∂2

∂y2 .

Equalities (2.2) yield

ε11 (t, x, y) =
(1 + ν)

(
∆U − ∂2U

∂x2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
∆U − ∂2U

∂x2

)
dτ − ν (1 + ν)

E
∆U

+ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) ∆Udτ,

ε22 (t, x, y) =
(1 + ν)

(
∆U − ∂2U

∂y2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
∆U − ∂2U

∂y2

)
dτ − ν (1 + ν)

E
∆U

+ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) ∆Udτ.

(2.3)

Introducing the notation ∆U ≡ P and considering holomorphic functions F (z, t) = P + iQ (∆P =

0, ∆Q = 0) and ϕ (z, t) = p + iq = 1
4

∫
F (z, t) dz, we have P = 4 ∂p∂x = 4 ∂q∂y , whence (2.3) takes the
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form

ε11 (t, x, y) =
∂u1
∂x

=
(1 + ν)

(
4 ∂p∂x −

∂2U
∂x2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4
∂p

∂x
− ∂2U

∂x2

)
dτ

−4ν (1 + ν)

E

∂p

∂x
+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

∂p

∂x
dτ,

ε22 (t, x, y) =
∂u2
∂y

=
(1 + ν)

(
4 ∂q∂y −

∂2U
∂y2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4
∂q

∂y
− ∂2U

∂y2

)
dτ

−4ν (1 + ν)

E

∂q

∂y
+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

∂q

∂y
dτ ,

(2.4)

where u1, u2 are displacement components.
As a result of integration of each of the correlations (2.4), we get

u1 =
(1 + ν)

(
4p− ∂U

∂x

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4p− ∂U

∂x

)
dτ

−4ν (1 + ν)

E
p+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) pdτ + f1 (y, t),

u2 =
(1 + ν)

(
4q − ∂U

∂y

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4q − ∂U

∂y

)
dτ

−4ν (1 + ν)

E
q + 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) qdτ + f2 (x, t).

(2.5)

Taking into account the third equality of (2.2), it follows that

f ′1y (y, t) + f ′2x (x, t) = 0,

from which f1 (y, t) = εyt+ α, f2 (x, t) = −εxt+ β, i.e., f1 (y, t) and f2 (x, t) provide a rigid displace-
ment of the body which can be neglected. From equality (2.5) we have

u1 + iu2 =
(1 + ν)

E

(
4ϕ (z, t)−

(
∂U

∂x
+ i

∂U

∂y

))

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

[
4ϕ (z, τ)−

(
∂U

∂x
+ i

∂U

∂y

)]
dτ

−4ν (1 + ν)

E
ϕ (z, t) + 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)ϕ (z, τ)dτ. (2.6)

As is known [10], from a general solution of biharmonic equation, the Goursat formula U=Re [zϕ (z, t)

+χ (z, t)], we find that ∂U
∂x + i∂U∂y = ϕ (z, t) + zϕ′ (z, t) + ψ (z, t), where ∂χ(z,t)

∂z = ψ (z, t), ϕ (z, t) and

ψ (z, t) are holomorphic functions of the variable z = x+ iy.
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If we introduce the notation

(I − L) g (t) =
g (t)

E
−

t∫
t0

∂

∂τ
C (t, τ) g (τ) dτ,

then expression (2.6) can be written as

u1 + iu2 = (1 + ν) (I − L)
(

(3− 4ν)ϕ (z, t)− (zϕ′ (z, t) + ψ (z, t))
)
, (2.7)

and for a plane stressed state, an analogous reasoning results in

u1 + iu2 = (I − L)
(

(3− ν)ϕ (z, t)− (1 + ν) (zϕ′ (z, t) + ψ (z, t))
)
. (2.8)

Correlations (2.7) and (2.8) together with the relations

σ11 + σ22 = 4
[
Φ (z, t) + Φ (z, t)

]
, σ22 − σ11 + 2iσ12 = 2

[
zΦ

′
(z, t) + Ψ (z, t)

]
,

where Φ (z, t) = ϕ′ (z, t), Ψ (z, t) = ψ′ (z, t), are the analogues of the well-known Kolosov–Muskhelishvi-
li’s formulas in the theory of viscoelasticity.

3. Solution of the Punch Problem for a Half-plane

Let in the conditions of plane deformation a viscoelastic body occupy a half-plane y < 0 which
we denote by S−, so the body S− leaves on the right when moving along the ox-axis in a positive
direction. We denote the upper half-plane by S+ and the ox-axis by L.

Assume also that the principal vector (X,Y ) of outer forces applied to the boundary is finite,
stresses and rotations vanish at infinity. Thus, for large |z|, we have

Φ (z, t) =
X + iY

2πz
+ o

(
1

z

)
, Φ′ (z, t) = −X + iY

2πz2
+ o

(
1

z2

)
, Ψ (z, t) =

X − iY
2πz

+ o

(
1

z

)
.

For a half-plane, Kolosov–Muskhelishvili’s formulas take the form [10]:

σ12 − σ11 + 2iσ12 = 2
[
Φ

′
(z, t) (z − z)− Φ (z, t)− Φ (z, t)

]
,

σ22 − iσ12 = Φ (z, t)− Φ (z, t) + (z − z) Φ′ (z, t), (3.1)

u′1 + iu′2 = (1 + ν) (I − L)
[
(3− 4ν) Φ (z, t) + Φ (z, t) + (z − z) Φ′ (z, t)

]
. (3.2)

Equality (3.2) is written for the case of plane deformation. The prime denotes the derivative with
respect to the variable z, and in the sequel, the dot will denote the derivative with respect to the
variable t.

A punch with a base of given shape, with a force directed vertically downwards, acts along the
segment L′ = [a; b] of the boundary. Let the punch displacement along the boundary normal be
translational (vertically downwards) in the conditions of friction. The boundary conditions have the
form

T (x, t) = kP (x, t) , x ∈ L′, (3.3)

v− (x, t) = f (x, t) + const, x ∈ L′, (3.4)

T (x, t) = P (x, t) = 0, x ∈ L− L′, (3.5)

where f (x, t) is the given function defining the punch profile at the moment t = t0, i.e., y = f (x, t0)
is the punch profile equation.

Let f ′ (x, t) satisfy the Hölder (H) condition with respect to the variable x, and P0 (t) =
b∫
a

P (x, t) dx,

T0 (t) = kP0 (t). From (3.1) and (3.2), passing to the boundary values as y → 0−, we obtain

Yy − iXy = Φ− (x, t)− Φ+ (x, t) ,

u′ + iv′ = (1 + ν) (I − L)
[
(3− 4ν) Φ− (x, t) + Φ+ (x, t)

]
,
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whence, in view of the boundary conditions (3.3)–(3.5), we have

(1− ik) Φ+ (x, t) + (1 + ik) Φ
+

(x, t) = (1− ik) Φ− (x, t) + (1 + ik) Φ
−

(x, t) , (3.6)

(1 + ν) (I − L)
[
(3− 4ν) Φ− (x, t) + Φ+ (x, t)− (3− 4ν) Φ

+
(x, t)− Φ

−
(x, t)

]
= 2if ′ (x, t) . (3.7)

From (3.6), according to the Liouville theorem, (1− ik) Φ (z, t) + (1 + ik) Φ (z, t) = 0. Taking into
account the last correlation in (3.7), we obtain

(I − L)
[
Φ+ (x, t)− gΦ− (x, t)

]
= f0 (x, t) , (3.8)

where

g = − (3− 4ν) (1 + ik) + 1− ik
1 + ik + (3− 4ν) (1− ik)

, f0(x, t) =
2i (1 + ik)

(1 + ν) (1 + ik + (3− 4ν) (1− ik))
f ′ (x, t) .

Introducing the notation
Γ (x, t) = Φ+ (x, t)− gΦ− (x, t) , (3.9)

the Volterra integral equation (3.8) takes the form

(I − L) Γ (x, t) = f0 (x, t) . (3.10)

Based on (1.3), the integral equation (3.10) reduces to the ordinary differential equation of second
order

Γ̈ (x, t) + γα (t) Γ̇ (x, t) = A (x, t) (3.11)

with the following initial conditions{
Γ (x, t0) = Ef0 (x, t0) ,

Γ̇ (x, t0) = Eḟ0 (x, t0)− γE2ϕ (t0) f0 (x, t0) ,
(3.12)

where α (t) ≡ 1 + Eϕ (t), A (x, t) ≡ E
[
f̈0 (x, t) + γḟ0 (x, t)

]
.

A solution of equations (3.11) and (3.12) is represented in the form

Γ (x, t) = C (x)

t∫
t0

δ (τ) dτ +

t∫
t0

δ (τ)

( τ∫
t0

A (x, s) ds

δ (s)

)
dτ + C1 (x) , (3.13)

where

C (x) = Eḟ0 (x, t0)− γE2ϕ (t0) f0 (x, t0) , C1 (x) = Ef0 (x, t0) ,

δ (t) = exp

{
− γ

t∫
t0

α (τ) dτ

}
.

Respectively, from (3.9) we obtain the following problem of linear conjugation:

Φ+ (x, t) = gΦ− (x, t) + Γ (x, t) , (3.14)

where Γ (x, t) is defined by equality (3.13).
Introducing the constant α defined by the equality

tgπα = k
1− 2ν

2 (1− ν)
0 < α <

1

2
, we get g = −e2πiα.

Any solution of the homogeneous problem will be [10]

χ0 (z) = (z − a)
− 1

2−α(b− z)−
1
2+α.

Finally, a general solution of problem (3.14) takes the form

Φ (z, t) =
χ0 (z)

2πi

b∫
a

Γ (x, t) dx

χ+
0 (x) (x− z)

+ χ0 (z) C̃ (t), (3.15)

where the function C̃(t) to be determined.
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Under the expression (z − a)
− 1

2−α(b− z)−
1
2+α we mean a branch which is holomorphic on the

segment [a, b] and takes a real positive value (x− a)
1
2+α(b− x)

1
2−α on the upper boundary of that

segment. This branch is characterized by the fact that

lim
z→∞

(z − a)
− 1

2−α(b− z)−
1
2+α

z
= −ieπiα.

C̃(t) can be defined from the following formula:

lim
z→∞

zΦ (z, t) =
−T0 (t) + iP0 (t)

2π
=
iP0 (t) (1 + ik)

2π
,

whence by virtue of (3.15), we get C̃ (t) =
P0 (t) (1 + ik) eπiα

2π
.

Finally,

Φ (z, t) =
χ0 (z)

2πi

b∫
a

Γ (x, t) dx

χ+
0 (x) (x− z)

+ χ0 (z)
P0 (t) (1 + ik) eπiα

2π
.

It can be easily verified that all the conditions of the problem will be satisfied if Γ (x, t) satisfies
Hölder’s condition condition (H) with respect to the variable x on the segment [a, b].

Since
P (x, t) + iT (x, t) = P (x, t) (1 + ik) = Φ+ (x, t)− Φ− (x, t) ,

therefore the pressure under the punch is calculated by the formula

P (x, t) =
χ0 (x)

πi

b∫
a

Γ (y, t) dy

χ+
0 (y) (y − x)

+ χ0 (x)
2P0 (t) (1 + ik) eπiα

2π
.

For k = 0 (α = 0), we obtain a solution corresponding to the case without friction.
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