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BOUNDEDNESS OF HIGHER ORDER COMMUTATORS OF G-FRACTIONAL

INTEGRAL AND G-FRACTIONAL MAXIMAL OPERATORS WITH G−BMO

FUNCTIONS

ELMAN J. IBRAHIMOV1∗, GULQAYIT A. DADASHOVA1, AND SAADAT AR. JAFAROVA2

Abstract. In this paper we introduce the Gegenbauer BMO (G − BMO) space and study its

basic properties, analogous to the classical case. The John-Nirenberg type theorem is proved for
f ∈ BMOG(R+). Moreover, the notions of a higher order commutator of Gegenbauer fractional

(G-fractional) integral Jb,α,kG and Gegenbauer fractional (G-fractional) maximal operator Mb,α,k
G

with G−BMO function are studied. When commutator b is a (G−BMO) function, the necessary

and sufficient conditions for (Lp;Lq) boundedness of commutators Jb,α,kG and Mb,α,k
G are obtained.

Introduction

The boundedness of the fractional maximal operator, fractional integral and its commutators plays
an important role in harmonic analysis and their applications. In recent decades, many authors have
proved the boundedness of the commutators with BMO functions of fractional maximal operator and
fractional integral operator on some function spaces (see, e.g., [1–4,6–8,13,19]).

The fractional integral operator Iα and fractional maximal operator Mα are defined as follows:

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
, n ≥ 1, 0 < α < n,

Mαf(x) = sup
r>0

1

rn−α

∫
|x−y|≤r

|f(y)|dy.

Let b ∈ Lloc(Rn), then the commutator is generated by the function b(x) and Iα is defined as the form

[b, Iα]f(x) = b(x)Iα(x)− Iα(bf)(x) =

∫
Rn

[b(x)− b(y)]

|x− y|n−α
f(y)dy.

In [2] and [19], the following theorem is proved by a somewhat different method.

Theorem A. Let 0 < α < n, 1 < p <
n

α
and

1

p
− 1

q
=
α

n
. Then [b, Iα] is bounded from Lp(Rn) to

Lq(Rn) if and only if b ∈ BMO(Rn).

Define the commutator [b,Mα] of the fractional maximal operator Mα as

[b,Mα](f)(x) = sup
r>0

1

rn−α

∫
|x−y|≤r

|b(x)− b(y)||f(y)|dy.

In [19], it is proved that under the conditions of Theorem A [b,Mα] is bounded from Lp(Rn) to Lq(Rn)
if and only if b ∈ BMO(Rn).

In the present paper, we prove theorems on the boundedness of commutators both of the G-
fractional integral and of the G-fractional maximal operator on G−BMO space. The results obtained
here are analogous to the corresponding theorem obtained for the [b, Iα] and [b,Mα] in [2] and [19].

The paper is organized as follows.
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In Section 1, we present some definitions, notations and auxiliary results. In Section 2, theG−BMO
space is introduced and its properties are proved. In Sections 3 and 4 we prove the (Lp,λ; Lq,λ)
boundedness of the commutator of G-fractional integrals and the (Lp,λ; Lq,λ) boundedness of the
commutator of G-fractional maximal operator on G−BMO space, respectively.

1. Definitions, Notations and Auxiliary Results

Our investigation is based on the Gegenbauer differential operator Gλ (see [5])

Gλ ≡ G = (x2 − 1)
1
2−λ

d

dx
(x2 − 1)λ+

1
2
d

dx
, x ∈ (1,∞), λ ∈ (0,

1

2
).

The shift operator Aλchy generated by Gλ is given in the form (see [10,11])

Aλchyf(chx) =
Γ(λ+ 1

2 )

Γ(λ)Γ( 1
2 )

∫
0

f(chxchy − shxshy cosϕ)(sinϕ)2λ−1dϕ

and it possesses all properties of the generalized shift operator given in the monograph due to
B.M.Levitan [16,17].

Let H = H(0, r) = (0, r). For any measurable set E, µE = |E|λ =
∫
E

sh2λydy. For 1 ≤ p < ∞, let

Lp(R+, G) = Lp,λ(R+), R+ = (0,∞) be the space of measurable functions on R+ with the finite norm

‖f‖Lp,λ =

( ∫
R+

|f(chy)|psh2λydy

)1

p
, 1 ≤ p <∞,

‖f‖∞,λ ≡ ‖f‖∞ = ess sup
x∈R+

|f(chx)|, p =∞.

For f ∈ Lloc
1,λ(R+), the G-fractional maximal operator Mα

G and the G-fractional integral JαG are defined

in [14] as follows:

Mα
Gf(chx) = sup

r>0

1

|H|1−
α

2λ+1

λ

∫
H

Aλchy|f(chx)|sh2λydy.

Here |H(0, r)|λ =
r∫
0

sh2λydy is the measure that is absolutely continuous with respect to the Lebesgue

measure of the interval H

JαGf(chx) =

∞∫
0

Aλchyf(chx)

(shy)2λ+1−α sh2λydy.

The next result has been obtained in [14] and gives us the (Lp,λ, Lq,λ) boundedness of Mα
G and JαG

(see also [13,15]).

Theorem B. Suppose that 0 < λ <
1

2
, 0 < α < 2λ+ 1, and 1 ≤ p < 2λ+ 1

α
.

(a) If 1 < p < 2λ+1
α , then the condition 1

p−
1
q = α

2λ+1 is necessary and sufficient for the boundedness

of Mα
G and JαG from Lp,λ(R+) to Lq,λ(R+).

(b) If p = 1, then the condition 1− 1
q = α

2λ+1 is necessary and sufficient for the boundedness of Mα
G

and JαG from L1,λ(R+) to WLq,λ(R+).

We denote by WLq,λ(R+) the spaces of all locally integrable functions f(chx), x ∈ R+, with the
finite norm

‖f‖WLq,λ(R+) = sup
r>0

r|{x ∈ R+ : |f(chx)| > r}|
1
p

λ , 1 ≤ p < q.

Throughout the paper A . B mean that A ≤ CB with some positive constant C, which may depend
on some parameters. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.
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Let H(x, r) = (x− r, x+ r) ∩ [0,∞), r ∈ (0,∞), x ∈ [0,∞). Thus,

H(x, r) =

{
(0, x+ r), 0 ≤ x < r,

(x− r, x+ r), x ≥ r.

We will need the following lemmas.

Lemma 1.1 ([14]). For any µ > 0, the following relation is true:

|H(x, r)|µ
2
≈


(

sh
x+ r

2

)µ+1

, 0 < x+ r < 2,(
sh
x+ r

2

)2µ
, 2 ≤ x+ r <∞.

For x = 0 and µ = 2λ, we have

|H(0, r)|λ ≈
(

sh
r

2

)γ
,

where γ = γλ(r) =

{
2λ+ 1, if 0 < r < 2,

4λ, if 2 ≤ r <∞.

Lemma 1.2 ([11]). If f ∈ Lp,λ(R+) , then for any y ∈ [0,∞), the inequality

‖Achyf‖Lp,λ ≤ ‖f‖Lp,λ , 1 ≤ p ≤ ∞ (1.1)

holds.

2. The Gegenbauer BMO-Space

The space of functions of bounded mean oscillation, or BMOG, naturally arises as the class of
functions whose deviation from their means over intervals is bounded. The L∞ functions have this
property, but there exist unbounded functions with a bounded mean oscillation. Such functions are
slowly growing, and they typically have at most logarithmic blow up. The space BMOG shares similar
properties with the space L∞ and often serves as its substitute. What exactly is a bounded mean
oscillation and what kind of functions have this property?

The mean of a locally integrable function over a set is another word for its average over that set.
The oscillation of a function over a set is the absolute value of the difference of the function from
its mean over this set. The mean oscillation is therefore the average of this oscillation over a set. A
function is said to be of bounded mean oscillation if its mean oscillation over all intervals is bounded.
Precisely, given a locally integrable function f on R+ = (0,∞), denote by

fH(chx) =
1

|H|λ

∫
H

Aλchyf(chx)sh2λydy,

where H = H(0, r), the mean (or average) of f over H. Then the oscillation of f over H are the
functions |Aλchyf(chx)− fH(chx)|, and the mean oscillation of f over H is

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy.

2.1. Definition and some properties of the G−BMO space.

Definition 2.1. We denote by BMOG(R+) the Gegenbauer-BMO space (G − BMO space) as the
set of locally integrable functions on R+ = (0,∞) such that

‖f‖BMOG(R+) = sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy <∞.

We set

BMOG(R+) =
{
f ∈ Lloc

1,λ(R+) : ‖f‖BMOG(R+) <∞
}
.
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Several remarks are in order. First, it is a simple fact that BMOG(R+) is a linear space, that is,
if f, g ∈ BMOG(R+) and µ ∈ R , then f + g and µf in BMOG(R+), and

‖f + g‖BMOG ≤ ‖f‖BMOG + ‖g‖BMOG , ‖µf‖BMOG = |µ|‖f‖BMOG .

But ‖·‖BMOG is not a norm. The problem is that if ‖·‖BMOG = 0 , this does not imply that f = 0, but
that f is a constant. From Proposition 2.2, every constant function C satisfies ‖C‖BMOG = 0, then
the functions f and f + c have the same BMOG norms. In the sequel, we keep in mind that elements
of BMOG whose difference is a constant are identified. Although ‖ · ‖BMOG is only a seminorm, we
occasionally refer to it as a norm when there is no possibility of confusion.

We begin with the basic properties of BMOG.

Proposition 2.2. The following properties of the BMOG(R+) space are valid:
1) If ‖f‖BMOG = 0, then f is a.e. equal to a constant.
2) L∞(R+) is contained in BMOG(R+) and ‖f‖BMOG ≤ 2‖f‖L∞ .
3) Suppose that there exist a constant A > 0 and for all intervals H in R+ a constant CH such

that

sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− CH |sh2λydy ≤ A, (2.1)

then f ∈ BMOG(R+) and ‖f‖BMOG ≤ 2A.
4) If f ∈ BMOG(R+), y ∈ R+, then Aλchyf is also in BMOG(R+) and

‖Aλchyf‖BMOG ≤ ‖f‖BMOG .

5) Let f be in BMOG(R+) . Given an interval H and a positive integer m, we have

|bH(chx)− b2mH(chx)| ≤ 2m‖b‖BMOG .

Proof. To prove 1), we note that f is a.e. equal to its average CN over every segment [0, N ]. Since
[0, N ] ⊂ [0, N + 1], it follows that CN = CN+1 for all N . This implies the required conclusion.

To prove 2), we using (1.1). Then

Aλchy|Aλchyf(chx)− fH(chx)| ≤ Aλchy
(
|Aλchyf(chx)|+ |fH(chx)|

)
≤2Aλchy|f(chx)| ≤ 2‖f‖L∞ .

For item 3), we get

|Aλchyf(chx)− fH(chx)| ≤ |Aλchyf(chx)− CH |+ |fH(chx)− CH |

≤|Aλchyf(chx)− CH |+
1

|H|λ

∫
H

|Aλchyf(chx)− CH |sh2λydy.

Averaging over H and using (2.1), one has

‖f‖BMOG ≤ 2A.

Let us prove property 4). Applying Lemma 1.2, we have

‖Aλchyf‖BMOG ≤ sup
x,r∈R+

1

|H|λ

∫
H

|AλchyAλchyf(chx)−AλchyfH(chx)|sh2λydy

≤ sup
x,r∈R+

1

|H|λ

∫
H

Aλchy|Aλchyf(chx)− fH(chx)|sh2λydy

≤ sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy = ‖f‖BMOG .
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Finally, we prove 5). In fact,

|bH(chx)− b2H(chx)| ≤ 1

|H|λ

∣∣∣∣ ∫
H

(
Aλchyf(chx)− f2H(chx)

)
sh2λydy

∣∣∣∣
≤ 2

|2H|λ

∫
H

∣∣Aλchyf(chx)− b2H(chx)
∣∣ sh2λydy ≤ 2‖f‖BMOG .

Then An iteration yields

|bH− b2H + b2H− b22H + · · ·+ b2m−1H− b2mH | ≤ 2m‖f‖BMOG . �

Example. We show that L∞(R+) is a proper subspace of BMOG(R+). We claim that the function
log(shx) is in BMOG(R+), but not in L∞(R+). To prove that it is in BMOG(R+), for every x0 ∈ R+

and r > 0, we choose a constant Cx0,r such that the average |Aλchy log(shx)−Cx0,r| for all y ∈ [0, x0+r]
is uniformly bounded.

Consider the integral

1

|H(0, x0 + r)|λ

x0+r∫
0

∣∣Aλchy log(shx)− Cx0,r

∣∣ sh2λydy,

where Cx0,r = (log r)(log x0), 0 ≤ x0 ≤ 2 and 0 ≤ x0 ≤ arcsh1. We may take r = 1, then

1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣Aλchy log(shx)
∣∣ sh2λydy

=
1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣∣Aλchy log(ch2x− 1)
1
2

∣∣∣ sh2λydy

=
1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣∣∣ Γ(λ+ 1
2 )

Γ(λ)Γ( 1
2 )

π∫
0

log[(chxchy − shxshy cosϕ)2 − 1]
1
2

∣∣∣∣sh2λydy

≤ 1

|H(0, x0 + 1)|λ

x0+1∫
0

|log sh(x+ y)| sh2λydy ≤ log sh(x+ x0 + 1)

≤ log sh(x0 + 1 + arcsh1) ≤ log sh(x0 + 2) ≤ log sh4.

Now, let Cx0,1 = log(2x0), arcsh1 ≤ x ≤ x0, x0 > 2. In this case, we have

1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣Aλchy log(shx)− log(2x0)
∣∣ sh2λydy

≤ log
sh(x+ x0 + 1)

sh(2x0)
< log

sh(2x0 + 2)

sh2x0
= log

(sh2x0)ch2 + (ch2x0)sh2

sh2x0

= log

(
ch2 +

ch2x0
sh(2x0)

sh2

)
≤ log(ch2 + 2sh2) ≤ log(3ch2),

since chx ≤ 2shx if x ≤ 1.
Thus, according to property 3), log(shx) is in BMOG(R+). It is obvious that log(shx) is not in

L∞(R+).
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Below, we will need some property of BMOG(R+) functions. Observe that if an interval H1 is
contained in the interval H2, then

|fH1
− fH2

| ≤ 1

|H1|λ

∫
H1

|Aλchyf(chx)− fH2
(chx)|sh2λydy

≤ 1

|H1|λ

∫
H2

|Aλchyf(chx)− fH2
(chx)|sh2λydy

≤|H2|λ
|H1|λ

‖f‖BMOG .

Theorem 2.3. BMOG(R+) is a complete space.

Proof. Let {fn} be a Cauchy sequence in BMOG(R+). Thus ‖fn − fm‖BMOG → 0, for n,m → ∞.
We choose a subsequence {fnk} of {fn} such that ‖fnk+1

− fnk‖BMOG <
1
2k

for all k ≥ 1. From this
it follows that

∞∑
k=1

‖fnk+1
− fnk‖BMOG <

∞∑
k=1

1

2k
= 1.

Then for a.e. x ∈ R+,
∞∑
k=1

|fnk+1
− fnk | <∞,

and, consequently, the series

fn1
(chx) +

∞∑
k=1

{fnk+1
(chx)− fnk(chx)}

converges, this is equivalent to the existence of

lim
k→∞

fnk(chx), for a.e. x ∈ R+.

We define the function f as follows:

f(chx) =

{
lim
k→∞

fnk(chx), for a.e. x ∈ R+,

0, otherwise.

Thus we prove that

lim
k→∞

fnk(chx) = f(chx), a.e. x ∈ R+.

By the triangle inequality,

‖fnk‖BMOG =

∥∥∥∥fn1
+

k−1∑
ν=1

(
fnk+1

− fnk
) ∥∥∥∥

BMOG

≤
∥∥∥∥|fn1

|+
k−1∑
ν=1

∣∣fnk+1
− fnk

∣∣ ∥∥∥∥
BMOG

≤‖fn1‖BMOG
+

∥∥∥∥ k−1∑
ν=1

∣∣fnk+1
− fnk

∣∣ ∥∥∥∥
BMOG

≤ ‖fn1‖BMOG
+ 1.

From this it follows that

‖fnk‖BMOG
≤ const, at k →∞,

i.e., f ∈ BMOG(R+).
Now, we show that

‖f − fnk‖BMOG
→ 0, at k →∞.
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In fact,

‖f − fnk‖BMOG
=

∥∥∥∥ ∞∑
ν=k

(
fnν+1

− fnν
) ∥∥∥∥

BMOG

≤
∥∥∥∥ ∞∑
ν=k

∣∣fnν+1 − fnν
∣∣ ∥∥∥∥
BMOG

≤
∞∑
ν=1

∥∥fnν+1 − fnν
∥∥
BMOG

< 1.

By the dominated convergence theorem,

‖f − fnk‖BMOG
→ 0, at k →∞.

Finally, we have to show that {fn} is the Cauchy. Given ε > 0, there exists Nε so, for all n,m > Nε,
we have

‖fn − fm‖BMOG <
ε

2
.

We choose a number nk > Nε such that

‖f − fnk‖BMOG <
ε

2
.

Then we have

‖f − fn‖BMOG ≤ ‖f − fnk‖BMOG + ‖fn − fnk‖BMOG < ε.

This completes the proof. �

The next section needs the following statement.

Theorem 2.4 (Calderon–Zygmund decomposition of R+). Suppose that f is a non-negative integrable
function on R+. Then for any fixed number β > 0, there exists a sequence {(j − 1)r, jr} = {Hj} of
disjoint intervals such that

(1) f(chx) ≤ β, x 6∈
⋃
j

Hj;

(2)
∣∣⋃
j

Hj

∣∣
λ
≤ 1

β ‖f‖L1,λ
;

(3) β <
1

|Hj |λ
∫
Hj

Aλchyf(chx)sh2λydy ≤ 2(2λ+1)nβ, n = 1, 2, . . . .

Proof. Since f ∈ L1,λ(R+), by Lemma 1.2, Aλchyf ∈ L1,λ(R+) and by the integral continuity, we

can decompose R+ into a net of equal intervals (by the Lindelöf covering theorem (see [18]), this is
possible)) such that for every H from the net

1

|H|λ

∫
H

Aλchyf(chx)sh2λydy ≤ β. (2.2)

In fact, for any β > 0, there exists δ = δ(β) > 0 such that for every Hj with measure |Hj |λ = |H|λ < δ,∫
Hj

Aλchyf(chx)sh2λydy < β, (j = 1, 2, . . .),

where

|Hj |λ =

∫
Hj

sh2λydy, (j = 1, 2, . . .).

First, we prove (3). Let H1 = (0, r) be a fixed interval in the net. Then by (2.2), we can write

1

H1

∫
H1

Aλchyf(chx)sh2λydy ≤ β. (2.3)
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We divide the interval H1 into 2n equal intervals and let H ′1 =
(
0, r2n

)
be one from this intervals. By

Lemma 1.1 (then µ = 2λ), one has

|H ′1|λ =

r
2n∫
0

sh2λydy ≈
(

sh
r

2n+1

)2λ+1

, 0 <
r

2n
< 2.

Since for 0 < t < 1, sht ≈ t, we have

|H ′1|λ ≈
(

sh
r

2n+1

)2λ+1

≈
( r

2n+1

)2λ+1

≈
(

1

2n
sh
r

2

)2λ+1

≈ 2−(2λ+1)n|H ′1|λ. (2.4)

Concerning H ′1, there may possibly be two cases:

(A)
1

|H ′1|λ
∫
H′1

Aλchyf(chx)sh2λydy > β.

(B)
1

|H ′1|λ
∫
H′1

Aλchyf(chx)sh2λydy ≤ β.

For case (A), from (2.4) and (2.3), we have

β <
1

|H ′1|λ

∫
H′1

Aλchyf(chx)sh2λydy

≈2(2λ+1)n

|H ′1|λ

∫
H′1

Aλchyf(chx)sh2λydy

.
2(2λ+1)n

|H1|λ

∫
H1

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ.

Here H ′1 we choose as one of the sequences {Hj}.
We consider case (B). Suppose that H ′1 = H2(r, 2r). Dividing the interval into 2n equal partials

and reasoning however, we obtain

β <
1

|H ′2|λ

∫
H′2

Aλchyf(chx)sh2λydy

.
2(2λ+1)n

|H1|λ

∫
H1

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ,

where H ′2 we choose as one of the sequences {Hj}. Further reasoning of the process, we obtain a
sequence of disjoint {Hj} such that

β <
1

|Hj |λ

∫
Hj

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ, (n = 1, 2, . . .).

Proof of (1). Taking into account (2.4), from the Lebesgue differentiation theorem (see [12, Corollary
2.1]), we have

f(chx) = lim
r→0

1

|H(0, r)|λ

∫
H(0,r)

Aλchyf(chx)sh2λydy ≤ β

for a.e. x 6∈
⋃
j

Hj . It remains to prove (2). Passing to the limit by n→∞ in the inequality

∣∣∣∣ ⋃
j=1,2,...,n

Hj

∣∣∣∣
λ

≤
n∑
j=1

|Hj |λ ≤
1

β

n∑
j=1

∫
Hj

f(chx)sh2λxdx,

which is contained in the proof of Theorem 2.4 in [12], we obtain the assertion (2). �
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Remark 2.5. The Calderon–Zygmund decomposition stay valid if we replace R+ by a fixed interval
H0 for f ∈ Lp,λ(H0).

2.2. The John-Nirenberg type theorem. Having stated some basic facts about BMOG, we now
turn to a deeper property of BMOG functions, that is, their exponential integrability. As we saw in
Example 2.5, the function f(chx) = log(shx) is in BMOG.

This function is exponentially integrable over any segment [a, b] of R+ in the sense that

b∫
a

e|f(chx)|sh2λxdx <∞.

It turns out that this is a general property of BMOG functions, and this is the content of the next
theorem.

Theorem 2.6. For all f ∈ BMOG(R+), for all interval H = H(0, r) and α > 0, we have

|{x ∈ H : |Aλchyf(chx)− fH(chx)| > α}|λ

≤ e|H|e
− Aα
‖f‖BMOG with A =

(
2(2λ+1)ne

)−1
.

The proof of this theorem is based on the Calderon–Zygmund decomposition and is the same as
that of Theorem 7.1.6 in [9].

Corollary 2.7. For all 0 < p <∞ and H = H(0, r), one has

sup
r>0

(
1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

) 1
p

. ‖f‖BMOG . (2.5)

Proof. In fact

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

=
p

|H|λ

∞∫
0

( |Aλchyf(chx)−fH(chx)|∫
0

αp−1dx

)
sh2λydy

=
p

|H|λ

∞∫
0

αp−1
( ∫
{x∈H:|Aλchyf(chx)−fH(chx)|>α}

sh2λydy

)
dx

=
p

|H|λ

∞∫
0

αp−1
∣∣{x ∈ H : |Aλchyf(chx)− fH(chx)| > α}

∣∣
λ
dx

≤ p

|H|λ
e|H|λ

∞∫
0

αp−1e
− Aα
‖f‖BMOG dx

=pe
Γ(p)

Ap
‖f‖BMOG =

e

Ap
Γ(p+ 1)‖f‖BMOG ,

where A =
(
e(2λ+1)ne

)−1
. �

Since inequality (2.7) can be reversed for p > 1 via Hölder’s inequality (see [14, Theorem 3.3]), we
obtain the following important Lp,λ characterization of BMOG norms.

Corollary 2.8. For all 1 < p <∞, we have

sup
x,r∈R+

(
1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

) 1
p

≈ ‖f‖BMOG .
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3. Commutators of Gegenbauer Fractional Integrals

In this section we study the (Lp,λ, Lq,λ) boundedness of commutators of the Gegenbauer fractional
integrals JαG, where

JαGf(chx) =

∞∫
0

Aλchyf(chx)

(shy)γ−α
sh2λydy, α < γ ≤ 2λ+ 1.

We will also illustrate that the boundedness of commutators of JαG may characterize the BMOG(R+)
spaces. First, we will give some related results. Suppose that b ∈ Lloc

1,λ(R+), then the commutator
generated by the function b and the JαG is defined as follows:

Jb,αG f(chx) = b(chx)JαGf(chx)− JαG(bf)(chx)

=

∞∫
0

[Aλchyb(chx)− b(chx)]

(shy)γ−α
Aλchyf(chx)sh2λydy.

This implies that

Jb,αG f(chx) = lim
r→0

{
[bH(chx)− b(chx)]

∞∫
r

Aλchyf(chx)

(shy)γ−α
sh2λydy

+

∞∫
r

Aλchyb(chx)− bH(chx)

(shy)γ−α
Aλchyf(chx)sh2λydy

}
,

where H = H(0, r).
Since b ∈ BMOG(R+), by Theorem 4.1 and Corollary 2.1 in [12], the first term tends to zero a.e.

and

Jb,αG f(chx) =

∞∫
0

[Aλchyb(chx)− bH(chx)]

(shy)γ−α
Aλchyf(chx)sh2λydy.

The k − th order commutator of the JαG we define as follows:

Jb,α,kG f(chx) =

∞∫
0

[Aλchyb(chx)− bH(chx)]k

(shy)γ−α
Aλchyf(chx)sh2λydy.

Theorem 3.1. Suppose that 0 < α < γ ≤ 2λ + 1, 1 < p < γ
α and let 1

p −
1
q = α

γ . Then Jb,α,kG is

bounded from Lp,λ(R+) to Lq,λ(R+), if and only if b ∈ BMOG(R+).

Proof. Sufficiency. Let 0 < α < γ ≤ 2λ+ 1, 1 < p < γ
α and b ∈ BMOG(R+), we get

Jb,α,kG f(chx) =

( r∫
0

+

∞∫
r

)
[Aλchyb(chx)− bH(chx)]k

(shy)γ−α
Aλchyf(chx)sh2λydy

= J1(r) + J2(r). (3.1)

Consider J1(r). By Hölder’s inequality, we have

|J1(r)| ≤
( r∫

0

|Aλchyb(chx)− bH(chx)|kq

(shy)γ−α
sh2λydy

) 1
q
( r∫

0

Aλchy|f(chx)|p

(shy)γ−α
sh2λydy

) 1
p

= J1.1(r) · J1.2(r). (3.2)
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We estimate J1.1(r). One has

J1.1(r) ≤
( ∞∑
k=0

2−kr∫
2−(k+1)r

|Aλchyb(chx)− bH(chx)|kq

(shy)γ−α
sh2λydy

) 1
q

≤
( ∞∑
k=0

(sh r
2k+1 )α

(sh r
2k+1 )γ

2−kr∫
0

|Aλchyb(chx)− bH(chx)|kqsh2λydy

) 1
q

≤(shr)
α
q ‖b‖kBMOG

( ∞∑
k=0

2−(k+1)α

)
. (shr)

α
q ‖b‖BMOG . (3.3)

Now we estimate J1.2(r). One has

J1.2(r) ≤
( ∞∑
k=0

1

(sh r
2k+1 )γ−α

2−kr∫
2−(k+1)r

Aλchy|f(chx)|psh2λydy

) 1
p

≤(shr)
α
p (MG|f(chx)|p)

1
p . (3.4)

Taking into account (3.3) and (3.4) in (3.2), we get

|J1(r)| . (shr)α‖b‖kBMOG (MG|f(chx)|p)
1
p .

Consider J2(r). By Hölder’s inequality, we have

|J2(r)| ≤
∞∫
r

|Aλchyb(chx)− bH(chx)|k
Aλchy|f(chx)|

(shy)γ−α
sh2λydy

≤
( ∞∫
r

|Aλchyb(chx)− bH(chx)|kq

(shy)(γ−α)q
sh2λydy

) 1
q

×
( ∞∫
r

Aλchy|f(chx)|psh2λydy

) 1
p

≤ J ′2(r)‖f‖Lp,λ . (3.5)

For J ′2(r), we have

J ′2(r) ≤
( ∞∑
k=0

2k+1r∫
2kr

|Aλchyb(chx)− bH(chx)|kq

(shy)(γ−α)q
sh2λydy

) 1
q

≤
( ∞∑
k=0

(sh2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|Aλchyb(chx)− bH(chx)|kqsh2λydy

) 1
q

.

By property (5), we have |bH(chx)− b2kH(chx)| ≤ 2k‖b‖BMOG . Then

J ′2(r) . (shr)
γ
q+α−γ

( ∞∑
k=0

(2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|Aλchyb(chx)− b2kH(chx)|kqsh2λydy

+

∞∑
k=0

(2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|bH(chx)− b2kH(chx)|kqsh2λydy

) 1
q

.(shr)α−
γ
p ‖b‖BMOG

( ∞∑
k=0

k

(2k)(γ−α)q−γ

) 1
q

. (shr)α−
γ
q ‖b‖BMOG , (3.6)
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since

1

p
− 1

q
=
α

γ
⇔ 1

q
=

1

p
− α

γ
⇔ 1

q
=
γ − αp
γp

⇔ q =
γp

γ − αp
⇔ (γ − α)q − γ =

(γ − α)γp

γ − αp
− γ > 0⇔ (γ − α)γp

γ − αp
> γ

⇔ (γ − α)p > γ − γp⇔ γp > γ ⇔ p > 1.

From (3.6) and (3.5), we have

|J2(r)| . (shr)α−
γ
q ‖f‖Lp,λ‖b‖BMOG . (3.7)

Taking into account (3.5) and (3.7) in (3.1), we obtain

|Jb,α,kG f(chx)| .
[
(shr)α (MG|f(chx)|p)

1
p + (shr)α−

γ
p ‖f‖Lp,λ

]
‖b‖kBMOG .

The right-hand side attains its minimum for

shr =

(
γ − αp
α

‖f‖Lp,λ
(MG|f |p(chx))

1
p

) p
γ

,

and we have

|Jb,α,kG f(chx)| .
{[ ‖f‖Lp,λ

(MG|f |p(chx))
1
p

]αp
γ

(MG|f |p(chx))
1
p

+

[ ‖f‖Lp,λ
(MG|f |p(chx))

1
p

]− pq
‖f‖Lp,λ

}
‖b‖BMOG

= (MG|f |p(chx))
1
p ‖f‖1−

p
q

Lp,λ
‖b‖kBMOG ,

since
1

p
− 1

q
=
α

γ
⇔ 1− p

q
=
αp

γ
.

From this and Theorem 2.2 in [12], we have

∞∫
0

|Jb,α,kG f(chx)|qsh2λxdx . ‖MG|f |p‖Lp,λ‖f‖
q−p
Lp,λ
‖b‖kqBMOG

. ‖f‖qLp,λ‖b‖
kq
BMOG

.

Thus, we obtain

‖Jb,α,kG f(chx)‖Lq,λ . ‖f‖Lp,λ‖b‖kBMOG .

Necessity. Let 1 < p < γ
α , f ∈ Lp,λ(R+), and let Jb,α,kG act boundedly from Lp,λ(R+) to Lq,λ(R+),

i.e.,

‖Jb,α,kG f(chx)‖Lq,λ . ‖f‖Lp,λ . (3.8)

In what follows, the function f will be assumed positive and monotonically increasing. The dilation
function ft(chx) will be defined as follows:

f(ch(tht)x) ≤ ft(chx) ≤ f(ch(ctht)x), 0 < t < 1,

f(ch(tht)x) ≤ ft(chx) ≤ f(ch(sht)x), 1 ≤ t <∞.
(3.9)

Using (3.9) for 0 < t < 1, we obtain

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≤
( ∞∫

0

|f(ch(ctht)x)|psh2λxdx

) 1
p

[(ctht)x = u, x = (tht)u]
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=(tht)
1
p

( ∞∫
0

|f(chu)|psh2λ(tht)udu

) 1
p

≤(tht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

=(tht)
2λ+1
p ‖f‖Lp,λ =

( sht

cht

) 2λ+1
p ‖f‖Lp,λ

.
1

(cht)
2λ+1
p −(α+

2λ+1−γ
p )

‖f‖Lp,λ . (sht)α−
γ
q ‖f‖Lp,λ . (3.10)

On the other hand,

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≥
( ∞∫

0

|f(ch(tht)x)|psh2λxdx

) 1
p

[(tht)x = u, x = (ctht)u]

=(ctht)
1
p

( ∞∫
0

|f(chu)|psh2λ(ctht)udu

) 1
p

≤(ctht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

=(ctht)
2λ+1
p ‖f‖Lp,λ =

(
cht

sht

) 2λ+1
p

‖f‖Lp,λ

.
1

(sht)
2λ+1
p −(α+

2λ+1−γ
p )

‖f‖Lp,λ . (sht)α−
γ
q ‖f‖Lp,λ . (3.11)

From (3.10) and (3.11), we have

‖ft‖Lp,λ ≈ (sht)α−
γ
q ‖f‖Lp,λ , 0 < t < 1. (3.12)

Now let 1 ≤ t <∞. Then from (3.9), we have

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≥
( ∞∫

0

|f(ch(tht)x)|psh2λxdx

) 1
p

[(tht)x = u, x = (ctht)u]

=(ctht)
1
p

( ∞∫
0

|f(chu)|psh2λ(ctht)udu

) 1
p

≤(ctht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

.(sht)α−
γ
q ‖f‖Lp,λ . (3.13)

On the other hand,

‖ft‖Lp,λ ≤
( ∞∫

0

|ft(ch(sht)x)|psh2λxdx

) 1
p

[(sht)x = u, x =
u

sht
]



338 E. J. IBRAHIMOV, G. A. DADASHOVA, AND S. AR. JAFAROVA

=(sht)−
1
p

( ∞∫
0

|f(chu)|psh2λ u

sht
du

) 1
p

≤(sht)−
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

≤(sht)α+
2λ+1−γ

p − 2λ+1
p ‖f‖Lp,λ = (sht)α−

γ
q ‖f‖Lp,λ . (3.14)

From (3.13) and (3.14), we have

‖ft‖Lp,λ ≈ (sht)α−
γ
q ‖f‖Lp,λ , 1 ≤ t <∞. (3.15)

From (3.12) and (3.15),

‖ft‖Lp,λ ≈ (sht)α−
γ
q , 0 < t <∞. (3.16)

Further, from (3.9) for 0 < t < 1, we have

‖Jb,α,kG ft‖Lq,λ =

( ∞∫
0

|Jb,α,kG ft(chx)|qsh2λxdx

) 1
q

≤
( ∞∫

0

|Jb,α,kG f(ch(ctht)x)|qsh2λxdx

) 1
q

[(ctht)x = u, x = (tht)u]

=(tht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(tht)udu

) 1
q

≤(tht)
2λ+1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λudu

) 1
q

=(tht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ =

(
sht

cht

) 2λ+1
q

‖Jb,α,kG f‖Lq,λ

.
1

(cht)
2λ+1
q

‖Jb,α,kG f‖Lq,λ .
1

(cht)
γ
q

‖Jb,α,kG f‖Lq,λ

.(sht)−
γ
q ‖Jb,α,kG f‖Lq,λ . (3.17)

On the other hand,

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(tht)x)|qsh2λxdx

) 1
q

[(tht)x = u, x = (ctht)u]

=(ctht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(ctht)udu

) 1
q

≥(ctht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ =

(
cht

sht

) 2λ+1
q

‖Jb,α,kG f‖Lq,λ

≥ 1

(sht)
2λ+1
q

‖Jb,α,kG f‖Lq,λ . (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ . (3.18)

From (3.17) and (3.18), we have

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 0 < t < 1. (3.19)
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Now let 1 ≤ t <∞. Then from (3.9), we get

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(sht)x)|qsh2λxdx

) 1
q

[(sht)x = u, x =
u

sht
]

=(sht)−
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ u

sht
du

) 1
q

≤(sht)−
2λ+1
q ‖Jb,α,kG f‖Lq,λ ≤ (sht)−

γ
q ‖Jb,α,kG f‖Lq,λ . (3.20)

On the other hand,

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(tht)x)|qsh2λxdx

) 1
q

[(tht)x = u, x = (ctht)u]

=(ctht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(ctht)udu

) 1
q

≥(ctht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ ≥ (sht)−

γ
q ‖Jb,α,kG f‖Lq,λ . (3.21)

From (3.20) and (3.21), we have

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 1 ≤ t <∞. (3.22)

Combining (3.19) and (3.22), we obtain

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 0 < t <∞. (3.23)

Taking into account inequality (3.8), as well as (3.23) and (3.16), we obtain

‖Jb,α,kG ft‖Lq,λ ≈ (sht)
γ
q ‖Jb,α,kG ft‖Lq,λ

. (sht)
γ
q ‖ft‖Lq,λ . (sht)α−

γ
q+

γ
q ‖f‖Lq,λ = (sht)α−γ(

1
q−

1
q )‖f‖Lq,λ .

If 1
q −

1
q <

α
γ , then, as t→ 0, we have

‖Jb,α,kG f‖Lq,λ = 0 for all f ∈ Lq,λ(R+).

If 1
q −

1
q >

α
γ then, as t→∞,

‖Jb,α,kG f‖Lq,λ = 0 for all f ∈ Lq,λ(R+),

which cannot be true.
Therefore,

1

q
− 1

q
=
α

γ
. �

4. Commutators of the Gegenbauer Fractional Maximal Operator

Let b ∈ Lloc
1,λ(R+), then the k − th order commutator M b,α,k

G generated by the function b and Mα
G

is defined as follows:

M b,α,k
G f(chx) =

= sup
r∈R+

1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy, k = 1, 2, . . . ,

where H = H(0, r).
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Theorem 4.1. Suppose that 0 < α < γ ≤ 2λ+ 1, 1 < p < γ
α and 1

p −
1
q = α

γ . Then the commutator

M b,α,k
G is bounded from Lp,λ(R+) to Lq,λ(R+), if and only if b ∈ BMOG(R+).

Proof. Let b ∈ BMOG(R+). For the fixed x ∈ R+ and r > 0, we have

Jb,α,kG |f(chx)| =
∫
R+

|Aλchyb(chx)− bH(chx)|k

(shy)γ−α
Aλchy|f(chx)|sh2λydy

≥
r∫

0

|Aλchyb(chx)− bH(chx)|k

(shy)γ−α
Aλchy|f(chx)|sh2λydy

≥ 1

(shy)γ−α

r∫
0

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy

≈ 1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy. (4.1)

Taking supremum for r > 0 on both sides of (4.1), we obtain

M b,α,k
G f(chx) . Jb,α,kG (|f |)(chx), ∀ ∈ R+.

Thus, when b ∈ BMOG(R+), from this and Theorem 3.1, we have

‖M b,α,k
G f(chx)‖Lq,λ(R+) . ‖f‖Lp,λ(R+).

On the other hand, suppose that M b,α,k
G is bounded from Lp,λ(R+) to Lq,λ(R+). Choose any interval

H in R+,

1

|H|λ

∫
H

|Aλchyb(chx)− bH(chx)|sh2λydy

≈ 1

|H|2λ

∫
H

|Aλchyb(chx)− bH(chx)|sh2λydy ·
∫
H

AλchyχH(chx)sh2λxdx

≈ 1

|H|1+
α
γ

λ

∫
H

(
1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)| ·AλchyχH(chx)sh2λxdx

)
sh2λydy

≈ 1

|H|1+
α
γ

λ

∫
H

M b,α
G (χH(chx))sh2λydy

.
1

|H|1+
α
γ

λ

(∫
H

sh2λydy

) 1
q′
(∫
H

M b,α
G (χH(chx))sh2λydy

) 1
q

.
1

|H|1+
α
γ

λ

|Hλ|
1
q′ ‖M b,α

G χH‖Lq,λ(H) .
1

|H|1+
α
γ

λ

|Hλ|
1
q′ ‖χH‖Lq,λ(H)

.
1

|H|1+
α
γ

λ

|Hλ|
1
q′ |Hλ|

1
p . 1.

Thus b ∈ BMOG(R+). �
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