ON ONE NEUMANN TYPE PROBLEM FOR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

IVAN KIGURADZE

Dedicated to the Blessed Memory of Professor A. Kharadze

$$
\begin{aligned}
& \text { Abstract. Optimal in a certain sense conditions guaranteeing the existence of a unique solution of } \\
& \text { the differential equation } \\
& \qquad u^{\prime \prime}=p(t) u+q(t) \\
& \text { satisfying the Neumann type boundary conditions } \\
& \qquad u^{\prime}(a)=\ell_{1} u(a)+c_{1}, \quad u^{\prime}(b)=\ell_{2} u(b)+c_{2}
\end{aligned}
$$

are established.

On a finite interval $[a, b]$, we consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+q(t) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u^{\prime}(a)=\ell_{1} u(a)+c_{1}, \quad u^{\prime}(b)=\ell_{2} u(b)+c_{2} \tag{2}
\end{equation*}
$$

where $p, q \in[a, b] \rightarrow \mathbb{R}$ are Lebesgue integrable functions, $c_{i} \in \mathbb{R}(i=1,2)$,

$$
\ell_{1} \geq 0, \quad \ell_{2} \leq 0
$$

For $\ell_{i}=0(i=1,2)$, the boundary conditions (2) are the Neumann ones. In this case, problem $(1),(2)$ is studied in detail (see, e.g., $[1,3-5]$ and the references therein). However, this problem in a general case remains still insufficiently studied. The present paper is devoted to fill up this gap.

Assume

$$
\begin{gathered}
p_{+}(t) \equiv(|p(t)|+p(t)) / 2, \quad p_{-}(t) \equiv(|p(t)|-p(t)) / 2 \\
\mathcal{P}_{+}=\int_{a}^{b} p_{+}(t) d t, \quad \mathcal{P}_{-}=\int_{a}^{b} p_{-}(t) d t
\end{gathered}
$$

Theorem 1. Let $\ell_{1} \geq 0, \ell_{2} \leq 0$,

$$
\begin{gather*}
\ell_{1}-\ell_{2}+\operatorname{mes}\{t \in[a, b]: p(t) \neq 0\}>0 \tag{3}\\
\ell_{1}-\ell_{2}+\mathcal{P}_{+} \leq \mathcal{P}_{-} \tag{4}
\end{gather*}
$$

and there exist a number $\lambda \geq 1$ such that

$$
\begin{equation*}
\int_{a}^{b}[p(t)]_{-}^{\lambda} d t \leq \frac{4}{b-a}\left(\frac{\pi}{b-a}\right)^{2 \lambda-2} \tag{5}
\end{equation*}
$$

Then problem (1), (2) has one and only one solution.
To prove this theorem, we need the following

[^0]Lemma 1. Let $\ell_{1} \geq 0, \ell_{2} \leq 0$, conditions (3), (4) be fulfilled and the homogeneous problem

$$
\begin{gather*}
u^{\prime \prime}=p(t) u \tag{0}\\
u^{\prime}(a)=\ell_{1} u(a), \quad u^{\prime}(b)=\ell_{2} u(b) \tag{0}
\end{gather*}
$$

have a nontrivial solution u. Then there exist points $\left.t_{0} \in\right] a, b\left[, t_{1} \in\left[a, t_{0}\left[\right.\right.\right.$, and $\left.\left.t_{2} \in\right] t_{0}, b\right]$ such that

$$
\begin{equation*}
u\left(t_{0}\right)=0, \quad u^{\prime}\left(t_{1}\right)=0, \quad u^{\prime}\left(t_{2}\right)=0 \tag{6}
\end{equation*}
$$

Proof. In view of $\left(2_{0}\right)$, it is obvious that

$$
\begin{equation*}
u(a) \neq 0, \quad u(b) \neq 0 \tag{7}
\end{equation*}
$$

First, let us show that the solution u in the interval] a, b has at least one zero. Assume the contrary, i.e., $u(t) \neq 0$ for $a<t<b$. Then by virtue of inequality (7), we have

$$
u(t) \neq 0 \text { for } a \leq t \leq b
$$

Consequently,

$$
\begin{equation*}
\frac{u^{\prime \prime}(t)}{u(t)}+p(t)=0 \text { for almost all } t \in[a, b] \tag{8}
\end{equation*}
$$

Integrating this identity from a to b, and taking into account equality $\left(2_{0}\right)$, we find

$$
\int_{a}^{b} \frac{u^{\prime 2}(t)}{u^{2}(t)} d t=\ell_{1}-\ell_{2}+\mathcal{P}_{+}-\mathcal{P}_{-}
$$

whence, owing to conditions (2)-(4) and (8), it follows that $u^{\prime}(t) \equiv 0$,

$$
p(t)=0 \text { for almost all } t \in] a, b], \quad \ell_{1}-\ell_{2}>0
$$

and either $u(a)=0$, or $u(b)=0$. But this contradicts condition (7). The obtained contradiction proves that for some $\left.t_{0} \in\right] a, b[$ the equality

$$
\begin{equation*}
u\left(t_{0}\right)=0 \tag{9}
\end{equation*}
$$

is fulfilled.
Without loss of generality, we can assume that

$$
\begin{equation*}
u^{\prime}\left(t_{0}\right)>0 \tag{10}
\end{equation*}
$$

If $\ell_{1}=0$, then

$$
\begin{equation*}
u^{\prime}\left(t_{1}\right)=0 \tag{11}
\end{equation*}
$$

where $t_{1}=a$. Let us show that if $\ell_{1}>0$, then this equality is fulfilled for some $\left.t_{1} \in\right] a, t_{0}[$. Assume the contrary, i.e.,

$$
u^{\prime}(t)>0 \text { for } a<t \leq t_{0}
$$

Then, in view of (9), we have

$$
u(t)<0 \text { for } a \leq t<t_{0}
$$

But this is impossible since

$$
u(a)=u^{\prime}(a) / \ell_{1} \geq 0
$$

Thus we have proved that for some $t_{1} \in\left[a, t_{0}[\right.$ equality (11) is fulfilled.
Analogously we can show that for some $\left.\left.t_{2} \in\right] t_{0}, b\right]$, the equality

$$
u^{\prime}\left(t_{2}\right)=0
$$

is fulfilled.

Lemma 2 (T. Kiguradze [2]). Let for some $a_{0} \in\left[a, b\left[\right.\right.$ and $\left.\left.b_{0} \in\right] a_{0}, b\right]$ the differential equation $\left(1_{0}\right)$ have a nontrivial solution u satisfying either the boundary conditions

$$
u^{\prime}\left(a_{0}\right)=0, \quad u\left(b_{0}\right)=0,
$$

or the boundary conditions

$$
u\left(a_{0}\right)=0, \quad u^{\prime}\left(b_{0}\right)=0 .
$$

Then

$$
\left(b_{0}-a_{0}\right)^{2 \lambda-1} \int_{a_{0}}^{b_{0}}[p(t)]_{-}^{\lambda} d t>\left(\frac{\pi}{2}\right)^{2 \lambda-2} \text { for } \lambda \geq 1
$$

This lemma is a corollary of Theorem 1.3 from [2].
Proof of Theorem 1. Assume that the theorem is not true. Then, owing to the Fredholmicity of problem (1), (2), the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution u.

According to Lemma 1, there exist points $\left.t_{0} \in\right] a, b\left[, t_{1} \in\left[a, t_{0}\left[\right.\right.\right.$ and $\left.\left.t_{2} \in\right] t_{0}, b\right]$ such that the solution u satisfies equalities (6). Thus by Lemma 2, we have the inequalities

$$
\left(t_{0}-t_{1}\right)^{2 \lambda-1} \int_{t_{1}}^{t_{0}}[p(t)]_{-}^{\lambda} d t>\left(\frac{\pi}{2}\right)^{2 \lambda-2}, \quad\left(t_{2}-t_{0}\right)^{2 \lambda-1} \int_{t_{0}}^{t_{2}}[p(t)]_{-}^{\lambda} d t>\left(\frac{\pi}{2}\right)^{2 \lambda-2} .
$$

Consequently,

$$
\left[\left(t_{0}-t_{1}\right)\left(t_{2}-t_{0}\right)\right]^{2 \lambda-1}\left(\int_{t_{1}}^{t_{0}}[p(t)]_{-}^{\lambda} d t\right)\left(\int_{t_{0}}^{t_{2}}[p(t)]_{-}^{\lambda} d t\right)>\left(\frac{\pi}{2}\right)^{4 \lambda-4}
$$

On the other hand,

$$
\begin{gathered}
\left(t_{0}-t_{1}\right)\left(t_{2}-t_{0}\right) \leq \frac{\left(t_{2}-t_{1}\right)^{2}}{4} \leq \frac{(b-a)^{2}}{4} \\
\left(\int_{t_{1}}^{t_{0}}[p(t)]_{-}^{\lambda} d t\right)\left(\int_{t_{0}}^{t_{2}}[p(t)]_{-}^{\lambda} d t\right) \leq\left(\int_{t_{1}}^{t_{2}}[p(t)]_{-}^{\lambda} d t\right)^{2} / 4 \leq\left(\int_{a}^{b}[p(t)]_{-}^{\lambda} d t\right)^{2} / 4 .
\end{gathered}
$$

Therefore,

$$
\frac{1}{4}\left(\frac{b-a}{2}\right)^{4 \lambda-2}\left(\int_{a}^{b}[p(s)]_{-}^{\lambda} d s\right)^{2}>\left(\frac{\pi}{2}\right)^{4 \lambda-4}
$$

However, this inequality contradicts inequality (5). The obtained contrdiction proves the theorem.
Remark 1. If $\ell_{1} \geq 0$ and $\ell_{2} \leq 0$, then for problem (1), (2) to be uniquely solvable, it is necessary that inequality (3) is fulfilled. Indeed, if the above-mentioned inequality is violated, then $p(t)=0$ for almost all $t \in] a, b\left[, \ell_{1}=\ell_{2}=0\right.$ and, consequently, the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has an infinite set of solutions.

Remark 2. Examples 1 and 2 below show that conditions (4) and (5) in Theorem 1 are unimprovable and they cannot be replaced by the conditions

$$
\begin{align*}
& \ell_{1}-\ell_{2}+\mathcal{P}_{+}<\mathcal{P}_{-}+\varepsilon \tag{12}\\
& \qquad \int_{a}^{b}[p(t)]_{-}^{\lambda} d t<\frac{4}{b-a}\left(\frac{\pi+\varepsilon}{b-a}\right)^{2 \lambda-2} \tag{13}
\end{align*}
$$

no matter how small $\varepsilon>0$ is.

Example 1. Let ε be an arbitrary positive constant,

$$
\begin{equation*}
p(t) \equiv-\left(\frac{2 x}{b-a}\right)^{2}, \quad \ell_{1}=\frac{2 x}{b-a} \operatorname{tg}(x), \quad \ell_{2}=-\frac{2 x}{b-a} \operatorname{tg}(x), \tag{14}
\end{equation*}
$$

and $x \in] 0,1[$ be so small that

$$
\frac{4 x}{b-a} \operatorname{tg}(x)<\frac{4 x^{2}}{b-a}+\varepsilon .
$$

Then $\ell_{1}>0, \ell_{2}<0$,

$$
\begin{gathered}
\ell_{1}-\ell_{2}+\mathcal{P}_{+}=\frac{4 x}{b-a} \operatorname{tg}(x)<\mathcal{P}_{-}+\varepsilon, \\
\int_{a}^{b}[p(t)]_{-}^{\lambda} d t=(b-a)\left(\frac{2 x}{b-a}\right)^{2 \lambda}<(b-a)\left(\frac{2}{b-a}\right)^{2 \lambda}<\frac{4}{b-a}\left(\frac{\pi}{b-a}\right)^{2 \lambda-2} .
\end{gathered}
$$

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (4), instead of which inequality (12) holds. Nevertheless, in this case the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has the nontrivial solution

$$
u(t) \equiv \cos \left(\frac{2 x(t-a)}{b-a}-x\right) .
$$

Example 2. Let $\varepsilon \in] 0, \frac{\pi}{4}[, x \in] 0, \varepsilon[$,

$$
p(t) \equiv-\left(\frac{\pi+x}{b-a}\right)^{2}, \quad \ell_{1}=\frac{\pi+x}{b-a} \operatorname{tg}(x), \quad \ell_{2}=0,
$$

and the number $\lambda \in[1,+\infty[$ be such that

$$
\frac{\pi+x}{b-a}<\left(\frac{2}{b-a}\right)^{\frac{1}{\lambda}}\left(\frac{\pi+\varepsilon}{b-a}\right)^{1-\frac{1}{\lambda}}
$$

Then

$$
\begin{gathered}
\ell_{1}-\ell_{2}+\mathcal{P}_{+}=\frac{\pi+x}{b-a} \operatorname{tg}(x)<\frac{\pi+x}{b-a}<\frac{(\pi+x)^{2}}{b-a}=\mathcal{P}_{-}, \\
\int_{a}^{b}[p(t)]_{-}^{\lambda} d t=(b-a)\left(\frac{\pi+x}{b-a}\right)^{2 \lambda}<\frac{4}{b-a}\left(\frac{\pi+\varepsilon}{b-a}\right)^{2 \lambda-2} .
\end{gathered}
$$

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (5), instead of which inequality (13) holds. On the other hand, the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has the nontrivial solution

$$
u(t) \equiv \cos \left(\frac{(\pi+x)(t-a)}{b-a}-x\right) .
$$

Theorem 2. If $\ell_{1} \geq 0, \ell_{2} \leq 0$, and

$$
\begin{equation*}
\mathcal{P}_{-}<\frac{\ell_{1}-\ell_{2}+\mathcal{P}_{+}}{1+(b-a)\left(\ell_{1}-\ell_{2}+\mathcal{P}_{+}\right)}, \tag{15}
\end{equation*}
$$

then problem (1), (2) has one and only one solution.
Proof. First note that inequality (15) yields the following inequalities

$$
\begin{align*}
& \delta=\ell_{1}-\ell_{2}+\mathcal{P}_{+}-\mathcal{P}_{-}>0, \tag{16}\\
& r=1-(b-a)\left(\mathcal{P}_{-}+\delta^{-1} \mathcal{P}_{-}^{2}\right)>0 . \tag{17}
\end{align*}
$$

Assume that the theorem is not true. Then the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has a nontrivial solution u. Put

$$
x=\min \{|u(t)|: a \leq t \leq b\}, \quad y=\left(\int_{a}^{b} u^{\prime 2}(t) d t\right)^{\frac{1}{2}} .
$$

Then

$$
\begin{equation*}
x^{2} \leq u^{2}(t) \leq x^{2}+2(b-a)^{\frac{1}{2}} y+(b-a) y^{2} \text { for } a \leq t \leq b . \tag{18}
\end{equation*}
$$

On the other hand, in view of inequality (16), it is obvious that

$$
\begin{equation*}
y>0 \tag{19}
\end{equation*}
$$

Integrating both sides of the identity

$$
u^{\prime \prime}(t) u(t)=p(t) u^{2}(t) \text { for almost all } t \in[a, b]
$$

from a to b and taking into account the boundary conditions (2_{0}), we obtain

$$
\ell_{1} u^{2}(a)-\ell_{2} u^{2}(b)+\int_{a}^{b}[p(t)]_{+} u^{2}(t) d t+\int_{a}^{b} u^{\prime 2}(t) d t=\int_{a}^{b}[p(t)]_{-} u^{2}(t) d t
$$

Thus, by inequality (18), it follows that

$$
\left(\ell_{1}-\ell_{2}+\mathcal{P}_{+}\right) x^{2}+y^{2} \leq \mathcal{P}_{-}\left(x^{2}+2(b-a)^{\frac{1}{2}} x y+(b-a) y^{2}\right)
$$

that is,

$$
\left(\delta^{\frac{1}{2}} x-(b-a)^{\frac{1}{2}} \delta^{-\frac{1}{2}} \mathcal{P}-y\right)^{2}+r y^{2} \leq 0
$$

However, this inequality contradicts inequalities (17) and (19). The obtained contradiction proves the theorem.

Remark 3. Condition (15) is unimprovable and it cannot be replaced by the condition

$$
\begin{equation*}
\mathcal{P}_{-}<\frac{\ell_{1}-\ell_{2}+\mathcal{P}_{+}}{1+(b-a)\left(\ell_{1}-\ell_{2}+\mathcal{P}_{+}\right)}+\varepsilon \tag{20}
\end{equation*}
$$

no matter how small is $\varepsilon>0$.
Indeed, if

$$
0<\varepsilon<\frac{4}{b-a}, \quad 0<x<\varepsilon^{\frac{1}{2}}(b-a)^{\frac{1}{2}} / 2
$$

and the function p and numbers $\ell_{i}(i=1,2)$ are defined by equalities (14), then instead of (15) inequality (20) holds, but nevertheless, the homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has the nontrivial solution

$$
u(t) \equiv \cos \left(\frac{2 x(t-a)}{b-a}-x\right)
$$

References

1. I. Kiguradze, The Neumann problem for the second order nonlinear ordinary differential equations at resonance. Funct. Differ. Equ. 16 (2009), no. 2, 353-371.
2. T. Kiguradze, On solvability and unique solvability of two-point singular boundary value problems. Nonlinear Anal. 71 (2009), no. 3-4, 789-798.
3. I. T. Kiguradze, T. I. Kiguradze, Conditions for the well-posedness of nonlocal problems for second-order linear differential equations. (Russian) Differ. Uravn. 47 (2011), no. 10, 1400-1411; translation in Differ. Equ. 47 (2011), no. 10, 1414-1425.
4. I. Kiguradze, N. Partsvania, Some optimal conditions for the solvability and unique solvability of the two-point Neumann problem. Mem. Differ. Equ. Math. Phys. 75 (2018), 115-128.
5. H. Zh. Wang, Y. Li, Neumann boundary value problems for second-order ordinary differential equations across resonance. SIAM J. Control Optim. 33 (1995), no. 5, 1312-1325.
(Received 16.02.2020)
A. Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia

E-mail address: ivane.kiguradze@tsu.ge

[^0]: 2020 Mathematics Subject Classification. 34B05.
 Key words and phrases. Second order linear ordinary differential equation; The Neuman type problem; Unique solvability.

