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BOUNDARY-TRANSMISSION PROBLEMS OF THE THEORY OF ACOUSTIC

WAVES FOR PIECEWISE INHOMOGENEOUS ANISOTROPIC

MULTI-COMPONENT LIPSCHITZ DOMAINS

SVETA GORGISHELI1, MAIA MREVLISHVILI1, AND DAVID NATROSHVILI1,2

Abstract. We consider the time-harmonic acoustic wave scattering by a bounded anisotropic inho-

mogeneous obstacle embedded in an unbounded anisotropic homogeneous medium assuming that the

boundary of the obstacle and the interface are Lipschitz surfaces. We assume that the obstacle con-
tains a cavity and the material parameters may have discontinuities across the interface between the

inhomogeneous interior and homogeneous exterior regions. The corresponding mathematical model

is formulated as a boundary-transmission problem for a second order elliptic partial differential
equation of Helmholtz type with piecewise Lipschitz-continuous variable coefficients. The problem

is studied by the so-called nonlocal approach which reduces the problem to a variational-functional

equation containing sesquilinear forms over a bounded region occupied by the inhomogeneous ob-
stacle and over the interfacial surface. This is done with the help of the theory of layer potentials on

Lipschitz surfaces. The coercivity properties of the corresponding sesquilinear forms are analyzed
and the unique solvability of the boundary transmission acoustic problem in appropriate Sobolev-

Slobodetskii and Bessel potential spaces is established.

1. Introduction

The paper deals with the time-harmonic acoustic wave scattering by a bounded anisotropic inho-
mogeneous obstacle embedded in an unbounded anisotropic homogeneous medium. We assume that
the bounded obstacle contains an interior cavity. The boundary of the cavity will be referred to as in-
terior boundary of the obstacle. We require that the interior boundary of the obstacle and the interface
between the inhomogeneous interior and homogeneous exterior regions are the Lipschitz surfaces. The
physical wave scattering problem with a frequency parameter ω ∈ R is formulated mathematically as
a boundary-transmission problem for a second order elliptic partial differential equation with variable

Lipschitz-continuous coefficients, A2(x, ∂x, ω)u(x) ≡ ∂xk
(
a

(2)
kj (x) ∂xju(x)

)
+ ω2 κ2(x)u(x) = f2(x), in

the bounded region Ω2 ⊂ R3 occupied by an inhomogeneous anisotropic obstacle and for a Helmholtz

type equation with constant coefficients, A1(∂x, ω)u(x) ≡ a
(1)
kj ∂xk∂xju(x) +ω2κ1 u(x) = f1(x), in the

unbounded region Ω1 occupied by the homogeneous anisotropic medium. The material parameters

a
(q)
kj and κq, q = 1, 2, are not assumed to be continuous across the interface. Note that in the case

of isotropic medium occupying the domain Ωq, we have only one material coefficient a(q), i.e., the

corresponding material parameters satisfy the relations a
(q)
kj = a(q)δkj , where δkj is the Kronecker

symbol.
We analyse the case when the transmission conditions relating the interior and exterior traces of

the wave amplitude u and its conormal derivatives are prescribed on the interface surface, while on the
interior boundary of the inhomogeneous obstacle there are given the Dirichlet or Neumann or mixed
Dirichlet-Neumann boundary conditions.

The transmission problems for the Helmholtz equation in the case of the whole piecewise homogenous
isotropic space R3 = Ω2∪Ω1 with a smooth interface surface S = ∂Ω1 = ∂Ω2, when A2(∂) = ∆+κ2ω

2

and A1(∂) = ∆ + κ1ω
2, κq = const, q = 1, 2, are well studied in [14, 24–26] (see also references

therein). In these papers, using the method of standard direct and indirect boundary integral equations
method the transmission problem is reduced to a uniquely solvable coupled pair of boundary integral
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equations for a pair of unknowns. Moreover, in [25], by coupling the direct and indirect approaches, the
transmission problem is reduced to a uniquely solvable single integral equation for a single unknown.

Using the harmonic analysis technique and the approach employed in the reference [26], the same
transmission problem for the whole piecewise homogenous isotropic space R3 = Ω2 ∪ Ω1 with a
Lipschitz interface is considered in [40] using the potential method. Note that the harmonic analysis
approach gives the optimal L2 results, establishes the nontangential almost everywhere convergence of
the solution to the boundary values, guarantees the boundedness of the corresponding nontangential
maximal function, which in turn give better regularity results (see, e.g., [22]).

Similar acoustic scattering problems for the whole isotropic composed space R3 = Ω2 ∪ Ω1 with
smooth interface and with a variable continuous refractive index κ(x), when κ(x) = 1 in the exterior
domain Ω1, are also well presented in the literature. In this case, A2(x, ∂x, ω) = ∆ + ω2κ(x) in
the isotropic inhomogeneous obstacle region and A1(∂x, ω) = ∆ + ω2 in the unbounded homogeneous
isotropic region. The problem is reduced to the Lippmann-Schwinger equation which is unconditionally
solvable Fredholm type integral equation on the bounded obstacle region Ω1 (see [12,35] and references
therein).

Analogous acoustic transmission problem in the whole composed space R3 = Ω2∪Ω1 with a smooth
interface, corresponding to a more general isotropic case, when A2(x, ∂x, ω) = ∂xk

(
a(x) ∂xj

)
+ω2 with

a sufficiently smooth function a(x) and A1(∂x, ω) = ∆ + ω2, was analysed by the indirect boundary-
domain integral equation method in the references [28,44,45].

The transmission problem for the whole composed anisotropic space R3 = Ω2 ∪ Ω1 in the case

of a smooth interface and sufficiently smooth in Ω2 material coefficients a
(2)
kj and κ2 is studied in

[10] by a special direct method based on the application of localized harmonic parametrix. This
approach reduces the transmission problem to the uniquely solvable system of localized boundary-
domain integral equations.

In this paper, we investigate more general anisotropic boundary-transmission problems using the
so-called nonlocal approach when the interior boundary of the obstacle and the interface surface are

Lipschitz manifolds, and the coefficients a
(2)
kj and κ2 are Lipschitz-continuous. Moreover, we consider in

detail the case when the mixed Dirichlet-Neumann conditions are prescribed on the interior boundary.
We apply the theory of layer potentials on Lipschitz surfaces and reduce equivalently the boundary-

transmission problem to the variational-functional equation containing sesquilinear forms over the in-
terfacial surface and over a bounded domain occupied by the inhomogeneous obstacle. To substantiate
our approach, we use essentially the results of [13, 21, 22], and the so-called combined field integral
equations approach described in [6, 8, 27,36] (see also [7]).

The paper is organized as follows. In Section 2, we introduce the generalized radiation conditions
for anisotropic media, formulate the acoustic transmission problems for multi-component piecewise
anisotropic structures with Lipschitz-continuous boundaries and interfaces, and prove the uniqueness
theorems in appropriate function spaces. In Section 3, we construct the generalized Steklov–Poincaré
type integral operator in the case of Lipschitz surfaces and derive the corresponding Dirichlet-to-
Neumann relations for the acoustic equation in an unbounded anisotropic region. In Section 4, the
transmission problems are equivalently reformulated as variational-functional equations containing
sesquilinear forms which live on a bounded domain occupied by the obstacle and the interface surface.
The boundedness and coercivity properties for the sesquilinear forms are proved in the appropriately
chosen function spaces which eventually lead to the unique solvability of the original acoustic trans-
mission problems. Finally, for the readers convenience, in Appendix we collect some auxiliary material
related to anisotropic radiating layer potentials over Lipschitz surfaces.

2. Formulation of the Problems and Uniqueness Theorems

2.1. Some auxiliary definitions and relations. Let Ω1 := Ω− be an unbounded domain in R3

with a simply connected compact boundary ∂Ω1 = S1 and Ω+ = R3 \Ω1. Further, let Ω2 := Ω+ \Ω3,
where Ω3 is a subdomain of Ω+ such that Ω3 ⊂ Ω+. Put S2 = ∂Ω3. Evidently, ∂Ω2 = S1 ∪ S2.
Throughout the paper, n = (n1, n2, n3) denotes the outward unit normal vector to Sq, q = 1, 2.
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In what follows, we assume that the interface S1 and the interior boundary S2 are arbitrary Lipschitz
surfaces, unless otherwise stated, and the following condition holds:

the interface S1 contains a C2-smooth open submanifold S∗1 . (2.1)

By Hs(Ω) = Hs
2(Ω), Hs

loc(Ω) = Hs
2, loc(Ω), Hs

comp(Ω) = Hs
2, comp(Ω) and Hs(S) = Hs

2(S),
s ∈ R, we denote the L2-based Bessel potential spaces of complex-valued functions on an open
domain Ω ⊂ R3 and on a closed manifold S without boundary, while D(Ω) stands for the space of
infinitely differentiable test functions with support in Ω. Recall that H0(Ω) = L2(Ω) is a space of
square integrable functions on Ω.

Further, let us define the following classes of functions:

H1, 0(Ω2;A2) := { v ∈ H1(Ω2) : A2v ∈ H0(Ω2) } ,

H1, 0
loc (Ω1;A1) := { v ∈ H1

loc(Ω1) : A1v ∈ H0
loc(Ω1) } ,

H̃s(Ω2) := {v : v ∈ Hs(R3), supp v ⊂ Ω2} ,

H̃s(M) := {g : g ∈ Hs(S2), supp g ⊂M} ,
Hs(M) := {rMg : g ∈ Hs(S2)} ,

where M ⊂ S2 is an open submanifold of the Lipschitz surface S2 with a Lipschitz boundary curve
∂M and rM stands for the restriction operator onto M.

We assume that the propagation region of a time harmonic acoustic wave utot is the domain
R3 \ Ω3 = Ω1 ∪ Ω2, which consists of the homogeneous part Ω1 and the inhomogeneous part Ω2.

Acoustic wave propagation is governed by a uniformly elliptic second order scalar partial differential
equation

A(x, ∂x, ω)utot(x) ≡ ∂k
(
akj(x) ∂ju

tot(x)
)

+ ω2 κ(x)utot(x) = f(x), x ∈ Ω1 ∪ Ω2,

where ∂x ≡ ∂ = (∂1, ∂2, ∂3), ∂j = ∂xj = ∂/∂xj , akj(x) = ajk(x) and κ(x) are real-valued functions,

ω ∈ R is a frequency parameter, while f is a square integrable function in R3 with a compact support,
f ∈ L2,comp(R3). Here and in what follows, the Einstein summation by repeated indices from 1 to 3
is assumed.

Note that in the mathematical model of an inhomogeneous absorbing medium the function κ is
complex-valued, with nonzero real and imaginary parts, in general (see, e.g., [12, Ch. 8]). Here we
treat only the case when the refractive index κ is a real-valued function, but it should be mentioned
that the complex-valued case can also be considered by the approach developed in the present paper.

In our further analysis, it is assumed that the real-valued variable coefficients akj and κ are the
constants in the homogeneous unbounded region Ω1,

akj(x) = ajk(x) =

 a
(1)
kj for x ∈ Ω1,

a
(2)
kj (x) for x ∈ Ω2,

κ(x) =

{
κ1 > 0 for x ∈ Ω1,

κ2(x) > 0 for x ∈ Ω2,
(2.2)

where a
(1)
kj and κ1 are the constants, while a

(2)
kj and κ2 are the Lipschitz-continuous functions in Ω2,

a
(2)
kj , κ2 ∈ C0, 1(Ω2), j, k = 1, 2, 3. (2.3)

Moreover, the matrices aq =
[
a

(q)
kj

]3
k,j=1

are uniformly positive definite, i.e., there are positive con-

stants c1 and c2 such that

c1 |ξ|2 ≤ a(q)
kj (x) ξk ξj ≤ c2 |ξ|2 ∀ x ∈ Ωq, ∀ ξ ∈ R3, q = 1, 2. (2.4)

We do not assume that the coefficients akj and κ are continuous across the interface S1, in general,

i.e., the case a
(2)
kj (x) 6= a

(1)
kj and κ2(x) 6= κ1 for x ∈ S1 is covered by our analysis.

Further, we denote

r
Ω1
A(x, ∂x, ω)u(x) ≡ A1(∂x, ω)u(x) := a

(1)
kj ∂k∂ju(x) + ω2κ1 u(x) for x ∈ Ω1, (2.5)

rΩ2
A(x, ∂x, ω)u(x) ≡ A2(x, ∂x, ω)u(x) := ∂xk

(
a

(2)
kj (x) ∂ju(x)

)
+ ω2 κ2(x)u(x) for x ∈ Ω2.
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We will often drop the arguments and write A1 and A2 instead of A1(∂x, ω) and A2(x, ∂x, ω),
respectively, when this does not lead to misunderstanding.

For a function uq, sufficiently smooth in Ωq (say, u1 ∈ H2
loc(Ω1) or u2 ∈ H2(Ω2)), the classical

conormal derivative operators T±q are well defined as

T±q uq(x) := a
(q)
kj nk(x) γ±

Sm
(∂juq(x)), x ∈ Sm, q,m = 1, 2, (2.6)

where the symbols γ+
Sm

and γ−
Sm

denote one-sided boundary trace operators on Sm from the interior
and exterior domains, respectively.

Motivated by the first Green identity, the classical conormal derivative operators (2.6) can be

extended by continuity to the functions u1 ∈ H1, 0
loc (Ω1;A1) and u2 ∈ H1, 0(Ω2;A2) giving well defined

canonical conormal derivatives T−1 u1 ∈ H−
1
2 (S1), T+

2 u2 ∈ H−
1
2 (S1), and T−2 u2 ∈ H−

1
2 (S2), defined

for arbitrary g1 ∈ H
1
2 (S1) and g2 ∈ H

1
2 (S2) by the following relations:〈

T−1 u1 , g1

〉
S1

:= −
∫
Ω1

A1u1(x)w1(x) dx−
∫
Ω1

[E1(u1, w1)− ω2κ1u1(x)w1(x)] dx, (2.7)

〈
T+

2 u2 , g1

〉
S1
−
〈
T−2 u2 , g2

〉
S2

:=

∫
Ω2

A2u2(x) w2(x) dx

+

∫
Ω2

[
E2(u2, w2)− ω2κ2(x)u2(x)w2(x)

]
dx, (2.8)

where the angular brackets 〈· , ·〉Sm are understood as duality pairing of H−
1
2 (Sm) with H

1
2 (Sm) which

extends the usual bilinear L2(Sm) inner product, w1 ∈ H1
comp(Ω1) with γ−

S1
w1 = g1, w2 ∈ H1(Ω2)

with γ+
S1
w2 = g1 and γ−

S2
w2 = g2, and

E1(u1, w1) := a
(1)
kj ∂ju1(x) ∂kw1(x), E2(u2, w2) := a

(2)
kj (x) ∂ju2(x) ∂kw2(x). (2.9)

Evidently, there is a constant C > 0 such that

‖T−1 u1‖
H
− 1

2 (S1)

6 C
(
‖A1u1‖H0(Ω∗1)

+ ‖u1‖H1(Ω∗1)

)
,

‖T+
2 u2‖

H
− 1

2 (S1)

6 C
(
‖A2u2‖H0(Ω2)

+ ‖u2‖H1(Ω2)

)
,

‖T−2 u2‖
H
− 1

2 (S2)

6 C
(
‖A2u2‖H0(Ω2)

+ ‖u2‖H1(Ω2)

)
,

(2.10)

where Ω∗1 is an arbitrary one-sided exterior neighbourhood of the surface S1 = ∂Ω1 located in Ω1.
For the properties of the trace operator in the case of Lipschitz domains and for the corresponding
conormal derivatives see [13,15], [29, Ch. 4], [30].

Recall that for arbitrary functions u1 ∈ H1, 0
loc (Ω1;A1) and u2 ∈ H1, 0(Ω2;A2), the Green first

identities associated with the operators A1 and A2 (see, e.g., [13, Section 3], [29, Ch. 4], [30, Theorem
3.9]) ∫

Ω1(R)

A1u1(x) v1(x) dx+

∫
Ω1(R)

[E1(u1, v1)− ω2κ1u1(x) v1(x)] dx

=
〈
T+

1 u1 , γ+
Σ(R)

v1

〉
Σ(R)

−
〈
T−1 u1 , γ

−
S1
v1

〉
S1

∀ v1 ∈ H1
loc(Ω1), (2.11)∫

Ω2

A2u2(x) v2(x) dx+

∫
Ω2

[
E2(u2, v2)− ω2κ2(x)u2(x) v2(x)

]
dx

=
〈
T+

2 u2 , γ+
S1
v2

〉
S1
−
〈
T−2 u2 , γ−S2

v2

〉
S2

∀ v2 ∈ H1(Ω2) (2.12)

hold, where Ω1(R) := Ω1 ∩ B(R) with B(R) being a ball centered at the origin and radius R such
that Ω2 ⊂ B(R), Σ(R) := ∂B(R), Eq(uq, vq), q = 1, 2, are defined in (2.9).

By Z(Ω1) we denote the sub-class of complex-valued functions from H1
loc(Ω1) satisfying the Som-

merfeld radiation conditions at infinity (see [12,37,42] for the Helmholtz operator and [19,20,34,41] for
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the “anisotropic” operator A1 defined by (2.5)). Denote by Sω the characteristic ellipsoid associated
with the operator A1(∂x, ω),

a
(1)
kj ξk ξj − ω

2κ1 = 0, ξ ∈ R3, ω 6= 0.

For an arbitrary vector η ∈ R3 with |η| = 1 there exists only one point ξ(η) ∈ Sω such that the outward
unit normal vector n(ξ(η)) to Sω at the point ξ(η) has the same direction as η, i.e., n(ξ(η)) = η. Note
that ξ(−η) = −ξ(η) ∈ Sω and n(−ξ(η)) = −η.

It can easily be verified that

ξ(η) = ω
√
κ1 (a−1

1 η · η)−
1
2 a−1

1 η, (2.13)

where a−1
1 is the matrix, inverse to a1 :=

[
a

(1)
kj

]3
k,j=1

, and the central dot denotes the scalar product

in R3.

Definition 2.1. A complex-valued function v belongs to the class Z(Ω1) if there exists a ball B(R) of
radius R centered at the origin such that v ∈ C1(Ω1 \B(R)), and v satisfies the Sommerfeld radiation
conditions associated with the operator A1(∂x, ω) for sufficiently large |x|,

v(x) = O(|x|−1), ∂kv(x)− iξk(η)v(x) = O(|x|−2), k = 1, 2, 3, (2.14)

where ξ(η) ∈ Sω corresponds to the vector η = x/|x| (i.e., ξ(η) is given by (2.13) with η = x/|x|).

Notice that due to the ellipticity of the operator A1(∂x, ω), any solution to the constant coefficient
homogeneous equation A1(∂x, ω)v(x) = 0 in an open region Ω ⊂ R3 is a real analytic function of x in
Ω.

Conditions (2.14) are equivalent to the classical Sommerfeld radiation conditions for the Helmholtz

equation if A1(∂x, ω) = ∆(∂) + ω2, i.e., if κ1 = 1 and a
(1)
kj = δkj , where δkj is the Kronecker delta.

The following analogue of the classical Rellich-Vekua lemma holds (for details see [19,34]).

Lemma 2.2. Let v ∈ Z(Ω1) be a solution of the equation A1(∂x, ω)v = 0 in Ω1 and let

lim
R→+∞

Im

{ ∫
Σ(R)

v(x) T1(x, ∂x)v(x) dΣ(R)

}
= 0, (2.15)

where Σ(R) is the sphere of radius R centered at the origin. Then v = 0 in Ω1.

Remark 2.3. For x ∈ Σ(R) and η = x/|x|, we have n(x) = η and, in view of (2.6) and (2.14), for a
function v ∈ Z(Ω1), we get

T1(x, ∂x)v(x) = a
(1)
kj nk(x) [ i ξj(η) v(x)] +O(|x|−2) = i a

(1)
kj ηk ξj(η) v(x) +O(|x|−2) .

Therefore, by (2.13) and the symmetry condition a
(1)
kj = a

(1)
jk , we arrive at the relation

v(x)T1(x, ∂x)v(x) = i ω
√
κ1 |v(x)|2 (a−1

1 η · η)−
1
2 a1η · a−1η +O(|x|−3)

= i ω
√
κ1 (a−1

1 η · η)−
1
2 |v(x)|2 +O(|x|−3).

On the other hand, the matrix a1 is positive definite (cf. (2.4)), which implies positive definiteness of
the inverse matrix a−1

1 . Hence there are positive constants δ0 and δ1 such that for all η ∈ Σ(1),

0 < δ0 6 (a−1
1 η · η)−

1
2 6 δ1 <∞ .

Consequently, for ω 6= 0, condition (2.15) is equivalent to the following relation:

lim
R→+∞

∫
Σ(R)

|v(x)|2 dΣ(R) = 0,

which is the well known Rellich-Vekua condition in the theory of Helmholtz equation (for details
see [12,37,42]).
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2.2. Formulation of the transmission problems. In the unbounded region Ω1, we have a total
wave field utot = uinc + usc, where uinc is a wave motion initiating the known incident field and usc

is a radiating unknown scattered field. It is often assumed that the incident field is defined in the
whole of R3, being, for example, a corresponding plane wave which solves the homogeneous equation
A1u

inc = 0 in R3 but does not satisfy the Sommerfeld radiation conditions at infinity. Motivated by
relations (2.2), we set u1(x) := usc(x) for x ∈ Ω1 and u2(x) := utot(x) for x ∈ Ω2.

Now we formulate the transmission problem associated with the time-harmonic acoustic wave scat-
tering by a bounded anisotropic inhomogeneity embedded in an unbounded anisotropic homogeneous
medium:

Find complex-valued functions u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) and u2 ∈ H1, 0(Ω2;A2) satisfying the

differential equations

A1(∂x, ω)u1(x) = f1(x) for x ∈ Ω1, (2.16)

A2(x, ∂x, ω)u2(x) = f2(x) for x ∈ Ω2, (2.17)

the transmission conditions on the interface S1,

γ+
S1
u2 − γ−S1

u1 = ϕ
1

on S1, (2.18)

T+
2 u2 − T−1 u1 = ψ

1
on S1, (2.19)

and one of the following boundary conditions on S2:
The Dirichlet condition

γ−
S2
u2 = 0 on S2, (2.20)

The Neumann condition

T−2 u2 = ψ
2

on S2, (2.21)

The mixed type conditions

γ−
S2D

u2 = 0 on S2D, T−2 u2 = ψ
2N

on S2N , (2.22)

where S2D ∩ S2N = ∅, S2D ∪ S2N = S2, and

f2 := rΩ2
f ∈ H0(Ω2), f1 := rΩ1

f ∈ H0
comp(Ω1), f ∈ H0

comp(R3),

ϕ
1
∈ H 1

2 (S1), ψ
1
∈ H− 1

2 (S1), ψ
2
∈ H− 1

2 (S2), ψ
2N
∈ H− 1

2 (S2N ).
(2.23)

In the above setting, equations (2.16) and (2.17) are understood in the distributional sense, the
Dirichlet type conditions in (2.18), (2.20) and (2.22) are understood in the usual trace sense, while
the Neumann type conditions in (2.19), (2.21) and (2.22) are understood in the canonical conormal
derivative sense defined by relations (2.7)–(2.8).

If the total field utot and its conormal derivative are continuous across the interface, then ϕ
1

=
γ−
S1
uinc and ψ

1
= T−1 u

inc.

The above-formulated boundary-transmission problems with the Dirichlet, Neumann, and mixed
type conditions will be referred to as Problem (TD), (TN) and (TM), respectively.

2.3. Uniqueness theorems. Here we prove the uniqueness theorem.

Theorem 2.4. The boundary-transmission problems (TD), (TN) and (TM) possess at most one
solution.

Proof. Due to the linearity of the problems, we have to show that the corresponding homogeneous
problems possess only the trivial solution.

Let a pair (u2, u1) with u2 ∈ H1, 0(Ω2;A2) and u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) be a solution to the

homogeneous boundary-transmission problem (TD) or (TN) or (TM). Note that u1 ∈ C∞(Ω1) due to
ellipticity of the constant coefficient operator A1.
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Let R be an arbitrary positive number such that Ω2 ⊂ B(R). We can write Green’s first identities
(2.11) and (2.12) for the functions u1 and u2 in the domains Ω1(R) := Ω1 ∩B(R) and Ω2. In view of
the homogeneity of the boundary conditions on S2, we arrive at the relations∫

Ω1(R)

[a
(1)
kj ∂ju1(x) ∂ku1(x)− ω2κ1|u1(x)|2] dx = −〈T−1 u1 , γ−S1

u1〉S1
+ 〈T+

1 u1 , γ
+
Σ(R)u1〉Σ(R), (2.24)

∫
Ω2

[a
(2)
kj (x) ∂ju2(x) ∂ku2(x)− ω2κ2(x)|u2(x)|2] dx = 〈T+

2 u2 , γ
+
S1
u2〉S1 . (2.25)

Due to the homogeneous transmission conditions and since the matrices aq = [a
(q)
kj ]3k,j=1 are symmetric

and positive definite, after adding (2.24) and (2.25) and separating the imaginary part, we get

Im

{ ∫
Σ(R)

u1(x)T1(x, ∂x)u1(x) dΣ(R)

}
= 0,

whence by Lemma 2.2, we deduce that u1 = 0 in Ω1.
Therefore, in view of (2.16)–(2.22), the function u2 ∈ H1, 0(Ω2;A2) satisfies the homogeneous

differential equation

A2(x, ∂x, ω)u2(x) = 0 in Ω2,

the homogeneous Cauchy type conditions

γ+
S1
u2 = 0 and T+

2 u2 = 0 on S1,

and one of the homogeneous boundary conditions (2.20)–(2.22) on S2.
Keeping in mind the relations (2.1) and (2.3), by the interior and boundary regularity properties

of solutions to a strongly elliptic partial differential equation, we deduce u2 ∈ C2(Ω2 ∪ S∗1 ) (see,
e.g., [18, Lemmas 6.16, 6.18], [29, Theorem 4.18]). Thus, the Cauchy data of the function u2 vanish
continuously on S∗1 ⊂ S1 and due to [39, Theorem 2.9], we conclude that u2 = 0 in Ω2, which completes
the proof. �

3. Integral Relations for Radiating Function in the Domain Ω1

For any radiating solution u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) with A1u1 ∈ H0

comp(Ω1) the Green third
identity (for details see [13,19,29,34])

u1 + V (T−1 u1)−W (γ−
S1
u1) = P(A1u1) in Ω1 (3.1)

holds, where V , W , and P denote, respectively, the single layer potential, double layer potential and
volume potential associated with the operator A1(∂x, ω),

V g(y) := −
∫
S1

Γ(x− y, ω) g(x) dSx, y ∈ R3 \ S1, (3.2)

Wg(y) := −
∫
S1

[T1(x, ∂x)Γ(x− y, ω)] g(x) dSx, y ∈ R3 \ S1, (3.3)

Ph(y) :=

∫
Ω1

Γ(x− y, ω)h(x) dx, y ∈ R3. (3.4)

Here g and h are densities of the potentials, T1(x, ∂x) = a
(1)
kj nk(x)∂xj , n(x) is the outward unit normal

vector to S1 at the point x ∈ S1, and

Γ(x, ω) = −
exp{iω√κ1 (a−1

1 x · x)1/2}
4π(det a1)1/2 (a−1

1 x · x)1/2
(3.5)

is a radiating fundamental solution of the operator A1(∂x, ω) (see, e.g., Lemma 1.1 in [20]).
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Remark 3.1. In a neighbourhood of the origin, e.g., for |x| < 1, we have the decomposition

Γ(x, ω) = − 1

4π (det a1)1/2

{ 1

(a−1
1 x · x)1/2

+ iω
√
κ1 −

1

2
ω2κ1 (a−1

1 x · x)1/2 + · · ·
}
, (3.6)

while for sufficiently large |y|, we have the following asymptotic formula:

Γ(y − x, ω) = c(ξ)
exp{iξ · (y − x)}

|y|
+O(|y|−2), c(ξ) = − |a1 ξ|

4πω
√
κ1 (det a1)1/2

, (3.7)

where x varies in a bounded subset of R3, ξ = ξ(η) ∈ Sω corresponds to the direction η = y/|y|
and is given by (2.13). The asymptotic formula (3.7) can be differentiated arbitrarily many times
with respect to x and y. Both formulas, (3.5) and (3.6), hold true for an arbitrary complex parameter
ω = ω1 +iω2 with ωj ∈ R, j = 1, 2. Evidently, the function Γ(x) := Γ(x, 0) is a fundamental solution of
the operator A1(∂x) := A1(∂x, 0), while Γ(x, i) is the exponentially decaying real-valued fundamental
solution of the operator A1(∂x, i). In view of (3.6), we have

Γ(x, ω)− Γ(x, i) = − 1

4π (det a1)1/2

{
(1 + iω)

√
κ1 −

1

2
(ω2 + 1)κ1 (a−1

1 x · x)1/2 + · · ·
}
, (3.8)

implying for |x| < 1 the following relations:

∂

∂xk

[
Γ(x, ω)− Γ(x, i)

]
= O(1),

∂2

∂xj∂xk

[
Γ(x, ω)− Γ(x, i)

]
= O(|x|−1), k, j = 1, 2, 3. (3.9)

The mapping properties of these potentials and the boundary operators generated by them in
the case of Lipschitz surface S1 are collected in Appendix A. Note that the mapping properties
of layer potentials associated with Lipschitz and smooth surfaces are essentially different (cf., e.g.,
[3–5,13,29,43] and references cited therein).

Evidently, the layer potentials V g and Wg solve the homogeneous differential equation (2.16), i.e.,

A1V g = A1Wg = 0 in R3 \ S1, (3.10)

while for f1 ∈ H0
comp(Ω1), the volume potential Pf1 ∈ H2

loc(R3) solves the following nonhomogeneous
equation (see Lemma A.1)

A1Pf1 =

f1 in Ω1,

0 in R3 \ Ω1.
(3.11)

Using the properties of layer and volume potentials (see Lemma A.1(iii)), for the exterior traces of
Green’s third identity (3.1) and its conormal derivative on S1, we get

V(T−1 u1) + (2−1I −W)(γ−
S1
u1) = γ−

S1
P(A1u1) on S1, (3.12)

(2−1I +W ′)(T−1 u1)− L(γ−
S1
u1) = T−1 P(A1u1) on S1, (3.13)

where the integral operators V, W, W ′ and L are defined in Appendix A by formulas (A.2)–(A.5).
Recall that the operators V, 2−1I−W, 2−1I+W ′ and L involved in (3.12)–(3.13) are not invertible for
resonant values of the frequency parameter ω. The set of these resonant values is countable and consists
of eigenfrequencies of the interior Dirichlet and Neumann boundary value problems for the operator
A1 in the bounded domain surrounded by the surface S1 (see [42, Section 4], [11, Ch. 3], [9, Section
7.7], [7]). Therefore, to obtain Dirichlet-to-Neumann or Neumann-to-Dirichlet mappings for arbitrary
values of the frequency parameter ω, we apply the combined-field integral equations approach and
proceed as follows. Multiply equation (3.12) by i α with some fixed positive α and add to equation
(3.13) to obtain (cf., [6, 8, 27,36])

K(T−1 u1)−M(γ−
S1
u1) = Φ(A1u1) on S1, (3.14)
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where

Kg :=
(1

2
I +W ′ + i αV

)
g =

(
T+

1 + i α γ+
S1

)
V g on S1, (3.15)

Mh :=
[
L+ i α

(
− 1

2
I +W

)]
h =

(
T+

1 + i α γ+
S1

)
W h on S1, (3.16)

Φ f1 :=
(
T−1 + i α γ−

S1

)
P f1 =

(
T+

1 + i α γ+
S1

)
P f1 on S1, (3.17)

for f1 ∈ H0
comp(Ω1), g ∈ H− 1

2 (S1) and h ∈ H 1
2 (S1). The relation (3.17) follows from the imbedding

P f1 ∈ H2
loc(R3) for f1 ∈ H0

comp(R3).

In view of Lemma A.2, from (3.14), for arbitrary u1 ∈ H1, 0
loc (Ω1;A1)∩Z(Ω1), we derive the following

analogue of the Steklov-Poincaré type relation:

T−1 u1 = K−1
[
M (γ−

S1
u1) + Φ(A1u1)

]
on S1, (3.18)

where K−1 : H−
1
2 (S1)→ H−

1
2 (S1) is the inverse to the operator K : H−

1
2 (S1)→ H−

1
2 (S1).

4. Weak Formulation of the Mixed Boundary-transmission Problems and the
Existence Results

Here we apply the so-called non-local approach to obtain the variational-functional formulation
of the transmission problem under consideration. To this end, let us assume that a pair (u2, u1) ∈
H1, 0(Ω2;A2)×

(
H1,0

loc (Ω1;A1)∩Z(Ω1)
)

solves the mixed transmission problem (TM) (see (2.16)–(2.19))
and (2.22). Applying relation (3.18), transmission conditions (2.18)–(2.19) and mixed boundary con-
ditions (2.22) in the Green first identity (2.12), for the domain Ω2, we arrive at the equation

B(u2, v) = F(v)

∀ v ∈ H1(Ω2;S2D) := {w ∈ H1(Ω2) : r
S2D

γ−
S2D

w = 0},
(4.1)

where B is a sesquilinear form and F is an antilinear functional defined, respectively, as

B(u2, v) := B(1)(u2, v) + B(2)(u2, v), (4.2)

B(1)(u2, v) :=

∫
Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx, (4.3)

B(2)(u2, v) := −
〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1
, (4.4)

F(v) := −
∫
Ω2

f2(x) v(x) dx+ 〈K−1Φf1 , γ+
S1
v〉S1

+
〈
ψ1, γ+

S1
v
〉
S1
−
〈
K−1Mϕ1 , γ+

S1
v
〉
S1

−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

, (4.5)

with the operators K, M, and Φ defined by relations (3.15)–(3.17). We associate with equation (4.1)
the following variational-functional problem (in a wider space).

Problem (VMT1). Find a function u2 ∈ H1(Ω2;S2D) satisfying variational-functional equation (4.1)
for all v ∈ H1(Ω2;S2D).

Now, let us first prove the following equivalence

Theorem 4.1. Let conditions (2.23) be fulfilled.

(i) If a pair (u2, u1) ∈ H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;A1)∩Z(Ω1)
)

solves the mixed transmission problem
(TM), then the function u2 solves variational-functional equation (4.1) and the following relation holds:

u1(y) = Pf1(y)− V (T+
2 u2 − ψ1)(y) +W (γ+

S1
u2 − ϕ1)(y), y ∈ Ω1. (4.6)

(ii) Vice versa, if a function u2 ∈ H1(Ω2;S2D) solves variational-functional equation (4.1), then

the pair (u2, u1) with u1 defined by (4.6) belongs to the class H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;A1) ∩ Z(Ω1)
)

and solves the mixed transmission problem (TM).
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Proof. (i) The first part of the theorem follows from the derivation of variational-functional equation
(4.1).

(ii) To prove the second part, we proceed as follows. If u2 solves variational-functional equation
(4.1), then for v ∈ D(Ω2) the equation∫

Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx = −

∫
Ω2

f2(x) v(x) dx,

particularly holds and implies that u2 is a solution of equation (2.17), A2(x, ∂x, ω)u2 = f2 in Ω2 in
the sense of distributions and, evidently, u2 ∈ H1, 0(Ω2;A2) in view of (2.23). Therefore the canonical

conormal derivatives T+
2 u2 ∈ H−

1
2 (S1) and T−2 u2 ∈ H−

1
2 (S2) are well-defined in the sense of (2.8).

Further, it is easy to see that function (4.6) is well-defined, solves the differential equation (2.16) in

Ω1 due to (3.10)–(3.11), and belongs to the space H1, 0
loc (Ω1;A1)∩Z(Ω1) in view of (2.23) and properties

of the volume and layer potentials. Therefore, the canonical conormal derivative T−1 u1 ∈ H−
1
2 (S1) is

also well-defined in the sense of (2.7).
Now we show that mixed boundary conditions (2.22) on S2 and transmission conditions (2.18)–

(2.19) on S1 are satisfied. To this end, we write Green’s identity (2.12) for u2 and arbitrary v ∈
H1(Ω2;S2D), ∫

Ω2

[
E2(u2, v)− ω2κ2(x)u2(x) v(x)

]
dx = −

∫
Ω2

f2(x) v(x) dx

+
〈
T+

2 u2 , γ+
S1
v
〉
S1
−
〈
T−2 u2 , γ−S2

v
〉
S2N

. (4.7)

Comparing (4.7) and (4.1) leads to the relation〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

+ 〈K−1Φf1 , γ+
S1
v〉S1

+
〈
ψ1, γ+

S1
v
〉
S1
−
〈
K−1Mϕ1 , γ+

S1
v
〉
S1

−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

= 〈T+
2 u2 , γ+

S1
v〉S1 − 〈T−2 u2 , γ−S2

v〉S2N
(4.8)

for all v ∈ H1(Ω2;S2D).
If we take an arbitrary function v ∈ H1(Ω2;S2D) such that γ+

S1
v = 0, from (4.8), we get〈

ψ
2N
, γ−

S2N
v
〉
S2N

= 〈T−2 u2 , γ−S2
v〉S2N

(4.9)

implying the boundary condition T−2 u2 = ψ
2N

on S2N . Consequently, due to the inclusion u2 ∈
H1(Ω2;S2D), it is evident that the mixed boundary conditions (2.22) on S2 are satisfied.

In view of (4.9), from (4.8), we deduce

K−1M(γ+
S1
u2) +K−1Φf1 + ψ1 −K−1Mϕ1 = T+

2 u2 on S1.

Applying the operator K to this equation and taking into account (3.17), we arrive at the relation

M(γ+
S1
u2 − ϕ1)−K(T+

2 u2 − ψ1) = −
(
T+

1 + i α γ+
S1

)
P f1 on S1.

By (3.15), (3.16) and (3.17), the later equation can be rewritten as(
T+

1 + i α γ+
S1

)[
W (γ+

S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1

]
= 0 on S1. (4.10)

Let us introduce the function

w := W (γ+
S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1 in R3 \ S1.

Evidently, in view of the mapping properties of the layer and volume potentials (see Lemma A.1),

on the one hand, r
Ω1
w = u1 ∈ H1, 0

loc (Ω1;A1) ∩ Z(Ω1) due to (4.6), and on the other hand, r
Ω+w ∈

H1, 0(Ω+;A1), where Ω+ = R3 \ Ω1.
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Further, by (3.10), (3.11) and (4.10), we deduce that w solves the homogeneous interior Robin’s
problem

A1(∂, ω)w = 0 in Ω+ = R3 \ Ω1,(
T+

1 + i α γ+
S1

)
w = 0 on S1 = ∂Ω+,

where α is a positive number. Therefore, by the uniqueness theorem, for the interior Robin’s problem
we infer w = 0 in Ω+. Thus,

w = W (γ+
S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1 =

u1 in Ω1,

0 in Ω+.
(4.11)

Using the inclusion P f1 ∈ H2
loc(R3), relation (3.17) and the jump relations, for the layer potentials

across the surface S1 (see Lemma A.1), we find from (4.11) that

γ−
S1
w − γ+

S1
w = γ+

S1
u2 − ϕ1 = γ−

S1
u1 on S1,

T−1 w − T
+
1 w = T+

2 u2 − ψ1 = T−1 u1 on S1,

which show that the transmission conditions (2.18)–(2.19) hold. This completes the proof. �

Theorem 4.2. The homogeneous variational-functional Problem (VMT1) possesses only the trivial
solution in the space H1(Ω2;S2D).

Proof. Let u2 ∈ H1(Ω2;S2D) be a solution of the homogeneous variational-functional Problem (VMT1),

B(u2, v) ≡
∫
Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx

−
〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

= 0 ∀ v ∈ H1(Ω2;S2D). (4.12)

By the word for word arguments applied in the proof of Theorem 4.1, we can show that u2 is a solution
of the homogeneous equation A2(x, ∂x, ω)u2 = 0 in Ω2 in the distributional sense and, evidently, u2 ∈
H1, 0(Ω2;A2). Therefore the canonical conormal derivatives T+

2 u2 ∈ H−
1
2 (S1) and T−2 u2 ∈ H−

1
2 (S2)

are well-defined in the sense of (2.8) and for u2 and arbitrary v ∈ H1(Ω2;S2D), Green’s identity∫
Ω2

[
E2(u2, v)− ω2κ2(x)u2(x) v(x)

]
dx =

〈
T+

2 u2 , γ+
S1
v
〉
S1
−
〈
T−2 u2 , γ−S2

v
〉
S2N

(4.13)

holds. Comparing (4.12) and (4.13) leads to the relation〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

= 〈T+
2 u2 , γ+

S1
v〉S1

− 〈T−2 u2 , γ−S2
v〉S2N

(4.14)

for all v ∈ H1(Ω2;S2D). If we take an arbitrary function v ∈ H1(Ω2;S2D) such that γ+
S1
v = 0, from

(4.14), we find

T−2 u2 = 0 on S2N .

Therefore from (4.14), we deduce

M(γ+
S1
u2)−K(T+

2 u2) = 0 on S1,

which can be rewritten as(
T+

1 + i α γ+
S1

)[
W (γ+

S1
u2)− V (T+

2 u2)
]

= 0 on S1. (4.15)

Let

u1 := W (γ+
S1
u2)− V (T+

2 u2) in R3 \ S1. (4.16)



314 S. GORGISHELI, M. MREVLISHVILI, AND D. NATROSHVILI

Note that in view of Lemma A.1, r
Ω1
u1 ∈ H1, 0

loc (Ω1;A1) ∩ Z(Ω1) and r
Ω+u1 ∈ H1, 0(Ω+;A1) with

Ω+ = R3 \Ω1. Moreover, by (3.10), (4.15) and (4.16), we see that u1 solves the homogeneous interior
Robin’s problem

A1(∂, ω)u1 = 0 in Ω+ = R3 \ Ω1,(
T+

1 + i α γ+
S1

)
u1 = 0 on S1 = ∂Ω+,

where α is a positive number. Consequently, u1 = 0 in Ω+ and due to the jump relations, for the
layer potentials, from (4.16), we deduce

γ−
S1
u1 = γ−

S1
u1 − γ+

S1
u1 = γ+

S1
u2 on S1,

T−1 u1 = T−1 u1 − T+
1 u1 = T+

2 u2 on S1.

Combining the above obtained results, we finally see that the pair (u2, u1) ∈ H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;

A1) ∩ Z(Ω1)
)

solves the mixed homogeneous transmission problem and by the uniqueness Theorem
2.4, we have u2 = 0 in Ω+, which completes the proof. �

Now let us consider the following variational-functional problem.

Problem (VMT2). Find a pair (u2, u1) ∈ H1(Ω2;S2D) ×
(
H1

loc(Ω1) ∩ Z(Ω1)
)

satisfying the system
of equations

B(u2, v) = F(v) for all v ∈ H1(Ω2;S2D), (4.17)

u1(y) + V (T+
2 u2)(y)−W (γ+

S1
u2)(y) = Pf1(y) + V ψ1(y)−Wϕ1(y), y ∈ Ω1, (4.18)

where B and F are defined in (4.2)–(4.5) and conditions (2.23) are satisfied.

Corollary 4.3. System (4.17)–(4.18) is equivalent to the mixed transmission problem (TM) in the
following sense: if a pair (u2, u1) ∈ H1(Ω2;S2D) ×

(
H1

loc(Ω1) ∩ Z(Ω1)
)

solves system (4.17)–(4.18),
then it is unique and solves the mixed transmission problem (TM), and vice versa.

Proof. In view of Theorems 2.4, 4.1 and 4.2, it suffices to show that the right-hand sides of system
(4.17)–(4.18) vanish if and only if

f1 = 0, f2 = 0, ϕ
1

= 0, ψ
1

= 0, ψ
2N

= 0. (4.19)

Let

F(v) = 0 ∀ v ∈ H1(Ω2;S2D), (4.20)

Pf1 + V ψ1 −Wϕ1 = 0 in Ω1. (4.21)

By the same arguments as in the proof of Theorem 4.1 (see the derivation of formula (4.11)), from
(4.20), we obtain

P f1 + V ψ1 −Wϕ1 = 0 in Ω2. (4.22)

From relations (4.21) and (4.22) the equalities f1 = 0, ϕ
1

= 0, and ψ
1

= 0 follow immediately in view
of Lemma A.1. In accordance with (4.5), then (4.20) takes the form

−
∫
Ω2

f2(x) v(x) dx−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

= 0, ∀ v ∈ H1(Ω2;S2D),

implying f2 = 0 and ψ
2N

= 0, which completes the proof. �

Remark 4.4. Note that only equality (4.20) separately leads to (4.22) and does not imply relations
(4.19).

Now we prove the following boundedness and coercivity theorem.
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Theorem 4.5. For the sesquilinear form B defined by (4.2)–(4.4) and the antilinear functional F
defined in (4.5) under conditions (2.23), there are real constants C∗j > 0, j = 1, 2, 3, 4 such that

|B(u2, v)| ≤ C∗1 ‖u2‖H1(Ω2)
‖v‖

H1(Ω2)
∀u2, v ∈ H1(Ω2;S2D), (4.23)

|F(v)| ≤ C∗2 ‖v‖H1(Ω2)
∀ v ∈ H1(Ω2;S2D),

ReB(u2, u2) ≥ C∗3 ‖u2‖2
H1(Ω2)

− C∗4 ‖u2‖2
H0(Ω2)

∀u2 ∈ H1(Ω2;S2D). (4.24)

Proof. The boundedness of the sesquilinear form B(1)(u2, v) follows directly from the Cauchy-Schwartz
inequality,

∣∣B(1)(u2, v)
∣∣ 6 C5 ‖u2‖H1(Ω2) ‖v‖H1(Ω2), while the boundedness of the sesquilinear form

B(2)(u2, v) can be shown by the duality inequality, Lemma A.2, and trace theorem,∣∣B(2)(u2, v)
∣∣ =

∣∣〈K−1M(γ+
S1
u2) , γ+

S1
v
〉
S1

∣∣
6 C1 ‖K−1M(γ+

S1
u2)‖

H−
1
2 (S1)

‖γ+
S1
v‖
H

1
2 (S1)

6 C2 ‖M(γ+
S1
u2)‖

H−
1
2 (S1)

‖v‖H1(Ω2) 6 C3 ‖γ+
S1
u2‖

H
1
2 (S1)

‖v‖H1(Ω2)

6 C4 ‖u2‖H1(Ω2) ‖v‖H1(Ω2),

where Cj , j = 1, . . . , 4, are some positive constants. Consequently, (4.23) holds.
Keeping in mind conditions (2.23), relations (2.10), (3.11), (3.17), (4.5) and the estimate∣∣〈K−1Φf1 , γ+

S1
v〉S1

∣∣ 6 C5 ‖
(
T+

1 + i α γ+
S1

)
Pf1‖

H
− 1

2 (S1)

‖γ+
S1
v‖

H
1
2 (S1)

6 C6

(
‖A1Pf1‖H0(Ω2) + ‖Pf1‖H1(Ω2)

)
‖v‖

H1(Ω2)

6 C7 ‖f1‖H0(Ω1)
‖v‖

H1(Ω2)
,

the boundedness of the functional F can be proved by the arguments similar to the above ones,

|F(v)| ≤C8

(
‖f1‖L2(Ω1)

+ ‖f2‖L2(Ω2)
+ ‖ϕ1‖

H
1
2 (S1)

+ ‖ψ1‖
H
− 1

2 (S1)

+ ‖ψ
S2N
‖
H
− 1

2 (S2N )

)
‖v‖

H1(Ω2)
for all v ∈ H1(Ω2;S2D).

Now we prove inequality (4.24). In view of the positive definiteness of the matrix a2 =
[
a

(2)
kj

]3
k,j=1

,

we have

ReB(1)(u2, u2) > C9 ‖u2‖2
H1(Ω2)

− C10 ‖u2‖2
H0(Ω2)

,

where C9 > 0 and C10 = ω2 max
Ω2

κ2(x).

Further, by Lemma A.6, we deduce

ReB(2)(u2, u2) = −Re
〈
K−1M(γ+

S1
u2) , γ+

S1
u2

〉
S1

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖γ+
S1
u2‖2

H0(S1)

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖γ+
S1
u2‖2

Hδ(S1)

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖u2‖2
H

1
2

+δ
(Ω2)

> −C ′2 ‖u2‖2
H

1
2

+δ
(Ω2)

, (4.25)

where C ′1 > 0, C ′2 > 0, and δ is an arbitrarily small positive number. By Ehrling’s lemma (see,
e.g., [38, Theorem 7.30]), for an arbitrarily small positive number ε there is a positive constant C(ε)
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such that

‖w‖2
H

1
2

+δ
(Ω2)

6 ε‖w‖2
H1(Ω2)

+ C(ε)‖w‖2
H0(Ω2)

for all w ∈ H1(Ω2), 0 < δ <
1

2
.

Therefore from (4.25), we have

ReB(2)(u2, u2) > −C ′2
(
ε ‖u2‖2

H1(Ω2)
+ C(ε)‖u2‖2

H0(Ω2)

)
,

with ε such that C9 − εC ′2 > 0, which completes the proof. �

Now we can prove the following existence results.

Theorem 4.6. Let conditions (2.23) be fulfilled.

(i) Variational-functional equation (4.1) is uniquely solvable in the space H1(Ω2;S2D) for arbitrary
antilinear bounded functional F defined on H1(Ω2;S2D).

(ii) System (4.17)–(4.18) with F defined in (4.5), is uniquely solvable with respect to the unknown pair
(u2, u1) ∈ H1(Ω2;S2D)×

(
H1

loc(Ω1) ∩ Z(Ω1)
)
.

(iii) The mixed transmission problem (TM) is uniquely solvable in the space H1(Ω2;S2D)×
(
H1

loc(Ω1)∩
Z(Ω1)

)
.

Proof. Item (i) follows directly from Theorem 4.2, Theorem 4.5 and the Lax–Milgram lemma (see,
e.g., [29, Theorem 2.33]).

Further, as we have already shown, equation (4.17) with F given by (4.5) uniquely defines the sought
function u2 and, consequently, equation (4.18) defines explicitly and uniquely the sought function u1

in Ω1 which proves Item (ii).
Item (iii) follows from the uniqueness Theorem 2.4, Corollary 4.3 and Item (ii). �

Remark 4.7. Investigation of the transmission problems with Dirichlet or Neumann boundary con-
ditions on the interior surface S2 can be carried out quite similarly by using the above-employed ar-
guments. Under conditions (2.23), they are uniquely solvable in the spaces H1(Ω2;S2)×

(
H1

loc(Ω1) ∩
Z(Ω1)

)
and H1(Ω2)×

(
H1

loc(Ω1) ∩ Z(Ω1)
)

respectively.

5. Appendix A: Properties of Radiating Potentials

Here, we present some results concerning the properties of the layer potentials defined by (3.2),
(3.3), and the volume potential (cf. (3.4))

Pf(y) :=

∫
R3

Γ(x− y, ω) f(x) dx, y ∈ R3,

in the case of Lipschitz domains which are employed in the main text of the paper. Evidently,

Pf1(y) = Pf̃1(y), where f̃1 is the extension by zero of the function f1 form Ω1 onto its complement
R3 \ Ω1.

We start with the following well known results (for more specific properties see [2–5, 13, 16, 17, 29,
32,43] and references cited therein).

Lemma A.1. (i) [13, Theorem 1(i),(ii)] For all σ ∈ [− 1
2 ,

1
2 ], the following layer potential operators

V : H−
1
2 +σ(S1)→ H1+σ(R3 \ Ω1),

V : H−
1
2 +σ(S1)→ H1+σ

loc (Ω1) ∩ Z(Ω1),

W : H
1
2 +σ(S1)→ H1+σ(R3 \ Ω1),

W : H
1
2 +σ(S1)→ H1+σ

loc (Ω1) ∩ Z(Ω1)

are continuous.
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(ii) [31, Ch.XI, Theorem 11.2]; [16, Proposition 2.1] If f ∈ H0
comp(R3), then Pf ∈ H2

loc(R3)∩
Z(R3) and

A1Pf = f in R3, ‖Pf‖
H2(Ω∗)

6 C∗ ‖f‖
H0(Ωf )

,

where Ω∗ is an arbitrary bounded domain in R3, Ωf := supp f , and C∗ > 0 is a constant which
depends on the diameter of the domain Ω∗.

(iii) [13, Lemma 4.1]; [17, Theorem 1.1] For h ∈ H−
1
2 (S1) and g ∈ H

1
2 (S1), the following

jump relations

γ+
S1
V h = γ−S1

V (h) = V(h), T±1 V h =
(
± 1

2
I +W ′

)
h on S1, (A.1)

γ±S1
W g =

(
∓ 1

2
I +W

)
g, T+

1 W g = T−1 W g =: L g on S1, (A.2)

hold true, where I stands for the identity operator, and

V h(y) := −
∫
S1

Γ(x− y, ω)h(x) dSx, y ∈ S1, (A.3)

W g(y) := −
∫
S1

[T1(x, ∂x)Γ(x− y, ω))] g(x) dSx, y ∈ S1, (A.4)

W ′ h(y) := −
∫
S1

[T1(y, ∂y)Γ(x− y, ω))]h(x) dSx, y ∈ S1, (A.5)

Γ(x, ω) is the radiating fundamental solution defined by (3.5). The operators (A.4) and (A.5) are to
be understood in the Cauchy principal value sense, while (A.3) is a weakly singular integral operator.

(iv) [13, Theorem 1(iii)–(vi)]; [32, Theorems 7.1, 7.2]; [16, Theorems 3.1 & 4.1]; [5,
Corollary 3.6, Theoem 3.10] For all σ ∈ [− 1

2 ,
1
2 ], the operators

V : H−
1
2 +σ(S1)→ H

1
2 +σ(S1), ± 1

2 I +W ′ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1),

± 1
2 I +W : H

1
2 +σ(S1)→ H

1
2 +σ(S1), L : H

1
2 +σ(S1)→ H−

1
2 +σ(S1),

are continuous Fredholm operators with zero index.

Lemma A.2. Let K and M be defined by (3.15) and (3.16) with α > 0. For all σ ∈ [− 1
2 ,

1
2 ] the

following operators

K ≡ 1

2
I +W ′ + i αV : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.6)

M≡ L+ i α
(
− 1

2
I +W

)
: H

1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.7)

are invertible.

Proof. Due to Lemma A.1(iv), we need only to prove that the operators (A.6) and (A.7) have the

trivial null-spaces. First, we consider the case σ = 0 and let g ∈ H−
1
2 (S1) be a solution of the

homogeneous equation

K g = 0 on S1, (A.8)

and construct the function v := V g in R3, where V g is the single layer potential defined by (3.2).

Evidently, v ∈ H1, 0(R3 \ Ω1;A1), v ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1), A1(∂x, ω)v = A1(∂x, ω)V (g) = 0 in

R3 \ S1, and T±1 v = T±1 V g ∈ H−
1
2 (S1) is well defined. In accordance with relation (3.15), equation

(A.8) is equivalent to the condition(
T+

1 + i α γ+
S1

)
v = 0 on S1, α > 0. (A.9)
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Therefore v solves the homogeneous interior Robin problem in R3 \Ω1. Boundary condition (A.9) and
Green’s formula ∫

R3\Ω1

A1v v dx+

∫
R3\Ω1

[
E1(v, v)− ω2κ1|v|2

]
dx =

〈
T+

1 v , γ
+
S1
v
〉
S1

lead to the equality ∫
R3\Ω1

[
E1(v, v)− ω2κ1|v|2

]
dx+ i α

∫
S1

|γ+
S1
v|2 dS = 0.

By separating imaginary part, we deduce γ+
S1
v = 0 on S1, implying T+

1 v = 0 on S1. Therefore, with the

help of the general integral representation formula of solutions of the homogeneous differential equation
A1v = 0, v = V (T+

1 v) −W (γ+
S1
v), we finally deduce v = V (g) = 0 in R3 \ Ω1. By the continuity

property of the single layer potential across the surface S1 (see the first equation in (A.1)), we have
γ+
S1
v = γ−

S1
v = 0 on S1. Consequently, the radiating function v = V g solves the homogeneous exterior

Dirichlet problem for the operator A1(∂x, ω) and therefore vanishes identically in Ω1. Consequently,
by the jump relations (A.1) for the conormal derivative of the single layer potential, we find that g = 0
on S1 implying that the null-space of the operator (A.6) is trivial.

Now let σ ∈ [− 1
2 ,

1
2 ]. Recall that for − 1

2 6 σ1 < σ2 6 1
2 , the inclusion H−

1
2 +σ2(S1) ⊂ H− 1

2 +σ1(S1)
is continuous and dense. Therefore the null-space of the Fredholm operator (A.6) is the same for all
σ ∈ [− 1

2 ,
1
2 ] (see, e.g., [33, Lemma 11.40], [1, Proposition 10.6]). This completes the proof for operator

(A.6).
The proof for operator (A.7) is quite similar. �

Introduce the boundary operators Ṽ, W̃, W̃ ′, L̃, K̃ and M̃ generated by the single and double

layer potentials Ṽ and W̃ constructed by the exponentially decaying real-valued fundamental solution
Γ(x−y, i) (see (3.5)). Evidently, they are defined by the same formulas as their counterpart operators
V, W, W ′, L, K, M, V and W with Γ(x − y, i) for Γ(x − y, ω) and have all the mapping and jump
properties described in Lemmas A.1 and A.2. In addition, for these “tilde” operators we have the
following assertion.

Lemma A.3. For all σ ∈ [− 1
2 ,

1
2 ] and α > 0, the following operators

Ṽ : H−
1
2 +σ(S1)→ H

1
2 +σ(S1),

±1

2
I + W̃ ′ : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1),

±1

2
I + W̃ : H

1
2 +σ(S1)→ H

1
2 +σ(S1),

L̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1),

K̃ ≡ 1

2
I + W̃ ′ + i α Ṽ : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1),

M̃ ≡ L̃+ i α
(
− 1

2
I + W̃

)
: H

1
2 +σ(S1)→ H−

1
2 +σ(S1)

are invertible.

Proof. All the operators stated in the lemma are Fredholm ones with zero index and their null-spaces
are the same for all σ ∈ [− 1

2 ,
1
2 ] (see, e.g., [33, Lemma 11.40], [1, Proposition 10.6]). Therefore it

suffices to show that the null-spaces of the operators are trivial for σ = 0.
Recall that Ω1 := Ω− and Ω+ = R3 \ Ω1.

First, let us prove that the null-space of the operator Ṽ is trivial. Let g ∈ H− 1
2 (S1) be a solution

to the homogeneous equation Ṽg = 0 on S1. Then the single layer potential u = Ṽ (g) belongs to
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H1(Ω±, Ã1) with Ã1 := A1(∂x, i), exponentially decays at infinity, and solves the homogeneous interior
and exterior Dirichlet problems

A1(∂x, i)u = a
(1)
kj ∂k∂ju− κ1 u = 0 in Ω±, γ±

S1
u = 0 on S1 = ∂Ω±.

Consequently, with the help of Green’s formulas (cf. (2.11))∫
Ω±

A1(∂x, i)u(x)u(x) dx+

∫
Ω±

[E1(u, u) + κ1|u(x)|2 ] dx = ±
〈
T±1 u , γ

±
S1
u
〉
S1
, (A.10)

we deduce u = 0 in Ω±, whence g = 0 on S1 follows due to the jump relations for the conormal deriv-

ative of the single layer potential (see Lemma A.1(iii)) which completes the proof for the operator Ṽ.

Now, let us consider the operator M̃ and let h ∈ H 1
2 (S1) be a solution to the homogeneous equation

M̃h = 0 on S1. Then the double layer potential w = W̃ (h) belongs to H1(Ω±; Ã1), exponentially
decays at infinity and solves the homogeneous interior Robin’s problem

A1(∂x, i)w = a
(1)
kj ∂k∂jw − κ1 w = 0 in Ω+, T+

1 w + i α γ+
S1
w = 0 on S1.

Therefore by Green’s formula (A.10), we deduce w = 0 in Ω+ and by Lemma A.1(iii), we have
T+

1 w = T−1 w = 0. Thus, w solves the homogeneous exterior Neumann problem and, consequently,
w = 0 in Ω− in view of (A.10). The jump properties of the double layer potential complete the proof

for the operator M̃. �

For the other operators stated in the lemma the proofs are word for word.

Lemma A.4. For σ ∈ [− 1
2 ,

1
2 ], the operators

V − Ṽ : H−
1
2 +σ(S1)→ H

1
2 +σ(S1), (A.11)

W ′ − W̃ ′ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.12)

W − W̃ : H
1
2 +σ(S1)→ H

1
2 +σ(S1), (A.13)

L − L̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.14)

K − K̃ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.15)

M−M̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1). (A.16)

are compact.

Proof. In view of Remark 3.1 and relations (3.8) and (3.9), the potential type operators V − Ṽ and

W − W̃ for σ ∈ [− 1
2 ,

1
2 ] have the following mapping properties:

V − Ṽ : H−
1
2 +σ(S1)→ H3+σ(Ω2),

W − W̃ : H
1
2 +σ(S1)→ H3+σ(Ω2).

Therefore the traces on S1 of the functions V (h)− Ṽ (h) and W (g)− W̃ (g) with h ∈ H− 1
2 +σ(S1) and

g ∈ H 1
2 +σ(S1) belong to H1(S1) in view of the Lipschitz character of the surface S1. Recall that in

the case of Lipschitz surfaces, the space Hs(S1) is well-defined only for −1 6 s 6 1. Moreover, in

general, the trace of a function from the space Hs(Ω±) belongs either to the space Hs− 1
2 (∂Ω±) if

1
2 < s < 3

2 , or to the space H1(∂Ω±) if s > 3
2 (see, e.g., [13, 15], [23, Section 3]).

Consequently, for σ ∈ (− 1
2 ,

1
2 ), the operators (A.11) and (A.13) are smoothing operators with

the range in H1(S1) which is compactly imbedded in H
1
2 +σ(S1), while operators (A.12), (A.14),

(A.15) and (A.16) are smoothing operators with the range in H0(S1) which is compactly imbedded

in H−
1
2 +σ(S1) for arbitrary σ ∈ (− 1

2 ,
1
2 ).
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For σ = ± 1
2 , the claim can be proved again using relations (3.8) and (3.9). For illustration, we

consider operator (A.11) for σ = 1
2 , i.e., we show the compactness of the operator

V − Ṽ : H0(S1)→ H1(S1).

Let M0 be a bounded subset in H0(S1), i.e. ‖g‖H0(S1) 6 C0 for all g ∈M0. Let {gn}∞n=1 ∈M0 be an
arbitrary sequence and Q(y, x) := Γ(y − x, ω)− Γ(y − x, i) be defined by (3.8). Then the sequence

vn(y) = V(gn)(y)− Ṽ(gn)(y) ≡ Q gn(y) :=

∫
S1

Q(y, x) gn(x) dSx, y ∈ S1,

contains a fundamental subsequence in the norm of the spaceH0(S1) since the Hilbert-Schmidt integral

operator Q : H0(S1)→ H0(S1) is compact. We denote the fundamental subsequence by v
(1)
n = Q g(1)

n .
It is evident that the same arguments can be applied to the sequence

Dyjv
(1)
n (y) = DyjQ g(1)

n (y) =

∫
S1

DyjQ(y, x) gn(x) dSx, y ∈ S1,

where Dyj denotes a tangential differentiation. We again conclude that this sequence contains a

fundamental subsequence in the norm of the space H0(S1). Denote this subsequence by v
(2)
n = Q g(2)

n .

Thus we have shown that the sequence vn = Q gn contains a fundamental subsequence v
(2)
n in the

norm of the space H(1)(S1) which implies that the operator Q : H0(S1) → H1(S1), i.e., operator
(A.11) for σ = 1

2 is compact. For σ = − 1
2 , the claim follows from the duality arguments.

Now let us consider operator (A.13) for σ = 1
2 ,

R :=W − W̃ : H1(S1)→ H1(S1). (A.17)

Further, let M1 ⊂ H1(S1) be a bounded set and {gn}∞n=1 ∈M1 be an arbitrary sequence. It is evident
that the kernel function T1(x, ∂x)Q(y, x) of the weakly singular integral operator

R gn(y) :=

∫
S1

T1(x, ∂x)Q(y, x) gn(x) dSx, y ∈ S1, (A.18)

is bounded on S1×S1 in view of (3.8)–(3.9). Moreover, the kernel function DyjT1(x, ∂x)Q(y, x) of the

operator DyjR gn(y) has a weak singularity of type O(|x− y|−1). Therefore, by the same arguments
as above, we again can show that the sequence {R gn}∞n=1 contains a fundamental subsequence in the
norm of the space H1(S1) which completes the proof for operator (A.17), i.e., for operator (A.13) for
σ = 1

2 .

The duality arguments imply the compactness of operator (A.12) for σ = − 1
2 .

The compactness of operator (A.12) for σ = 1
2 and operator (A.13) for σ = − 1

2 is trivial.

Next, we consider operator (A.14) for σ = 1
2 ,

N := L − L̃ : H1(S1)→ H0(S1).

We have

N g(y) :=

∫
S1

T1(y, ∂y)T1(x, ∂x)Q(y, x) g(x) dSx, y ∈ S1.

It is evident that the kernel function T1(y, ∂y)T1(x, ∂x)Q(y, x) is symmetric and possesses a weak singu-
larity of type O(|x− y|−1) due to (3.8)–(3.9). Therefore the Hilbert-Schmidt operator N : H0(S1)→
H0(S1) is compact, implying the compactness of operator (A.14). By the duality arguments, we
conclude the compactness of operator (A.14) for σ = − 1

2 .
The above results along with relations (A.6)–(A.7) and their counterparts for the “tilde” operators

imply directly the compactness of operators (A.15) and (A.16) for σ = ± 1
2 , which completes the

proof. �
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Remark A.5. Actually, in the proof of Lemma A.4 we have shown the following mapping properties
(cf. [5]):

V − Ṽ : H−
1
2 (S1)→ H1(S1),

W ′ − W̃ ′ : H−
1
2 (S1)→ H0(S1),

W − W̃ : H
1
2 (S1)→ H1(S1),

L − L̃ : H
1
2 (S1)→ H0(S1),

K − K̃ : H−
1
2 (S1)→ H0(S1),

M−M̃ : H
1
2 (S1)→ H0(S1).

For the operator K defined by (A.6), we have the following representation K = T̃ +C with T̃ = 1
2I+W̃ ′

and C =W ′ − W̃ ′ + iαV and by Lemmas A.2 and A.3, we deduce

K−1 = T̃ −1 −K−1CT̃ −1,

K−1M = T̃ −1L̃+ G, (A.19)

where

G := −K−1CT̃ −1M+ T̃ −1
[
L − L̃+ iα

(
− 1

2
I +W

)]
.

By Lemmas A.2, A.3 and A.4, the following operators

K−1CT̃ −1 : H−
1
2 (S1)→ H0(S1),

G : H
1
2 (S1)→ H0(S1) (A.20)

are continuous.

Lemma A.6. There are positive constants C ′1 > 0 and C ′2 > 0 such that

Re 〈−K−1Mψ , ψ〉S1 ≥ C ′1 ‖ψ‖2
H

1
2 (S1)

− C ′2 ‖ψ‖2H0(S1) for all ψ ∈ H 1
2 (S1).

Proof. In view of (A.19), (A.20) and the Schwartz inequality for all ψ ∈ H 1
2 (S1), we have

Re
〈
−K−1Mψ , ψ

〉
S1

= Re
〈
−
[
T̃ −1L̃+ G

]
ψ , ψ

〉
S1

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− |
〈
Gψ , ψ

〉
S1
|

= Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
−
∣∣∣∣ ∫
S1

ψ Gψ dS
∣∣∣∣

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− ‖Gψ‖H0(S1) ‖ψ‖H0(S1)

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− c1 ‖ψ‖

H
1
2 (S1)

‖ψ‖H0(S1) (A.21)

with some positive constant c1.
To estimate the first summand from below, we proceed as follows. The general integral represen-

tation formula for an exponentially decaying solution to the homogeneous equation A1(∂x, i)w = 0 in
Ω1 reads as

w + Ṽ (T−1 w)− W̃ (γ−
S1
w) = 0 in Ω1.

Substituting here w = W̃ϕ with arbitrary ϕ ∈ H 1
2 (S1) and taking the generalized trace of the conormal

derivative on S1, we obtain

L̃
(1

2
I + W̃

)
ϕ =

(1

2
I + W̃ ′

)
L̃ϕ on S1.
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This implies the following operator relation with the domain of definition H
1
2 (S1) and the range

H−
1
2 (S1),

T̃ −1L̃ =
(1

2
I + W̃ ′

)−1

L̃ = L̃
(1

2
I + W̃

)−1

. (A.22)

Further, substituting u = W̃g with g =
(

1
2I + W̃

)−1
ϕ and ϕ ∈ H 1

2 (S1) in (A.10) for Ω− = Ω1 and

taking into consideration the equalities T−1 u = L̃
(

1
2I + W̃

)−1

ϕ and (A.22), we get

−
〈
T−1 u , γ

−
S1
u
〉
S1

=
〈
− T̃ −1L̃ϕ , ϕ

〉
S1

=

∫
Ω1

[E1(u, u) + κ1|u(x)|2 ] dx, (A.23)

where E1 is defined in (2.9). Since the matrix a1 =
[
a

(1)
kj

]3
k,j=1

is positive definite, κ1 > 0 and

γ−S1
u = ϕ, with the help of the trace theorem, from (A.23), we deduce〈

− T̃ −1L̃ϕ , ϕ
〉
S1
> c2 ‖u‖2H1(Ω1) > c3 ‖γ

−
S1
u‖2

H
1
2 (S1)

= c3 ‖ϕ‖2
H

1
2 (S1)

, (A.24)

where c2 and c3 are some positive constants.
Now, using the inequalities (A.24) and

‖ψ‖
H

1
2 (S1)

‖ψ‖H0(S1) 6 ε ‖ψ‖2
H

1
2 (S1)

+
1

4ε
‖ψ‖2H0(S1),

from (A.21), we finally obtain

Re
〈
−K−1Mψ , ψ

〉
S1
> Re

〈
− T̃ −1L̃ψ , ψ

〉
S1
− c1 ‖ψ‖

H
1
2 (S1)

‖ψ‖H0(S1)

> c3 ‖ψ‖2
H

1
2 (S1)

− c1 ‖ψ‖
H

1
2 (S1)

‖ψ‖H0(S1)

> (c3 − εc1) ‖ψ‖2
H

1
2 (S1)

− (4ε)−1c1 ‖ψ‖2H0(S1),

where ε is an arbitrarily small positive number. This completes the proof. �

Remark A.7. In many papers, the one-sided boundary traces of layer potentials and their conormal
derivaives are understood in the nontangential limit sense (for details see, e.g., [17, 32, 43]). Note
that in the case of a bounded Lipschitz domain Ω, a single layer potential V (h) with a density

h ∈ H− 1
2 (∂Ω), as well as a double layer potential W (g) with a density g ∈ H 1

2 (∂Ω), belong to the

space H1(Ω) and possess the Sobolev boundary traces belonging to the space H
1
2 (∂Ω) (see Lemma

A.1). Therefore, for these potentials the nontangential boundary values exist almost everywhere
on ∂Ω and the corresponding nontangential maximal functions are square integrable (see [32, 43]).
Consequently, for these potentials the Sobolev traces and the nontangential traces on ∂Ω coincide
(see, e.g., [2, Remark 6.7]).
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35. J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral representations for harmonic problems. Applied

Mathematical Sciences, 144. Springer-Verlag, New York, 2001.
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37. F. Rellich, Über das asymptotische Verhalten der Lösungen von (∆ + k2)u = 0 in anendlichen Gebieten. Jber.

Deutsch. Math. Verein 53(1943), 57–65.
38. M. Renardy, R. C. Rogers, An Introduction to Partial Differential Equations. Second edition. Texts in Applied

Mathematics, 13. Springer-Verlag, New York, 2004.

39. X. X. Tao, S. Y. Zhang, On the unique continuation properties for elliptic operators with singular potentials. Acta
Math. Sin. (Engl. Ser.) 23 (2007), no. 2, 297–308.

40. R. H. Torres, G. V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana

Univ. Math. J. 42 (1993), no. 4, 1457–1485.
41. B. R. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial

differential equations. (Russian) Uspehi Mat. Nauk 21 (1966), no. 3 (129), 115–194.
42. I. N. Vekua, On metaharmonic functions. (Russian) Trav. Inst. Math. Tbilissi 12 (1943), 105–174.

43. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains.

J. Funct. Anal. 59 (1984), no. 3, 572–611.
44. P. Werner, Zur mathematischer Theorie akustischer Wellenfelder. (German) Arch. Rational Mech. Anal. 6 (1960),

231–260 (1960).

45. P. Werner, Beugungsprobleme der mathematischen Akustik. (German) Arch. Rational Mech. Anal. 12 (1963),
155–184.

(Received 26.07.2020)

1Departament of Mathematics, Georgian Technical University, 77 Kostava Str., Tbilisi 0175, Georgia

2I. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied Mathematics, 2 University Str.,

Tbilisi 0186, Georgia
E-mail address: 18barbare@gmail.com

E-mail address: m−mrevlishvili@yahoo.com

E-mail address: natrosh@hotmail.com


