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WEIGHTED NORM ESTIMATES FOR ONE-SIDED MULTILINEAR INTEGRAL

OPERATORS

GIORGI IMERLISHVILI1 AND ALEXANDER MESKHI2,3

Abstract. In this note one-sided and two-weight inequalities for one-sided multilinear fractional in-
tegrals are derived. One-weight estimates are based on Welland’s type pointwise estimates which are

also presented. Integral operators studied in this note involve one-sided multi(sub)linear fractional

maximal operators, multilinear Riemann-Liouville and Weyl integral transforms.

In this note one– and two-weight norm inequalities for one-sided multilinear fractional integrals are
presented. One-weight estimates are based on Welland’s type pointwise inequalities which are also
derived. Integral operators involve one-sided multisublinear fractional maximal operators, multilinear
Riemann–Liouville and Weyl integral transforms.

Let fi : R→ R, i = 1, . . . ,m, be measurable functions and let
−→
f := (f1, . . . , fm).

Throughout the note, it will be assumed that p is a constant satisfying the condition

1

p
=

m∑
i=1

1

pi
, (1)

where 1 < pi <∞, i = 1, . . . ,m.
Multilinear fractional integrals were introduced and studied in the papers by L. Grafakos [4], C.

Kenig and E. Stein [7], L. Grafakos and N. Kalton [5]. In particular, these works deal with the operator

Bγ(f, g)(x) =

∫
Rn

f(x+ t)g(x− t)
|t|n−γ

dt, x ∈ Rn,

where γ is a constant parameter satisfying the condition 0 < γ < n.
In the above-mentioned papers it was proved that if 1

q = 1
p −

γ
n , where 1

p = 1
p1

+ 1
p2

, then Bγ is

bounded from Lp1 × Lp2 to Lq.
As a tool to understand Bγ , the operator

Iγ(
−→
f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−γ
d−→y ,

where x ∈ Rn, γ is a constant satisfying the condition 0 < γ < nm,
−→
f := (f1, . . . , fm), −→y :=

(y1, . . . , ym), was studied, as well. The corresponding multisublinear maximal operator is given by
(see [11]) the formula

Mγ(
−→
f )(x) = sup

Q3x

m∏
i=1

1

|Q|1− γ
mn

∫
Q

|fi(yi)|dyi,

where the supremum is taken over all cubes Q containing x. It can be immediately checked that

Iγ(
−→
f )(x) ≥ cn,γMγ(

−→
f )(x),

where fi ≥ 0, i = 1, . . . ,m and c is a positive constant, depends only on n and γ. If m = 1, then Iγ
will be denoted by Iγ .
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Let 0 < r < ∞ and let w be a weight function (i.e., w be an a.e. positive function) on Rn. We
denote by Lrw(Rn) the class of all measurable functions f on Rn such that

‖f‖Lrw(Rn) :=

(∫
Rn

|f(x)|rw(x)dx

)1/r

<∞.

In 1974, Muckenhoupt and Wheeden [12] showed that the weighted Sobolev-type inequality

||Iγ(f)||Ls
ws

(Rn) ≤ C||f ||Lr
wr

(Rn),

where 1 < r < ∞, 0 < γ < 1/r, 1/s = 1/r − γ/n, holds if and only if w ∈ Ar,s. A locally integrable
non-negative function (weight) w on Rn is said to belong to Ar,s (1 < r, s <∞) if and only if

sup
Q

(
1

|Q|

∫
Q

ws(x)dx

)1/s(
1

|Q|

∫
Q

w−r
′
(x)dx

)1/r′

<∞, 1

r
+

1

r′
= 1,

where the supremum is taken over all n-dimensional cubes Q with sides, parallel to the coordinate
axes.

We say that a vector of weights −→w = (w1, . . . , wm) satisfies the A−→p ,q condition (−→p = (p1, . . . , pm))
if

sup
Q

(
1

|Q|

∫
Q

( m∏
i=1

wi(x)

)q
dx

)1/q m∏
i=1

(
1

|Q|

∫
Q

wi
−p′i(x)dx

)1/p′i

<∞.

Theorem A ([11]). Suppose that 0 < γ < nm and 1 < p1, . . . , pm < ∞ are exponents with 1/m <
p < n/γ and q is the exponent defined by 1/q = 1/p− γ/n. Then the inequality(∫

Rn

(∣∣Iγ(
−→
f )(x)

∣∣( m∏
i=1

wi(x)

))q
dx

)1/q

≤ C
m∏
i=1

(∫
Rn

(
|fi(x)|wi(x)

)pi
dx

)1/pi

holds for every
−→
f ∈ Lp1(wp11 )× · · · × Lpm(wpmm ) if and only if −→w satisfies the A−→p ,q condition.

In [14], the authors derived the following different type one-weighted result.

Theorem B. Let 0 < γ < nm, suppose that fi ∈ Lpiwpi (Rn) with 1 < pi < mn/γ (i = 1, . . . ,m) and

w ∈
m⋂
i=1

Api,qi i.e.,

m∏
i=1

sup
Q

(
1

|Q|

∫
Q

wqi(x)dx

)1/qi( 1

|Q|

∫
Q

w−p
′
i(x)dx

)1/p′i

<∞,

where 1
qi

= 1
pi
− γ

mn . We set 1
q =

∑m
i=1

1
qi
. Then there is a constant C > 0, independent of fi such

that ∣∣∣∣Iγ(−→f )∣∣∣∣Lq
wq

(Rn) ≤ C
m∏
i=1

∣∣∣∣fi∣∣∣∣Lpi
wpi

(Rn).

The one-weight problem for multisublinear maximal functions and multilinear singular integrals was
studied in [8] under the A−→p condition. Various types of Fefferman–Stein multisublinear inequalities
for fractional maximal functions were established in [13] and [6].

We introduce the following one-sided multisublinear fractional maximal functions:

M−α (
−→
f )(x) = sup

h>0

m∏
i=1

1

h1−α/m

x∫
x−h

|fi(yi)|dyi, 0 < α < m,

M+
α (
−→
f )(x) = sup

h>0

m∏
i=1

1

h1−α/m

x+h∫
x

|fi(yi)|dyi, 0 < α < m,
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which play an important role in the study of multilinear variants of the Riemann-Liouville and Weyl
integral transforms

Rα(
−→
f )(x) =

x∫
−∞

· · ·
x∫

−∞

f1(y1) · · · fm(ym)

((x− y1) + · · ·+ (x− ym))m−α
d−→y , 0 < α < m, x ∈ R,

Wα(
−→
f )(x) =

∞∫
x

· · ·
∞∫
x

f1(y1) · · · fm(ym)

((y1 − x) + · · ·+ (ym − x))m−α
d−→y , 0 < α < m, x ∈ R,

respectively.
If m = 1, then the operators Rα, Wα, M−α and M+

α will be denoted by Rα, Wα, M−α and M+
α ,

respectively.
For the linear one-sided fractional integral operators the one-weight problem was solved in [1] (see

also [2] Ch. 2 for related topics). In particular, the following statement holds.

Theorem C. If 0 ≤ α < 1, 1 < p < 1/α (1/α =∞, if α = 0), 1/q = 1/p− α, 1/p+ 1/p′ = 1. Then[ ∞∫
−∞

|T (f)(x)u(x)|qdx
]1/q

≤ C
[ ∞∫

0

|f(x)u(x)|pdx
]1/p

holds.
(a) for T = M−α or T = Rα (α > 0) if and only if u ∈ A−p,q i.e.,[

1

h

a+h∫
a

uq(x)dx

]1/q[
1

h

a∫
a−h

u−p
′
(x)dx

]1/p′
≤ C

for some constant C and all a, h with a ∈ R, h > 0;
(b) for T = M+

α or T = Wα (α > 0) if and only if u ∈ A+
p,q i.e.[

1

h

a∫
a−h

uq(x)dx

]1/q[
1

h

a+h∫
a

u−p
′
(x)dx

]1/p′
≤ C

for some constant C and all a, h with a ∈ R, h > 0.

For the two-weight theory for linear one-sided fractional integral operators under different types of
conditions on weights we refer to the papers [3,9,10] (see also the monograph [2, ch. 2] and references
cited therein).

Now we formulate the main statements of this note.

Welland-type Inequalities

Theorem 1. Let 0 < α < m and 0 < ε < min{α,m − α}. Then there exists a positive constant C
depending only on m, α and ε such that the following pointwise inequality∣∣∣∣Rα(

−→
f )(x)

∣∣∣∣ ≤ C[(M−α−ε(−→f )(x)

)(
M−α+ε(

−→
f )(x)

)] 1
2

holds for all
−→
f := (f1, . . . , fm), where fi, i = 1, . . . ,m, are bounded functions with a compact support.

The similar theorem can be written for the Weyl integral transform.

Theorem 2. Let 0 < α < m and 0 < ε < min{α,m− α}. Then if
−→
f := (f1, . . . , fm),∣∣∣∣Wα(

−→
f )(x)

∣∣∣∣ ≤ C[(M+
α−ε(
−→
f )(x)

)(
M+

α+ε(
−→
f )(x)

)] 1
2

,

where fi, i = 1, . . . ,m, are bounded functions with compact support and C depends only on m,
α and ε.
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One-weighted Inequalities

Theorem 3. Let 0 < α < m, suppose that fi ∈ Lpiwpi (R) with 1 < pi < m/α (i = 1, . . . ,m) and

w ∈
m⋂
i=1

A−pi,qi i.e.,

m∏
i=1

sup
h>0
x∈R

(
1

h

x+h∫
x

wqi(t)dt

)1/qi( 1

h

x∫
x−h

w−p
′
i(t)dt

)1/p′i

<∞,

where 1
qi

= 1
pi
− α

m . We set 1
q =

m∑
i=1

1
qi

. Then there is a constant C > 0, independent of fi such that

‖Rα(
−→
f )‖Lq

wq
(R) ≤ C

m∏
i=1

‖fi‖Lpi
wpi

(R).

Similar theorem for the Weyl integral transform holds.

Theorem 4. Let 0 < α < m, suppose that fi ∈ Lpiwpi (R) with 1 < pi < m/α (i = 1, . . . ,m) and

w ∈
m⋂
i=1

A+
pi,qi i.e.,

m∏
i=1

sup
h>0
x∈R

(
1

h

x∫
x−h

wqi(t)dt

)1/qi( 1

h

x+h∫
x

w−p
′
i(t)dt

)1/p′i

<∞,

where 1
qi

= 1
pi
− α

m . We set 1
q =

m∑
i=1

1
qi

. Then there is a constant C > 0, independent of fi such that

‖Wα(
−→
f )‖Lq

wq
(R) ≤ C

m∏
i=1

‖fi‖Lpi
wpi

(R).

Fefferman–Stein Two-weighted Inequalities

In the two-weighted setting, we proved the following Fefferman-Stein type inequalities:

Theorem 5. Let 0 < α < m and let 1 < min{p1, . . . , pm} ≤ max{p1, . . . , pm} < min{q,m/α}.
Suppose that p is defined by (1). Let vi be weights on R, i = 1, . . . ,m. We set v(x) =

m∏
i=1

v
p/pi
i (x).

Then the inequalities ∥∥∥(M−α (
−→
f )
)
v1/q

∥∥∥
Lq(R)

≤ C
m∏
i=1

∥∥∥fi(M+
α,pi,qvi

)1/q∥∥∥
Lpi (R)

,

∥∥∥(M+
α (
−→
f )
)
v1/q

∥∥∥
Lq(R)

≤ C
m∏
i=1

∥∥∥fi(M−α,pi,qvi)1/q∥∥∥
Lpi (R)

hold, where C is a constant, independent of fi, i = 1, . . . ,m, and

M+
α,pi,qvi(x) = sup

h>0

(
1

h(1−αpi/m)q/p

x+h∫
x

vi(y)dy

)p/pi
,

M−α,pi,qvi(x) = sup
h>0

(
1

h(1−αpi/m)q/p

x∫
x−h

vi(y)dy

)p/pi
.

Corollary 1. Let α, pi, q and m satisfy the conditions of Theorem 5.
If

m∏
i=1

sup
I

(
1

|I|(1−αpi/m)q/p

∫
I

vi(y)dy

)p/pi
<∞,
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then the following trace-type inequalities hold:
(i) ∥∥∥M−α (

−→
f )
∥∥∥
Lqv(R)

≤ C
m∏
i=1

∥∥∥fi∥∥∥
Lpi (R)

,

∥∥∥M+
α (
−→
f )
∥∥∥
Lqv(R)

≤ C
m∏
i=1

∥∥∥fi‖Lpi (R).
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