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ON AN APPLICATION OF POWER INCREASING SEQUENCES

HÜSEYİN BOR

Abstract. In this paper we prove a general new summability factor theorem for infinite series

involving quasi-power increasing sequences. Some new results are also deduced.

1. Introduction

A positive sequence (Xn) is said to be a quasi-σ-power increasing sequence if there exists a constant
K = K(σ,X) ≥ 1 such that KnσXn ≥ mσXm for all n ≥ m ≥ 1 (see [18]). For any sequence (λn) we
write that ∆λn = λn − λn+1. Let

∑
an be a given infinite series with partial sums (sn). We denote

by uαn and tαn the nth Cesàro means of order α, α > −1, of the sequences (sn) and (nan), respectively,
that is (see [13]),

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv and tαn =
1

Aαn

n∑
v=1

Aα−1n−vvav, (tn
1 = tn),

where

Aαn =
(α+ 1)(α+ 2) · · · (α+ n)

n!
= O(nα), Aα−n = 0 for n > 0.

A series
∑
an is said to be summable |C,α; δ|k, k ≥ 1 and δ ≥ 0, if (see [15])

∞∑
n=1

nδk+k−1|uαn − uαn−1|k =

∞∑
n=1

nδk−1|tαn|k <∞.

If we set δ=0, then we get the |C,α|k summability (see [14]). Let (pn) be a sequence of positive
numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

vn =
1

Pn

n∑
v=0

pvsv

defines the sequence (vn) of the Riesz mean, or simply, the (N̄ , pn) mean of the sequence (sn), generated
by the sequence of coefficients (pn) (see [16]). The series

∑
an is said to be the |N̄ , pn; δ|k summable,

k ≥ 1 and δ ≥ 0, if (see [7])
∞∑
n=1

(Pn/pn)δk+k−1|vn − vn−1|k <∞.

If we set δ = 0, then we obtain the |N̄ , pn|k summability (see [1]). If we take pn = 1 for all n, then we
get the |C, 1; δ|k summability. Finally, if we set δ = 0 and k = 1, then we get the |N̄ , pn| summability
(see [20]).
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2. Known Result

Several theorems have been proved dealing with the |N̄ , pn; δ|k summability factors of infinite series
(see [3, 5–12,17]). Among them, in [10], the following theorem has been proved.

Theorem A. Let (Xn) be a quasi-σ-power increasing sequence for some σ (0 < σ < 1). Suppose that
there exist the sequences (βn) and (λn) such that

|∆λn| ≤ βn, (1)

βn → 0 as n→∞, (2)
∞∑
n=1

n|∆βn|Xn <∞, (3)

|λn|Xn = O(1). (4)

If
n∑
v=1

(Pv
pv

)δk |sv|k
vXk−1

v

= O(Xn) as n→∞ (5)

and (pn) is a sequence such that

Pn = O(npn), (6)

Pn∆pn = O(pnpn+1), (7)

m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1
= O

((Pv
pv

)δk 1

Pv

)
as m→∞, (8)

hold, then the series
∑∞
n=1 an

Pnλn

npn
is the |N̄ , pn; δ|k summable, k ≥ 1 and 0 ≤ δ < 1/k.

3. The Main Result

The aim of this paper is to prove Theorem A under weaker conditions. Now, we prove the following

Theorem. Let (Xn) be a quasi-σ-power increasing sequence for some σ (0 < σ < 1). If the conditions
(1), (2), (3), (4), (6), (7), (8) and

n∑
v=1

(
Pv
pv

)δk |tv|k
vXk−1

v

= O(Xn) as n→∞ (9)

hold, then the series
∑∞
n=1 an

Pnλn

npn
is the |N̄ , pn; δ|k summable, k ≥ 1 and 0 ≤ δ < 1/k.

Remark. It should be noted that the condition (5) implies the condition (9) but the converse is need
not be true (see [4, 19]).

To prove our theorem, we need the following lemmas.

Lemma 1 ([18]). Under the conditions on (Xn), (βn) and (λn) as as expressed in the statement of
the theorem, we have the following:

nXnβn = O(1),
∞∑
n=1

βnXn <∞. (10)

Lemma 2 ([2]). If the conditions (6) and (7) are satisfied, then

∆

(
Pn
n2pn

)
= O

(
1

n2

)
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4. Proof of the theorem

Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑∞
n=1

anPnλn

npn
. Then, by the definition, we

have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr
rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv
vpv

,

and hence

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv
vpv

, n ≥ 1, (P−1 = 0).

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆

(
Pv−1Pvλv
v2pv

) v∑
r=1

rar +
λn
n2

n∑
v=1

vav

=
pn

PnPn−1

n−1∑
v=1

Pv
pv

(v + 1)tvpv
λv
v2

+
pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v + 1)
tv
v2pv

− pn
PnPn−1

n−1∑
v=1

Pvλv+1(v + 1)tv∆(Pv/v
2pv)

+λntn(n+ 1)/n2 = Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)δk+k−1
|Tn,r|k <∞, for r = 1, 2, 3, 4.

Now, applying Hölder’s inequality, we have

m+1∑
n=2

(Pn
pn

)δk+k−1
|Tn,1|k =O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

P kn−1

{ n−1∑
v=1

Pv
pv
pv|tv||λv|

1

v

}k

=O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

Pn−1

n−1∑
v=1

(Pv
pv

)k
pv|tv|k|λv|k

1

vk

×
{

1

Pn−1

n−1∑
v=1

pv

}k−1

=O(1)

m∑
v=1

(Pv
pv

)k
pv|tv|k|λv|k

1

vk

m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1

=O(1)

m∑
v=1

(Pv
pv

)k
|λv|k−1|λv|pv|tv|k

1

vk
1

Pv

(Pv
pv

)δk
=O(1)

m∑
v=1

(Pv
pv

)k−1
|λv|

( 1

Xv

)k−1
|tv|k

1

vk

(Pv
pv

)δk
=O(1)

m∑
v=1

(Pv
pv

)δk
vk−1

1

vk

( 1

Xv

)k−1
|λv||tv|k

=O(1)

m∑
v=1

|λv|
(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

∆|λv|
v∑
r=1

(Pr
pr

)δk |tr|k
rXr

k−1
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+O(1)|λm|
m∑
v=1

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm

=O(1)

m−1∑
v=1

βvXv +O(1)|λm|Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 1. Now, using (6), we obtain

m+1∑
n=2

(Pn
pn

)δk+k−1
|Tn,2|k =O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

P kn−1

{ n−1∑
v=1

Pv
pv
pv|∆λv||tv|

}k

=O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

Pn−1

n−1∑
v=1

(Pv
pv

)k
pv|∆λv|k|tv|k

×
{

1

Pn−1

n−1∑
v=1

pv

}k−1

=O(1)

m∑
v=1

(Pv
pv

)k
pv(βv)

k|tv|k
m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1

=O(1)

m∑
v=1

(Pv
pv

)δk(Pv
pv

)k−1
(βv)

k|tv|k

=O(1)

m∑
v=1

(Pv
pv

)δk
vk−1(βv)

k−1(βv)|tv|k

=O(1)

m∑
v=1

vβv

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(Pr
pr

)δk |tr|k
rXr

k−1 +O(1)mβm

m∑
v=1

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m→∞,
by the hypotheses of the theorem and Lemma 1. Again, using Lemma 1 and Lemma 2, as in Tn,1, we
have

m+1∑
n=2

(
Pn
pn

)δk+k−1
|Tn,3|k = O(1) as m→∞.

Finally, as in Tn,1, we have
m∑
n=1

(Pn
pn

)δk+k−1
|Tn,4|k =O(1)

m∑
n=1

(Pn
pn

)δk(Pn
pn

)k−1(n+ 1

n

)k 1

nk
|λn|k|tn|k

=O(1)

m∑
n=1

(Pn
pn

)δk
nk−1

1

nk
|λn|k−1|λn||tn|k

=O(1)

m∑
n=1

|λn|
(Pn
pn

)δk |tn|k
nXn

k−1 = O(1) as m→∞.

This completes the proof of the theorem. If we set δ=0, then we have a result dealing with |N̄ , pn|k
summability factors of infinite series. Also, if we take pn = 1 for all n, then we obtain a new result
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concerning the |C, 1; δ|k summability factors of infinite series. Finally, if we set δ = 0 and k = 1, then
we get a result related to the |N̄ , pn| summability factors of infinite series.
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