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CURIOSITIES REGARDING WAITING TIMES IN PÓLYA’S URN MODEL

NORBERT HENZE1 AND MARK HOLMES2

Abstract. Consider an urn, initially containing b black and w white balls. Select a ball at random

and observe its colour. If it is black, stop. Otherwise, return the white ball together with another
white ball to the urn. Continue selecting at random, each time adding a white ball, until a black ball

is selected. Let Tb,w denote the number of draws until this happens. Surprisingly, the expectation

of Tb,w is infinite for the “fair” initial scenario b = w = 1, but finite if b = 2 and w = 109. In fact,

E[Tb,w] is finite if and only if b ≥ 2, and the variance of Tb,w is finite if and only if b ≥ 3, regardless

of the number w of white balls. These observations extend to higher moments.

1. Introduction

The classical Pólya–Eggenburger urn is an elegant model in probability theory that is often pre-
sented in a first course on martingales (typically in a graduate probability theory course). In its
simplest case, the model can be described as follows. Starting with b black and w white balls in an
urn, choose a ball uniformly at random from the urn, observe the colour, return the chosen ball to
the urn together with another ball of the same colour, then repeat. The number Bn (say) of times a
black ball is drawn after n drawings has the well-known Pólya distribution

P(Bn = k) =

(
n

k

)∏k−1
i=0 (b+ i)

∏n−k
j=0 (w + j)∏n−1

`=0 (b+ w + `)
, k = 0, . . . , n, (1)

where an empty product is defined to be one, see, e.g., [4, p. 177]. It is easy to see that the proportion
Xn = (b + Bn)/(b + w + n) of black balls at time n is a bounded martingale (with respect to the
natural filtration), with B0 = b/(b + w), and thus Xn converges almost surely to a random variable
X. Here, X has a beta β(b, w) distribution, see, e.g., [7, Theorem 2.1]. In the special case b = w = 1,
equation (1) reduces to the discrete uniform distribution P(Bn = k) = 1/(n+ 1), and the limit X has
a standard uniform distribution.

For later purposes, it will be convenient to regard the distribution of Bn as a special case of a
Beta-binomial distribution, see, e.g., [5, p. 242]. The latter distribution originates as follows: Let P
have a Beta β(u, v)-distribution, where u, v > 0. Suppose that, conditionally on P = p, the random
variable M has a binomial distribution Bin(n, p). Then, for k ∈ {0, 1, . . . , n}, we have

P(M = k) =

1∫
0

(
n

k

)
pk(1− p)n−k · 1

B(u, v)
pu−1(1− p)v−1 dp (2)

=

(
n

k

)
B(u+ k, v + n− k)

B(u, v)
, (3)

where B(·, ·) is the Beta function. The distribution of M is called the Beta-binomial distribution with
parameters n, u and v. By using the relation B(u, v) = Γ(u)Γ(v)/Γ(u+ v), where Γ(·) is the Gamma
function, we see that the distribution of Bn is obtained from (3) by putting u = b and w = v.

Inverse Pólya distributions originate if one asks for the number of drawings needed to observe a
specified number of black balls under the above or more general replacement schedules, see, e.g., [4,
p. 192]. Paper [3] considers waiting times for the first occurrence of a specified pattern in Pólya’s urn
scheme. A special case is the waiting time until the first occurrence of a black ball, which we will
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focus on in this note. For the recent work on the inverse Pólya distributions, see, e.g., [1, 2], and [6].
In what follows, we consider some curiosities concerning the (random) time until we first draw a black
ball, denoted by Tw,b, that evidently have not been highlighted before.

2. One Black Ball

We first consider the standard “fair” case where the urn contains one black and one white ball at
the outset. We then have

P(T1,1 > n) =
1

2
· 2

3
· · · · · n− 1

n
· n

n+ 1
=

1

n+ 1

and thus P(T1,1 < ∞) = 1. Hence, the black ball will be drawn with probability one in finite time.
However, since

∑∞
n=0 P(T1,1 > n) =∞, the expectation of T1,1 is infinite.

In view of P(T1,1 = j) = P(T1,1 > j − 1) − P(T1,1 > j) = 1/(j(j + 1)), notice that the conditional
expectation of T1,1, given T1,1 ≤ k, is

E[T1,1|T1,1 ≤ k] =
1

P(T1,1 ≤ k)

k∑
j=1

j P(T1,1 = j) =
(k + 1)

k

k∑
j=1

1

j + 1
.

Using
∑n

j=1
1
j = log n + γ + o(1), where γ = 0.57721 . . . is the Euler–Mascheroni constant, it follows

that

E[T1,1|T1,1 ≤ k] = log k + γ − 1 + o(1), as k →∞.
In other words, given that you have selected a black ball by time k, on average you first picked one at
a relatively early time of log(k). This is intuitively reasonable because it is much easier to choose a
black ball for the first time at an early time, before white balls have been reinforced too much. Indeed,
for large k, we find that P(T1,1 > k/2|T1,1 ≤ k) is of order 1/k.

We incidentally note that the probability that T1,1 takes an odd value equals log 2, since

∞∑
`=0

P(T1,1 = 2`+ 1) =

∞∑
`=0

1

(2`+ 1)(2`+ 2)
=

∞∑
`=0

(
1

2`+ 1
− 1

2`+ 2

)

=

∞∑
j=1

(−1)j−1

j
.

Continue to set b = 1, but now allow w to be arbitrarily large. Since

P(T1,w > n) =
w

w + 1
· w + 1

w + 2
· · · · · w + n− 2

w + n− 1
· w + n− 1

w + n
=

w

w + n
,

it follows that P(T1,w < ∞) = 1, regardless of the number of white balls. If, for example, w = 109,
drawing the only black ball seems to be like finding a needle in a haystack, but you have time beyond
all limits, and the situation of having one black and 109 white balls in the urn could have happended
in the course of the stochastic process involving over time under the initial scenario b = w = 1 after
109 − 1 draws.

3. A Second Black Ball Works Wonders

Suppose now that at the beginning there are b = 2 black and w white balls in the urn. We now
have

P(T2,w > n) =
w

w + 2
· w + 1

w + 3
· w + 2

w + 4
· · · · · w + n− 1

w + n+ 1
=

w(w + 1)

(w + n)(w + n+ 1)
.

Since
∑∞

n=1 P(T2,w > n) <∞, we do not only have P(T2,w <∞) = 1, but, in addition, the expectation
of T2,w is finite, irrespective of the number of white balls. More specifically, we have

E[T2,w] =

∞∑
k=0

P(T2,w > k) = w(w + 1)

∞∑
k=0

1

(w + k)(w + k + 1)
= w + 1.

Here, the last equality follows because the series is telescoping.
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Remark 3.1. Starting from b = 1, w = 1, we may continue observing Pólya’s urn after T1,1 until

the time T
(2)
1,1 at which we draw a second black ball. At the time T1,1 that we first draw a black

ball, we return it and add another, so there are then 2 black balls and T1,1 white balls. Since

E[T
(2)
1,1 −T1,1 |T1,1 = w] = E[T2,w] = w+1, we know that this expectation is finite for every w. We can

interpret this as E[T
(2)
1,1 −T1,1 |T1,1] = T1,1 +1, or “given the value of T1,1, the expected additional time

required to draw a second black ball is finite” (a.s.). Nevertheless, E[T
(2)
1,1 − T1,1] = E[T1,1 + 1] =∞.

4. The General Case

We now assume that the initial configuration is b black and w white balls. The event that each of
the first n draws yields a white ball has probability

P(Tb,w > n) =

n−1∏
i=0

w + i

b+ w + i

=
(b+ w − 1)!

(w − 1)!
· (w − 1 + n)!

(b+ w − 1 + n)!
, n ≥ 1.

The first ratio does not depend on n, and the second is equal to

1

(w + n) · · · · · (b+ w − 1 + n)
. (4)

It immediately follows that P(Tb,w < ∞) = 1, but we can infer more from (4). To this end, notice
that this expression is bounded from below by (b+w+ n)−b and from above by n−b, which, for each
integer r, shows that

E
[
T r
b,w

]
=

∞∑
n=1

nrP(Tb,w = n)

=

∞∑
n=1

nr
(b+ w − 1)!

(w − 1)!

(w + n− 2)!

(b+ w + n− 2)!

b

b+ w + n− 1

=

∞∑
n=1

nrO(n−(b+1)).

Hence, E
[
T r
b,w

]
<∞ if and only if b > r. Surprisingly, this moment condition does not depend on

the number w of white balls. In particular, the variance of Tb,w exists if and only if there are at least
3 black balls in the urn at the beginning. In the case b = 3, straightforward calculations involving
telescoping series yield E[T3,w] = (w + 2)/2, and, using the fact that E[L2] =

∑∞
n=0(2n+ 1)P(L > n)

for a nonnegative integer-valued random variable L, we have E[T 2
3,w] = (w + 2)(2w + 1)/2, and thus

the variance is V(T3,w) = 3w(w + 2)/4.

Remark 4.1. In [8], one finds the general formula

E[Tb,w] =
b+ w − 1

b− 1
(5)

if b ≥ 2, which was obtained from a hypergeometric series. As remarked in [9], (5) follows readily from
(2), since, conditionally on P = p, drawings are according to an independent and identically distributed
Bernoulli sequence with probability of success given by p, where success means drawing a black ball.
Since, conditionally on P = p, the distribution of Tb,w is geometric, we have E[Tb,w|P = p] = 1/p and
thus

E[Tb,w] =

1∫
0

E[Tb,w|P = p]
1

B(b, w)
pb−1(1− p)w−1 dp =

B(b− 1, w)

B(b, w)

=
b+ w − 1

b− 1
.
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From (2) and the fact that V(Tb,w) = E[V(Tb,w|P )] + V(E[Tb,w|P ]), we can also obtain a general
formula for the variance of Tb,w if b ≥ 3. Since the conditional variance of Tb,w, given P = p, is the
variance of a geometric distribution with parameter p and thus equal to (1− p)/p2, a straightforward
algebra gives

E[V(Tb,w|P )] =

1∫
0

1− p
p2

1

B(b, w)
pb−1(1− p)w−1 dp =

w(b+ w − 1)

(b− 1)(b− 2)
.

Furthermore, E[Tb,w|P ] = 1/P , and thus some algebra yields

V(E[Tb,w|P ]) =
w(b+ w − 1)

(b− 1)2(b− 2)
.

Summing up, we obtain

V(Tb,w) =
bw(b+ w − 1)

(b− 1)2(b− 2)
.

Notice that, in view of E[T `
b,w] = E

[
E[T `

b,w|P ]
]
, one can fairly easily even obtain closed-form expressions

for higher moments of Tb,w.

5. A General Replacement Scheme

Suppose now that if a white ball shows up at time k, we return this ball and additionally ak white
balls, where ak ≥ 1. Notice that this flexible model includes the special case ak = 1 that has been
considered so far, but also the case that a constant number larger than one of white balls is returned to
the urn together with the chosen ball. The following result gives a necessary and sufficient condition
on the sequence (ak) for the probability that a black ball shows up at a finite time.

Lemma 5.1. Let sk = a1 + · · ·+ ak, k ≥ 1. We then have

P(Tb,w <∞) = 1⇐⇒
∞∑
j=1

1

sj
=∞.

Proof. Putting s0 = 0, we have

P(Tb,w > n) =

n−1∏
j=0

w + sj
b+ w + sj

.

Using the inequalities 1− 1/t ≤ log t ≤ t− 1, t > 0, straightforward calculations yield

−b
n−1∑
j=0

1

w + sj
≤ logP(Tb,w > n) ≤ −b

n−1∑
j=0

1

b+ w + sj
.

Hence logP(Tb,w > n)→ −∞ as n→∞ if and only if the series
∑∞

j=0 1/sj diverges, and the assertion
follows. �

From this result it follows that P(Tb,w < ∞) = 1 even if b = 1, w is arbitrarily large, and a fixed
huge number of additional white balls is added to the urn after each draw of a white ball, but not if
at the kth time we select a white ball we return it and add k extra white balls, for example.

In the case where we add a constant c additional number of white balls to the urn whenever we
select a white ball, we can also consider the expected time to select a black ball.

Lemma 5.2. In the case where we start with w white balls and b black balls in the urn, and add c ≥ 1
additional white balls whenever white is selected from the urn, we find that E[Tb,w] <∞ if and only if
b > c.
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Proof. In this context we can write

P(Tb,w > n) =

n−1∏
j=0

w
c + j

b
c + w

c + j

=
w
c

b
c + w

c

×
w
c + 1

b
c + w

c + 1
× · · · ×

w
c + n− 2

b
c + w

c + n− 2
×

w
c + n− 1

b
c + w

c + n− 1
.

If b/c ≤ 1, then the numerator of the j + 1st term in the product is greater than or equal to the
denominator of the jth term and so this product is at least

w
c

w
c + b

c + n− 1
,

which is not summable in n, so the expectation of Tb,n is infinite.
If b/c ≥ 2, then the numerator of the j+2nd term in the product is no larger than the denominator

of the jth term, so for some constant a we have P(Tb,w > n) ≤ an−2 for all n sufficiently large. This
is summable in n, so the expectation is finite when b/c ≥ 2.

The case b/c ∈ (1, 2) can be handled by a slightly more elaborate (but standard) approach, which
we now quickly present. We can write

P(Tb,w > n) =

n−1∏
j=0

(
1−

b
c

b
c + w

c + j

)
≤ exp

{
− b

c

n−1∑
j=0

1
b
c + w

c + j

}
,

where we have used 1 − x ≤ e−x and that the product of exponentials is the exponential of a sum.

For n ≥ 1, the sum is at least
∫ n−1

0
1

d+xdx = log(d+ n− 1)− log(d), where d = (b+ w)/c > 0. Thus
for n ≥ 1,

P(Tb,w > n) ≤ db/c exp
{

log
(

(n− 1 + d)−b/c
)}

=
db/c

(n− 1 + d)b/c
.

Since b/c > 1, this is summable in n. �
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