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ON AN APPLICATION OF POWER INCREASING SEQUENCES

HUSEYIN BOR

Abstract. In this paper we prove a general new summability factor theorem for infinite series
involving quasi-power increasing sequences. Some new results are also deduced.

1. INTRODUCTION

A positive sequence (X,,) is said to be a quasi-o-power increasing sequence if there exists a constant
K = K(0,X) > 1 such that Kn?X,, > m?X,, for all n >m > 1 (see [18]). For any sequence (A,) we
write that A\, = A\, — Ant1. Let > a, be a given infinite series with partial sums (s,,). We denote
by u% and t& the nth Cesaro means of order o, @ > —1, of the sequences (s,,) and (nay,), respectively,
that is (see [13]),

n n
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where
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A series ) a,, is said to be summable |C, «;0|,, k > 1 and § > 0, if (see [15])
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=0(n%), A%, =0 for n>0.

If we set =0, then we get the |C, a|; summability (see [14]). Let (p,) be a sequence of positive
numbers such that

n
Pnzz:pv%oo as n—oo, (P,=p_;=0,i>1).
v=0

The sequence-to-sequence transformation

1 n
Up = Fn UZ:OPUSU

defines the sequence (v,,) of the Riesz mean, or simply, the (N, p,,) mean of the sequence (sy), generated
by the sequence of coefficients (p,,) (see [16]). The series > a,, is said to be the |N, p,;d|, summable,
k>1andé >0, if (see [7])

Z(Pn/pn)5k+k_1\vn — vy |F < o0

n=1
If we set § = 0, then we obtain the |N,p,|, summability (see [1]). If we take p, = 1 for all n, then we
get the |C, 1; 0], summability. Finally, if we set 6 = 0 and k = 1, then we get the |N, p, | summability
(see [20]).
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2. KNOWN RESULT

Several theorems have been proved dealing with the | N, p,,; §|, summability factors of infinite series
(see [3,5-12,17]). Among them, in [10], the following theorem has been proved.

Theorem A. Let (X,,) be a quasi-o-power increasing sequence for some o (0 < o < 1). Suppose that
there exist the sequences (B,) and (\,) such that

[AN,| < B, (1)
Bn—0 as n— oo, (2)
> nlABLX, < oo, (3)
n=1
If
" Py\Ok |s,|F
— =0(X,) as n— o 5
;(Pv) vXh1 (Xn) (5)
and (py) is a sequence such that
P, = O(npn), (6)
PrApp = O(pnpn+1); (7)
m—+1
P,\dk—1 1 P,\ok 1
EM P o((B) R o o .
hold, then the series Y - ; Ao s the [N, pn; 6|, summable, k > 1 and 0 <6 < 1/k.

3. THE MAIN RESULT

The aim of this paper is to prove Theorem A under weaker conditions. Now, we prove the following

Theorem. Let (X,,) be a quasi-o-power increasing sequence for some o (0 < o < 1). If the conditions
(1), (2), 3), (4), (6), (7), (8) and

n

Pv ok tvk
Z () v|Xk‘_1 =0(X,) as n— o0 (9)

p?)
hold, then the series > -~ | ap Ijlp)‘” is the |N, pn; 6|, summable, k > 1 and 0 < § < 1/k.

Remark. It should be noted that the condition (5) implies the condition (9) but the converse is need
not be true (see [4,19]).

To prove our theorem, we need the following lemmas.

Lemma 1 ([18]). Under the conditions on (X,,), (Bn) and (A,) as as expressed in the statement of
the theorem, we have the following:

nXnfn = 0(1),
Z Bn X, < 0. (10)

Lemma 2 ([2]). If the conditions (6) and (7) are satisfied, then

(n%) (%)
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4. PROOF OF THE THEOREM

Let (T;,) be the sequence of (N,p,) mean of the series Y | @ Then, by the definition, we
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and hence
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Using Abel’s transformation, we get
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To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

oo
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Now, applying Holder’s inequality, we have
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by the hypotheses of the theorem and Lemma 1. Now, using (6), we obtain
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by the hypotheses of the theorem and Lemma 1. Again, using Lemma 1 and Lemma 2, as in T}, 1, we
have

ml oo\ Oktk-1

> <"> |T3* =0(1) as m — oo.
Pn

Finally, as in T}, 1, we have
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This completes the proof of the theorem. If we set =0, then we have a result dealing with |N,py,|,
summability factors of infinite series. Also, if we take p,, = 1 for all n, then we obtain a new result
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concerning the |C, 1; 0|, summability factors of infinite series. Finally, if we set § = 0 and k = 1, then
we get a result related to the |N, p,| summability factors of infinite series.
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