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LIMITING DISTRIBUTION OF A SEQUENCE OF FUNCTIONS DEFINED ON

A MARKOV CHAIN

ZURAB KVATADZE1 AND TSIALA KVATADZE2

Abstract. The present article shows the limiting distribution of partial sums of a functional se-
quence defined on a Markov Chain in case the chain is ergodic, with one class of ergodicity and

contains cyclical subclasses.

Limiting behavior of sums of random variables is a classical problem in the probability theory,
which is intensely studied by contemporaneous researchers both for independent variables and for
the case of certain relationships between the terms of sequences. There exists a rich theory of sums
of independent random variables (see, e.g., [5, 12, 13]). The problem of extending this case to the
sums of dependent random variables introduces naturally the Markovian dependence, which in turn
represents particular type of a weak dependency. The limiting theorems by Rosenblatt, Ibragimov
and others concerning weakly dependent sequences are usually stated in terms of σ-algebras generated
by asymptotically separable intervals of the sequence. The process of their investigation involves
the so-called S. Bernstein’s “sectioning” method based on the weakening effect taking place during
separation of groups of dependent variables (see [6]). Contemporaneous situation in the theory of
sums of dependent random variables is expressed by using limiting theorems for martingales and
semi-martingales (see [7]).

Different authors considered sums of random variables, whose joint distribution is determined by
the controlling sequence of random variables (see [2, 3, 9]). An important part of these comprise
problems regarding the sums of variables is defined directly on a chain (see [1, 3, 8, 11]). This paper
considers the limiting theorem for functions defined on a stationary, finite, ergodic Markov chain.

We consider stationary, homogeneous, finite {ξi}i≥1 ergodic Marcov chain with one class of ergod-

icity (might containing cyclic subclasses) defined on a probability space (Ω, F, P ). The chains have a
set of states Ξ = {b1, b2, . . . , br}, a matrix of transient probabilities P = ‖Pαβ‖α,β=1,r and a vector

of limiting distribution of stationary probabilities π = (π1, π2, . . . , πr) representing a solution of the
following matrix equation:

π = πP.

We suggest that the initial distribution is stationary, the distribution

P (ξ1 = bα) = πα, α = 1, r,

is based on stationarity means and the chain has the same distribution for each step

P (ξn = bα) = πα, α = 1, r, n = 1, 2, . . . .

Next, we introduce the Cezaro definition for convergence of the sequence and, relying on that definition,
we establish all types of convergence when the chain has cyclical subclasses.

The sequence {tn}n≥1 is Cezaro convergent to t, and we write

( lim
n→∞

tn)c = t,

if the means of the first n terms of the sequence converge to t:

lim
n→∞

Tn = t,
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where Tn = 1
n

n−1∑
i=1

ti.

Cezaro convergence may be considered upon analyzing the convergence of series.

The series
∞∑
k=1

ak is said to be Cezaro convergent and the sum be equal to a, if a is the Cezaro limit

of the sequence of the partial sum Sn =
n∑
k=1

ak,

lim
n→∞

(Sn)c = a,

which implies that there exists the limit of the sequence ãn,

lim
n→∞

ãn = a,

where ãn = 1
n

n∑
k=0

(n−k)ak and, at the same time, this a represents the Cezaro sum of the series under

consideration which can be written as ( n∑
k=1

ak

)
c

= a.

We denote by Π the limit (see [8])

lim
n→∞

(Pn)c = Π =


π1, π2, . . . , πr
π1, π2, . . . , πr
. . . . . . . . . . . . . . . . . . .
π1, π2, . . . , πr.


It is obvious that

Π = ‖παβ‖α,β=1,r ; παβ = πβ ; α, β = 1, r,

lim
n→∞

(
pnαβ
)
c

= πβ , α, β = 1, r.

Let the fundamental matrix of the chain be

Z = ‖zαβ‖α,β=1,r ,

Z = [I − (P −Π)]−1 = I +

( ∞∑
j=1

(P j −Π)

)
c

= ‖zαβ‖α,β=1,r ,

where I is the identity matrix of r × r dimensions. For the regular chain, the convergence of series is
implied to be a standard convergence.

Let us consider a vector function defined on the Ξ space

f(ξi) : Ξ→ Rk,

f(ξi) = (f1(ξi), f2(ξi), . . . , fk(ξi))

and introduce the notation:

f(bα) = f(α) = (f1(α), f2(α), . . . , fk(α)), α = 1, r,

fi(α) = fi(bα), i = 1, k, α = 1, r.

Theorem 1. When {ξi}i≥1 is the above-mentioned Markov chain and f = (f1, f2, . . . , fk) is the

k-dimensional vector function from Ξ to Rk, then if the limiting covariance matrix of the sum is

Un =
1√
n

n∑
j=1

[f(ξj)− Ef(ξj)]

Tf =
∥∥tfi,j∥∥i,j=1,k

,

tfi,j =

r∑
α,β

(παzαβ + πβzβα − παπβ − παδαβ)fi(α)fi(β) i, j = 1, k (1)
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(where δαβ is the Kronecker symbol ) is positively defined, as n→∞, there is a convergence

PUn
W−→ ΦTf .

The case for k = 1, when lim
n→∞

D(Un) > 0 (where D(·) denotes variance), is a famous fact (see [4,10])

(when lim
n→∞

D(Un) = 0, then Un converges to zero in probability) and Tf can be written explicitly as

a sum of components of the chain (see [8])

t = lim
n→∞

D(Un) =

r∑
α,β=1

(παzαβ + πβzβα − παπβ − παδαβ)f(α)f(β).

Proof. Using the Kramer-Wold method, we can derive the multidimensional case. Using the chain
characteristic, we derive a matrix representation of the matrix Tf . Let us introduce a k× r matrix F ,

F =


f1(b1), f1(b2), . . . , f1(br)
f2(b1), f2(b2), . . . , f2(br)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fk(b1), fk(b2), . . . , fk(br)

 =


f1(1), f1(2), . . . , f1(r)
f2(1), f2(2), . . . , f2(r)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
fk(1), fk(2), . . . , fk(r)


= ‖fij‖ i = 1, r

j = 1, r

, fij = fi(bj)

and denote

V0 =cov[f(ξ1)] = E{[f(ξ1)− Ef(ξ1)]T [f(ξ1)− Ef(ξ1)]},
Vj =E{[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]}, j > 0,

V−j =E{[f(ξ1+j)− Ef(ξ1+j)]
T [f(ξ1)− Ef(ξ1)]}, j > 0.

Based on the stationarity of the sequence {ξi}i≥1, as n→∞, we have

E[UTn , Un] =
1

n

[
nV0 +

n−1∑
j=1

(n− j)(Vj + V−j)

]

= V0 +
1

n

n∑
j=1

(n− j)Vj +
1

n

n∑
j=1

(n− j)V−j
n→∞−→ V0 +

( ∞∑
j=1

Vj

)
c

+

( ∞∑
j=1

V−j

)
c

, (2)

where ()c denotes the Cezaro convergence of the sum in the parenthesis. It is obvious that if the chain
is regular, this convergence is equivalent to the standard case of convergence of partial sums.

Thus, Tf represents the limiting covariance of the sum Un and we have

Tf = V0 +

( ∞∑
j=1

Vj

)
c

+

( ∞∑
j=1

V−j

)
c

. (3)

In the right-hand side, the convergence of matrix series is equivalent to that of a regular chain by
virtue of a common definition of the convergence.

We now express V0 and Vj matrices based on the components of the chain

Ef(ξ1) =

r∑
α=1

παf(α) = (

r∑
α=1

παf1(α), . . . ,

r∑
α=1

παfk(α))

= (π1, π2, . . . , πr)


f1(1), f2(1), . . . , fk(1)
f1(2), f2(2), . . . , fk(2)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
f1(r), f2(r), . . . , fk(r)

 = πFT ;
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E{f(ξ1)T f(ξ1)} = E



f1(ξ1)
f2(ξ1)

...
fk(ξ1)

 (f1(ξ1), f2(ξ1), . . . , fk(ξ1))


= ‖Efi(ξ1)fj(ξ1)‖i,j=1,k =

∥∥∥∥ r∑
α=1

παfi(α)fj(α)

∥∥∥∥
i,j=1,k

=



r∑
α=1

παf1(α)f1(α),
r∑

α=1
παf1(α)f2(α), . . . ,

r∑
α=1

παf1(α)fk(α)

r∑
α=1

παf2(α)f1(α),
r∑

α=1
παf2(α)f2(α), . . . ,

r∑
α=1

παf2(α)fk(α)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r∑

α=1
παfk(α)f1(α),

r∑
α=1

παfk(α)f2(α), . . . ,
r∑

α=1
παfk(α)fk(α)


= FΠdgF

T ;

E{f(ξ1)T f(ξ1+j)} = ‖Efi(ξ1)fs(ξ1+j)‖i,s=1,k

=



r∑
α=1

παf1(α)
r∑

β=1

P jαβf1(β),
r∑

α=1
παf1(α)

r∑
β=1

P jαβf2(β), . . . ,
r∑

α=1
παf1(α)

r∑
β=1

P jαβfk(β)

r∑
α=1

παf2(α)
r∑

β=1

P jαβf1(β),
r∑

α=1
παf2(α)

r∑
β=1

P jαβf2(β), . . . ,
r∑

α=1
παf2(α)

r∑
β=1

P jαβfk(β)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r∑

α=1
παfk(α)

r∑
β=1

P jαβf1(β),
r∑

α=1
παfk(α)

r∑
β=1

P jαβf2(β), · · · ,
r∑

α=1
παfk(α)

r∑
β=1

P jαβfk(β)



=

∥∥∥∥ r∑
α,β=1

παfi(α)P jαβfs(β)

∥∥∥∥
i,s=1,k

= FΠdgP
jFT ,

where (·)dg denotes the matrix obtained by replacing each element of the matrix in the parenthesis
by zero, except ones located on the main diagonal.

The following equality

πTπ = ΠdgΠ

holds and the derived equations will be taken into account in the expression for Vj . When j = 0, we
obtain

V0 = E
{
fT (ξ1)f(ξ1)

}
− E

{
fT (ξ1)

}
E {f(ξ1)}

= FΠdgF
T − (πFT )TπFT = FΠdgF

T − FπTπFT

= FΠdgF
T − FΠdgΠF

T = F (Πdg −ΠdgΠ)FT .

By the stationarity E {f(ξ1+j)} = E {f(ξ1)}, when j > 0, the equalities

Vj = E
{
fT (ξ1)f(ξ1+j)

}
− E

{
fT (ξ1)

}
E {f(ξ1+j)}

= E
{
fT (ξ1)f(ξ1+j)

}
− E

{
fT (ξ1)

}
E {f(ξ1)}

= FΠdgP
jFT − (πFT )TπFT = FΠdgP

jFT − FπTπFT

= FΠdgP
jFT − FΠdgΠF

T = FΠdg(P
j −Π)FT

are true.
Thus, the sum in the right-hand side of (2) can be expressed as( ∞∑

j=1

Vj

)
c

=

( ∞∑
j=1

FΠdg(P
j −Π)FT

)
c

= FΠdg

( ∞∑
j=1

(P j −Π)

)
c

FT .
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By the property of the fundamental matrix, we have( ∞∑
j=1

(P j −Π)

)
c

= Z − I.

Thus we get the following equation:( ∞∑
j=1

Vj

)
c

= FΠdg(Z − I)FT = F (ΠdgZ −Πdg)F
T . (4)

Like equation (4), the following sum can be computed by using stationarity of the chain( ∞∑
j=1

V−j

)
c

=

( ∞∑
j=1

E{[f(ξ1+j)− Ef(ξ1+j)]
T [f(ξ1)− Ef(ξ1)]}

)
c

=

( ∞∑
j=1

E({[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]})T
)
c

=

[( ∞∑
j=1

E{[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]}
)
c

]T
=

[( ∞∑
j=1

Vj

)
c

]T

=

[
F

(
ΠdgZ −Πdg

)
c

FT
]T

= F ((ΠdgZ)T −Πdg)cF
T .

Substituting the obtained results into (3) and using characteristic matrices corresponding to the
chain, we get the following matrix expression for Tf,

Tf = F [ΠdgZ + (ΠdgZ)T −ΠdgΠ−Πdg]F
T .

Obviously, the tfi,j elements of the matrix Tf can be expressed by virtue of (1).
Next, we introduce a characteristic of time moments quantity elapsed by the chain at the first n

steps in different bα, α = 1, r positions.
Let νn(α) = νn(bα), (α = 1, r) be a random variable representing the amount of time intervals

during the first n steps when the chain is in position bα, (α = 1, r) on a fixed trajectory ξ̄1n =
(ξ1, ξ2, . . . , ξn) . Then it is obvious that the equation

νn(1) + νn(2) + · · ·+ νn(r) = n

holds.
The quantity νn(α)

n is a part of time n during which the chain at the first n steps spends in
condition bα. �

Theorem 2. The νn(α), (α = 1, r), random variable is measurable with respect to the sigma algebra
induced by dividing the Ω space during fixation of a ξ̄1n trajectory.

Proof. We show that a discrete random variable νn(α) attains constant values on sets generated by
partitioning the Ω space during fixation of a ξ̄1n trajectory.

Conditions set of the chain is Ξ = {b1, b2, . . . , br}. On a fixed ξ̄1n trajectory, possible values will be
the Cartesian product Ξn = Ξ× Ξ× · · · × Ξ. Let us show how the Ω space will be partitioned.

Introduce the following sets:

D
1,2,...,n,m1,m2,...,mn=

{
ω
∣∣ξ1=bm1

,ξ2=bm2
,...,ξn=bmn

}, bmi ∈ Ξ, i = 1, r.

Fixation of a ξ̄1n trajectory will result in a partition of the Ω space,

D̄ = {D1,2,...,n,m1,m2,...,mn |mi ∈ {1, 2, . . . , r}} .
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It is clear that

Dik = {ω |ξi = bk } =
∑

mα ∈ Ξ\ {bi}
α 6= i

{D1,2,...,n,m1,m2,...,mi−1,k,mi+1,...,mn},

ξi =

r∑
k=1

bkI(Dik).

To derive analytical expression for the sum νn(i), consider the sets

Ain,j1,j2,...,jk =

ω
∣∣∣∣∣∣
j1 < j2 < · · · < jk
ξα = bi α ∈ {j1, . . . , jk}
ξα ∈ Ξ\ {bi} α /∈ {j1, . . . , jk} , α = 1, n


=

∑
j1 < j2 < · · · < jk
mj1 = mj2 = · · · = mjk = bi
mjα ∈ Ξ\ {bi} α = k + 1.n

Dj1,...,jn,mj1 ,...,mjn
;

Ain,k = {νn(bi) = k} =
∑

j1 < j2 < · · · < jk
{j1, j2, . . . , jk} ⊂ {1, 2, . . . , n}

Ain,j1,...,jk

=
∑

j1 < j2 < · · · < jk
{j1, j2, . . . , jk} ⊂ {1, 2, . . . , n}

∑
j1 < j2 < · · · < jk
mj1 = mj2 = · · · = mjk = bi
mjα ∈ Ξ\ {bi} , α = k + 1, n

Dj1,...,jn,mj1 ,...,mjn
.

Clearly, the Ain,j1,j2,...,jk type sets are (r − 1)n−k in total, while there are Ckn · (r − 1)n−k

Ain,k type sets. �

Relying on the above-said, we easily find that

νn(i) = νn(bi) =

n∑
k=0

kIAin,k .

Thus, the measurability of a νn(i) random variable with respect to partition D̄ is shown. Clearly, this
implies that the variable is measurable with respect to the sigma algebra generated by that partition.
Note finally that any function f(νn(i)) is also measurable, where f(◦) is a continuous function.

References

1. G. YU. Aleshkyavichus, On the central limit theorem for sums of random variables given on a Markov chain.
(Russian) Lithuanian Mathematical Collected Works, Vilnius 6 (1966), no. 1, 15–22.

2. I. V. Bokuchava, Limit theorems for conditionally independent sequences. (Russian) Theory of Probability and its
Application. Moskva 29 (1984) no. 1, 192–193.

3. I. V. Bokuchava, Z. Kvatadze, T. Shervashidze, On limit theorems for random vectors controlled by a Markov chain.
Probability theory and mathematical statistics, Vilnius 1 (1985), 231–250, VNU Sci. Press, Utrecht, 1987.

4. J. L. Doob, Stochastic Processes. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1990.

5. B. V. Gnedenko, A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Gostekhizdat,
Moscow-Leningrad, 1949.

6. I. A. Ibragimov, YU. V. Linnik, Independent and Stationarily Connected Variables. (Russian) Nauka, Moscow,
1965.

7. J. Jakod, A. N. Shiryaev, Limit Theorems for Stochastic Processes. (Russian) Nauka, Moscow, 1994.
8. J. G. Kemeny, J. L. Snell, Finite Markov chains. The university series in undergraduate mathematics. Springer-

Verlag, 1963.



LIMITING DISTRIBUTION OF A SEQUENCE OF FUNCTIONS DEFINED ON A MARKOV CHAIN 205
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