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ON THE INFLUENCE OF BOUNDARY CONDITIONS OF RIGID FIXING ON

EIGEN-OSCILLATIONS AND THERMOSTABILITY OF SHELLS OF

REVOLUTION, CLOSE BY THEIR FORM TO CYLINDRICAL ONES, WITH AN

ELASTIC FILLER, UNDER THE ACTION OF PRESSURE AND

TEMPERATURE

SERGO KUKUDZHANOV

Abstract. The influence of boundary conditions of rigid fixing on eigen-oscillations and thermosta-
bility of shells of revolution which by their form are close to cylindrical ones, with an elastic filler,

under the action of external pressure and temperature, is investigated. We consider closed shells of

middle length whose form of midsurface generatrix is defined by a parabolic function. The shells of
positive and negative Gaussian curvature are studied. Formulas and graphs of dependence of the

least frequency and form of wave formation on the type of boundary conditions, external pressure,

temperature, rigidity of an elastic filler, as well as on the amplitude of shell deviation from the
cylinder, are presented. Comparison of the given parameters with the situation when the shell ends

are freely supported, is carried out. The question of thermostability is considered and the formula

for finding critical pressure is given.

In the present paper we investigate the influence of boundary conditions of rigid fixing, temperature,
external pressure and rigidity of an elastic filler on eigen-oscillations and stability of closed shells of
revolution, close by their form to cylindrical ones. We consider a light filler for which the influence of
tangential stresses on the contact surface and inertia forces may be neglected. The shell is assumed
to be thin and elastic. Temperature is uniformly distributed in the shell body. An elastic filler is
modelled by Winkler’s base; its extension upon heating comes out of account. We investigate the
shells of middle length whose form of the midsurface generatrix is defined by a parabolic function. We
consider the shells of positive, as well as of negative Gaussian curvature. Formulas and universal curves
of dependence of the least frequency and critical load on the Gaussian curvature, type of boundary
conditions, temperature, rigidity of an elasic filler, as well as on the amplitude of shell deviation from
the cylinder, are obtained. The question of thermostability is also considered and the formula for
determination of critical pressure is given.

1. We consider the shell whose middle surface is formed by the rotation of square parabola around
the z-axis of the rectangular system of coordinates x, y, z with the origin at the bisecting point of
a segment of the axis of revolution. It is assumed that the radius R of the midsurface cross-section
is defined by the equality R = r + δ0[1 − ξ2(r/`)2], where r is the end-wall cross-section, δ0 is the
maximal deviation from the cylindrical form (for δ0 > 0, the shell is convex and for δ0 < 0, it is
concave), L = 2` is the shell length, ξ = z/r. We consider the shells of middle length [6] and it is
assumed that (

δ0/r
)2
,
(
δ0/`

)2 � 1. (1)

For the shells of middle length, the forms of oscillation corresponding to the lower frequencies are
accompanied by a weakly-marked wave formation in longitudinal direction as compared with the
circumferential one, therefore the relation

∂2f/∂ξ2 � ∂2f/∂ϕ2 (f = u, v, w), (2)

is valid, where u, v, w are, respectively, meridional, circumferential and radial displacement compo-
nents characterizing oscillation form. Hence, according to Novozhilov’s statement [3], as the basic
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equations of oscillations we can take those corresponding to Vlasov’s semimomentless theory [5]. As
a result of simplification, the system of equations takes the form (due to the adopted assumption,
temperature terms are equal to zero [4])

∂2u

∂ϕ2
= −

[
1 + 2(1 + ν)δ

]∂w
∂ξ

,
∂2v

∂ϕ2
= (1 + 2νδ)

∂w

∂ϕ
,

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4δ2

∂4w

∂ϕ4
− t01

∂6w

∂ξ2 ∂ϕ4
− t02

∂6w

∂ϕ6

− 2s0
∂6w

∂ξ ∂ϕ5
+ γ

∂4w

∂ϕ4
+
ρr2

E

∂2

∂t2

(∂4w
∂ϕ4

)
= 0,

ε = h2/12r2(1− ν2), δ = δ0r/`
2,

ti = T 0
i /Eh (i = 1, 2), s0 = S0/Eh, γ = βr2/Eh,

(3)

where E, ν is an elastic module and the Poison coefficient; T 0
1 and T 0

2 are, respectively, meridional
and circumferential stresses of the initial state, S0 is a shearing stress of the initial state; ρ is density
of the shell material; β is the “bed” coefficient of the elastic filler (characterizing elastic rigidity of the
filler); ϕ is angular coordinate, t is time.

The initial state is assumed to be momentless. With rigid fixing of the shell ends there are no
meridional displacements at the ends. On the basis of a corresponding solution, taking into account
the filler reaction, temperature and also equations (1), we obtain the following approximate expressions

T 0
1 = −qr

{
ν +

δ0
r

[
1 + ν

3
+ 2(1− 2ν2)

(
r/`
)2 − (1− ν2)ξ2

(
r/`
)2]}− αTEh

1− ν
,

T 0
2 = −qr

[
1− 2ν

δ0
r

(r
`

)2]
+ w0β0r, S0 = 0,

(4)

where w0 and β0 are, respectively, deflection and “bed” coefficient of the filler in the initial state; α
is the coefficient of linear extension; T is temperature; q is external pressure (q > 0).

Taking into account relations (1) and (2), we find that

δ0
r

[
1 + ν

3
+ 2(1− 2ν2)

(
r/`
)2 − (1− ν2)ξ2

(
r/`
)2]∂2w

∂ξ2
� ∂2w

∂ϕ2
, ν

∂2w

∂ξ2
� ∂2w

∂ϕ2
.

Therefore expressions (4) after substitution into (3) can be simplified and they take the form

T 0
1 = −αTEh

1− ν
, T 0

2 = −qr
[
1− 2ν

δ0
r

(r
`

)2]
+ w0β0r, T 0

i = σ0
i h (i = 1, 2). (4′)

Bering in mind that in the initial state the shell deformation in a circumferential direction is defined
by the equalities

ε0ϕ =
σ0
2 − νσ0

1

E
+ αT, ε0ϕ = −w0

r
we get

w0 =
(
− σ0

2 + νσ0
1

) r
E
− αTr. (5)

Substituting (5) into (4′), we obtain

T 0
1

Eh
=
σ0
1

E
= − αT

1− ν
,

T 0
2

Eh
=
σ0
2

E
= − qr

Eh

[
1− 2ν

δ0
r

(r
`

)2]
+
β0r

Eh

[(
− σ0

2 + νσ0
1

) r
E
− αTr

]
.

(6)

Introduce the notation

q =
qr

Eh
, δ =

δ0
r

(r
`

)2
, γ0 =

β0r
2

Eh
, g = 1 + γ0.
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Then (6) takes the form

σ0
1

E
= − αT

1− ν
,

σ0
2

E
= −q(1− 2νδ) +

[(
− σ0

2

E
+ ν

σ0
1

E

)
γ0 − αTγ0

]
, (7)

whence we arrive at
σ0
2

E
(1 + γ0) = −q(1− 2νδ) + νγ0

σ0
1

E
− αTγ0. (8)

Substituting into (8) the first expression of (7), we obtain

σ0
2

E
= −

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1.

Consequently,

−σ
0
1

E
=

αT

1− ν
, −σ

0
2

E
=

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1. (9)

In view of the fact that R is close to r, in the expressions for stresses (9) we adopted R ≈ r.
As a result, the third equation of system (3) takes the form

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4δ2

∂4w

∂ϕ4
+

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1

∂6w

∂ϕ6

+
αT

1− ν
∂6w

∂ξ2 ∂ϕ4
+ γ

∂4w

∂ϕ4
+
ρr4

E

∂2

∂ϕ2

(∂4w
∂ϕ4

)
= 0. (10)

A solution of system (3) for harmonic oscillations of closed shells will be sought in the form

u = U(ξ) sinnϕ cosωt,

v = V (ξ) cosnϕ cosωt,

w = W (ξ) sinnϕ cosωt.

From the first two equations of system (3) we obtain

n2U =
[
1− 2(1− ν)δ

]
W ′, (11)

nV =
(
1 + 2νδ

)
W. (12)

Note certain simplifications of boundary conditions of rigid fixing for the shells (for ξ = const)
having the form

u = v = w = w′ξ = 0. (13)

On the basis of equality (12) we find that the fulfilment of the condition w = 0 leads to that of
the condition v = 0, while in view of (11), the fulfilment of the condition w′ξ = 0 leads to that of the
condition u = 0.

Figure 1

Thus if conditions w = w′ξ = 0 (ξ = const) are fulfilled, then all conditions (13) are likewise fulfilled.
Let the shell edges be rigidly fixed. In addition, the solution should satisfy the condition of period-

icity with respect to ϕ and also the following boundary conditions with respect to the coordinate ξ,

w = 0 (ξ = ± `/r), w′ξ = 0 (ξ = ± `/r). (14)
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Figure 2

Solution w of equation (10), as is mentioned above, for harmonic oscillations is sought in the form

w = W sinnϕ cosωt. (15)

From (10) and (15) follows

W (4) −
(

4δn2 − αT

1− ν
n4
)
W (2) − n4

{
ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2

− εn4 − 4δ 2

}
W = 0, δ 2 = δ2 + γ/4. (16)

Figure 3

Figure 4

Assuming W = Ceαξ, we obtain the following characteristic equation

α4 −
(

4δn2 − αT

1− ν
n4
)
α2

− n4
{
ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2 − εn4 − 4δ 2

}
= 0
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which can be written as

p2 − ap− b = 0, Ω = ρr2/E, (17)

p = α2, a = 4δn2 +
αT

1− ν
n4,

b = n4
{

Ωω2 +

[
q(1− 2δν) +

αTγ2
1− ν

]
g−1n2 − εn4 − 4δ 2

}
.

(18)

Proceeding from the condition b > 0, from (17) and (18) we have

α1,2 = ±√p1, α3,4 = ± i
√
−p2,

p1 =
a

2
+

√
a2

4
+ b > 0, p2 =

a

2
−
√
a2

4
+ b < 0. (19)

General solution of equation (16) takes the form

W = A ch k1ξ +B sh k1ξ + C cos k2ξ +D sin k2ξ,

k1 =
√
p1, k2 =

√
−p2.

Satisfying boundary conditions (14), we obtain the system of four homogeneous equations.
Since the determinant of that system is equal to zero, we get

th k1` =
k1
k2

tg k2` = −k2
k1

tg k2`, ` = `/r. (20)

Consequently, this system falls into two independent systems and hence a solution falls into odd
and even functions. To the even function there correspond symmetric with respect to ξ forms of
oscillations, while to the odd function there correspond skew-symmetric ones. Thus we obtain

W = D

(
sin k2ξ −

sin k2`

sh k1`
sh k1ξ

)
,

W = C

(
cos k2ξ −

cos k2`

ch k1`
ch k1ξ

)
.

First, let us consider the case δ = 0, q = γ = T = 0 where p1 = −p2 =
√
b, k1 = k2 = 4

√
b = k.

Equation (20) corresponding to skew-symmetric forms of oscillations takes the form

th k` = tg k`.

To the lower root of that equation there corresponds the value

k = 3, 927 r/`,

where as equation (20) corresponding to the symmetric forms of oscillation take for δ = 0, q = γ =
T = 0 the form

th k` = − tg k`.

To the lower root of that equation there corresponds the value

k = 2, 365 r/` = 0, 75π r/`, (21)

i.e., the lower value k corresponds to the symmetric form of oscillation. Therefore in the sequel we
will consider oscillations with symmetric form of deflection with respect to ξ. Taking into account
that

−p1p2 = b, b = n4(Ωω2 − εn4),

for δ = 0, q = γ = T = 0, we get

k4 = n4(Ωω2 − εn4).

This implies that to the lower root (21) for fixed n there corresponds the least value of eigen-frequency
defined by the expression

Ωω2 = εn4 + (d1λ1)4n−4, d1 = 1, 55, λ1 = πr/2`.
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The least frequency value depending on n is realized for

n20 = d1λ1ε
−1/4. (22)

For n = n0, from (22), for the least frequency of cylindrical shell of middle length with rigidly fixing
ends we obtain the known formula [1]

Ωω2
01 = 2 d21λ

2
1ε

1/2.

Figure 5

Figure 6

For freely supported ends, the least frequency of cylindrical shell is, as is known, defined by the
formula

Ωω2
0 = 2λ21ε

1/2. (23)

Let us turn now to the general case and investigate axially symmetric forms of oscillations corre-
sponding to lower frequencies. Relying on (19), we have

−p2 = p1 − a, a =
(

4δ − αT

1− ν
n2
)
n2.

from which, putting x = `
√
p1, we obtain

−p2` 2 = x2 − β, β = 4n2
δ0
r
− αT

1− ν

( `
r

)2
n4. (24)

Then equation (20) corresponding to symmetric forms of oscillations can be represented as

x thx = −
√
x2 − β tg

√
x2 − β. (25)

On the basis of the first equality of (19), we have p1(p1 − a) = b from which we find that

Ωω2 = εn4 + x2(x2 − β)
(r
`

)4
n−4 + 4δ 2 −

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2. (26)

Consequently, in a general case, the eigen-frequencies ω for the shells under consideration are
defined by formula (26), where x is any root of equation (25). The least frequency ω is obtained by
minimizing the right-hand side of (26) with respect to n, when as x we take the least root of equation
(25) which we denote by xω. On the basis of (24) and (25), it is not difficult to see that xω depends
both on δ0/r, T and on n. Such a minimization is realized by sorting out natural values n in the
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neighbourhood n0 defined by equality (22). Below we present results of our calculations for the shells
with geometric dimensions ` = r, h/r = 10−2, ν = 0, 3 for different values δ0/r (for q = γ = T = 0).
In Figure 1 we can see dependence of xω on δ0/r (curve (1) corresponds to the rigid shell ends fixing;
straight line (0) corresponds to the freely supported ends). Figure 2 presents dependence of nω on
δ0/r ((1) corresponds to rigidly fixing ends and (0) to freely supported ends). In Figure 3 we can see
the curves of dependence of the least frequencies ω2/ω2

0 on δ0/r ((1) is the case of rigidly fixing ends
and (0) for fxreely supported ends [2]), ω2

0 is defined by expression (23).
For ω = 0, from (26) we obtain

q(1− 2vδ) =

[
εn2 + x2(x2 − β)n−6

(r
`

)4
+ 4δ 2n−2

]
g − αTγ0

1− v
. (27)

The least value q is obtained after minimization of the right-hand side of equality (28) depending on
n, when as x we take the least positive root of equation (26) which is denoted by x∗. It is not difficult
to see that on the basis of the value x∗ depends on n∗. Corresponding values x∗, n∗, q∗/q0∗ are critical
and presented depending on δ0/r by the curves (1) in Figures 4, 5, 6 for γ0 = T = 0. In Figure 6, over
the Oy-axis is drawn the dimensionless critical pressure q∗/q0∗ (q0∗ characterizes critical pressure for
freely supported cylindrical shell and is defined by the equality q0∗ = 0, 855(1−ν2)−3/4(h/r)3/2r/L [6]).
Comparing curves 1 in Figures 3, 6, it is not difficult to notice that their behaviour is qualitativly
close: if for δ0 > 0 the values of the least frequency and of critical pressure increase, then for δ0 < 0
they first decrease up to δ0/r ≈ −(0, 03÷ 0, 04) and then increase. According to (27), the formula for
finding critical pressure q∗ has the form

q∗ =
1 + γ0

1− 2νδ

[
εn2∗ + x2∗(x

2
∗ − β)n−6

(
r/`
)4

+ 4δ 2n−2∗

]
− αTγ0

(1− ν)(1− 2νδ)
.

Thus we have obtained formulas for determination of lower frequencies for the shells of revolution
which by their form are close to cylindrical ones, depending on the boundary conditions of rigid fixing,
amplitude of cylinder deviation, rigidity of an elastic filler, external pressure and temperature. The
formula for determination of critical pressure depending on the above-mentioned factors, is also given.
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