ON AN APPLICATION OF POWER INCREASING SEQUENCES

HÜSEYİN BOR

Abstract

In this paper we prove a general new summability factor theorem for infinite series involving quasi-power increasing sequences. Some new results are also deduced.

1. Introduction

A positive sequence $\left(X_{n}\right)$ is said to be a quasi- σ-power increasing sequence if there exists a constant $K=K(\sigma, X) \geq 1$ such that $K n^{\sigma} X_{n} \geq m^{\sigma} X_{m}$ for all $n \geq m \geq 1$ (see [18]). For any sequence (λ_{n}) we write that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} and t_{n}^{α} the nth Cesàro means of order $\alpha, \alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, that is (see [13]),

$$
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \quad \text { and } \quad t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \quad\left(t_{n}{ }^{1}=t_{n}\right)
$$

where

$$
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [15])

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty
$$

If we set $\delta=0$, then we get the $|C, \alpha|_{k}$ summability (see [14]). Let (p_{n}) be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
v_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(v_{n}\right)$ of the Riesz mean, or simply, the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [16]). The series $\sum a_{n}$ is said to be the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summable, $k \geq 1$ and $\delta \geq 0$, if (see [7])

$$
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|v_{n}-v_{n-1}\right|^{k}<\infty
$$

If we set $\delta=0$, then we obtain the $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [1]). If we take $p_{n}=1$ for all n , then we get the $|C, 1 ; \delta|_{k}$ summability. Finally, if we set $\delta=0$ and $k=1$, then we get the $\left|\bar{N}, p_{n}\right|$ summability (see [20]).

[^0]
2. Known Result

Several theorems have been proved dealing with the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series (see [3,5-12,17]). Among them, in [10], the following theorem has been proved.

Theorem A. Let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence for some $\sigma(0<\sigma<1)$. Suppose that there exist the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{1}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{3}\\
\left|\lambda_{n}\right| X_{n}=O(1) . \tag{4}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right), \tag{6}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right), \tag{7}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}= & O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{8}
\end{align*}
$$

hold, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summable, $k \geq 1$ and $0 \leq \delta<1 / k$.

3. The Main Result

The aim of this paper is to prove Theorem A under weaker conditions. Now, we prove the following
Theorem. Let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence for some $\sigma(0<\sigma<1)$. If the conditions (1), (2), (3), (4), (6), (7), (8) and

$$
\begin{equation*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

hold, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summable, $k \geq 1$ and $0 \leq \delta<1 / k$.
Remark. It should be noted that the condition (5) implies the condition (9) but the converse is need not be true (see [4, 19]).

To prove our theorem, we need the following lemmas.
Lemma 1 ([18]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as as expressed in the statement of the theorem, we have the following:

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{10}
\end{align*}
$$

Lemma 2 ([2]). If the conditions (6) and (7) are satisfied, then

$$
\Delta\left(\frac{P_{n}}{n^{2} p_{n}}\right)=O\left(\frac{1}{n^{2}}\right)
$$

4. Proof of the theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by the definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}}
$$

and hence

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}, \quad n \geq 1, \quad\left(P_{-1}=0\right)
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\lambda_{n}}{n^{2}} \sum_{v=1}^{n} v a_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}(v+1) t_{v} p_{v} \frac{\lambda_{v}}{v^{2}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}(v+1) \frac{t_{v}}{v^{2} p_{v}}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1}(v+1) t_{v} \Delta\left(P_{v} / v^{2} p_{v}\right) \\
& +\lambda_{n} t_{n}(n+1) / n^{2}=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Now, applying Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|t_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \frac{1}{v^{k}} \frac{1}{P_{v}}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\lambda_{v}\right|\left(\frac{1}{X_{v}}\right)^{k-1}\left|t_{v}\right|^{k} \frac{1}{v^{k}}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} v^{k-1} \frac{1}{v^{k}}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r X_{r}}{ }^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 1 . Now, using (6), we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|\Delta \lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} v^{k-1}\left(\beta_{v}\right)^{k-1}\left(\beta_{v}\right)\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r X_{r}{ }^{k-1}+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}}} \begin{aligned}
& m-1 \\
&=O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
&=O(1) \text { as } m \rightarrow \infty,
\end{aligned}
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 1. Again, using Lemma 1 and Lemma 2, as in $T_{n, 1}$, we have

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
$$

Finally, as in $T_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\frac{n+1}{n}\right)^{k} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} n^{k-1} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|t_{n}\right|^{k}}{n X_{n}{ }^{k-1}}=O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

This completes the proof of the theorem. If we set $\delta=0$, then we have a result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series. Also, if we take $p_{n}=1$ for all n , then we obtain a new result
concerning the $|C, 1 ; \delta|_{k}$ summability factors of infinite series. Finally, if we set $\delta=0$ and $k=1$, then we get a result related to the $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series.

References

1. H. Bor, On two summability methods. Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147-149.
2. H. Bor, Absolute summability factors for infinite series. Indian J. Pure Appl. Math. 19 (1988), no. 7, 664-671.
3. H. Bor, A relation between two summability methods. Riv. Mat. Univ. Parma (4) 14 (1988), 107-112 (1989).
4. H. Bor, On the absolute Cesàro summability factors. Anal. Numér. Théor. Approx. 20 (1991), no. 1-2, 11-14.
5. H. Bor, Factors for $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of infinite series. Bull. Calcutta Math. Soc. 84 (1992), no. 4, 371-374.
6. H. Bor, Multipliers for $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of infinite series. Proc. Indian Acad. Sci. Math. Sci. 103 (1993), no. 2, 153-157.
7. H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series. J. Math. Anal. Appl. 179 (1993), no. 2, 646-649.
8. H. Bor, On absolute summability factors. Z. Anal. Anwendungen 15 (1996), no. 2, 545-549.
9. H. Bor, On $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series. Taiwanese J. Math. 1 (1997), no. 3, 327-332.
10. H. Bor, A further application of power increasing sequences. Adv. Pure Appl. Math. 4 (2013), no. 2, 179-188.
11. H. Bor, Some equivalence theorems on absolute summability methods. Acta Math. Hungar. 149 (2016), no. 1, 208-214.
12. H. Bor, On some new results for non-decreasing sequences. Tbilisi Math. J. 10 (2017), no. 2, 57-64.
13. E. Cesàro, Sur la multiplication des séries. Bull. Sci. Math. 14 (1890), 114-120.
14. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113-141.
15. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357-387.
16. G. H. Hardy, Divergent Series. Oxford, at the Clarendon Press, 1949.
17. J. O. Lee, On the summability of infinite series and Hüseyin Bor. Journal for History of Mathematics 30 (2017), no. 6, 353-365.
18. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, $791-796$.
19. S. M. Mazhar, On $|C, 1|_{k}$ summability factors of infinite series. Indian J. Math. 14 (1972), 45-48.
20. G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms. Tohoku Math. J. (2) 1 (1949), 57-65.
(Received 20.02.2020)
P.O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

E-mail address: hbor33@gmail.com

[^0]: 2020 Mathematics Subject Classification. 26D15, 40D15, 40F05.
 Key words and phrases. Absolute summability; Summability factors; Riesz mean; Power increasing sequences; Hölder's inequality; Minkowski's inequality.

