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ON THE TESTING HYPOTHESIS OF EQUALITY OF TWO BERNOULLI

REGRESSION FUNCTIONS

PETRE BABILUA AND ELIZBAR NADARAYA

Abstract. We establish the limit distribution of the square-integrable deviation of two nonpara-
metric kernel-type estimations for the Bernoulli regression functions. The criterion of testing the

hypothesis of two Bernoulli regression functions is constructed. The question as to its consistency

is studied. The power asymptotics of the constructed criterion is also studied for certain types of
close alternatives.

Assume that random variables Y (i), i = 1, 2, take two values: 1 and 0 with probabilities pi (“suc-
cess”) and 1 − pi (“failure”), i = 1, 2, respectively. Assume that the probability of “success” pi is a
function of an independent variable x ∈ [0, 1], i.e., pi = pi(x) = P{Y (i) = 1 | x} (see [2, 3, 8]). Let tj ,
j = 1, . . . , n, be points of a partition of the segment [0, 1]:

tj =
2j − 1

2n
, j = 1, . . . , n.

Let Y
(1)
i and Y

(2)
i , i = 1, . . . , n, be mutually independent Bernoulli random variables with

P{Y (k)
i = 1 | ti} = pk(ti) and P{Y (k)

i = 0 | ti} = 1− pk(ti),

i = 1, . . . , n, k = 1, 2.

Using the samples Y
(1)
1 , . . . , Y

(1)
n and Y

(2)
1 , . . . , Y

(2)
n , it is required to test the hypothesis

H0 : p1(x) = p2(x) = p(x), x ∈ [0, 1],

against a sequence of “close” alternatives:

H1n : p1(x) = p(x), p2(x) = p(x) + αnu(x) + o(αn),

where αn tends to 0 in a suitable way, u(x) 6= 0, x ∈ [0, 1], and the third term is o(αn) uniformly with
respect to x ∈ [0, 1].

The problem of comparison of two Bernoulli regression functions may appear in some applications,
e.g., in the quantum bioanalyses carried out in pharmacology. In this case, x is a dose of medicine
and p(x) is the probability of efficiency of the dose x [3, 6].

To test the hypothesis H0 we use the statistic:

Tn =
1

2
nbn

∫
Ωn(τ)

[
p̂1n(x)− p̂2n(x)

]2
p2
n(x) dx

=
1

2
nbn

∫
Ωn(τ)

[
p1n(x)− p2n(x)

]2
dx,

Ωn(τ) = [τbn, 1− τbn], τ > 0,
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where

p̂in(x) = pin(x)p−1
n (x),

pin(x) = (nbn)−1
n∑
j=1

K
(x− tj

bn

)
Y

(i)
j , i = 1, 2,

pn(x) = (nbn)−1
n∑
j=1

K
(x− tj

bn

)
,

K(x) is a distribution density, bn → 0 is a sequence of positive numbers, and p̂in(x) is a kernel estimate
for the regression function [6, 9].

We assume that the kernel K(x) ≥ 0 is chosen so that it is a function with bounded variation
satisfying the following conditions: K(x) = K(−x), K(x) = 0 for |x| ≥ τ > 0 and∫

K(x) dx = 1,

By H(τ), we denote the class of such functions.
We also introduce the following notation:

T (1)
n =

1

2
nbn

∫
Ωn(τ)

[
p̃1n(x)− p̃2n(x)

]2
dx,

p̃in(x) = pin(x)−Epin(x), i = 1, 2.

It is clear that

T (1)
n = Hn +

1

2nbn

n∑
i=1

ε2
iQii, Hn =

1

nbn

∑
1≤i<j≤n

εiεjQij ,

εi = ε1i − ε2i, εki = Y
(k)
i − pk(ti), k = 1, 2, i = 1, . . . , n,

Qij = ψn(ti, tj), ψn(u, v) =

∫
Ωn(τ)

K
(x− u

bn

)
K
(x− v

bn

)
dx.

It is easy to see that

σ−1
n (T (1)

n −∆n) =

n∑
k=1

ξ
(n)
k +

1

2nbnσn

n∑
i=1

(ε2
i −Eε2

i )Qii,

∆n = ET (1)
n , σ2

n = V arHn = (nbn)−2
n∑
k=2

dk

k−1∑
i=1

diQ
2
ik,

di = d(ti) = V ar εi, i = 1, . . . , n,

ξ
(n)
k =

k−1∑
i=1

η
(n)
ik , k = 2, . . . , n, ξ

(n)
1 = 0, ξ

(n)
k = 0, k > n,

η
(n)
ij =

εiεjQij
nbnσn

, F (n)
k = σ(ε1, . . . , εk),

i.e., F (n)
k is a σ-algebra generated by random variables ε1, . . . , εk and F (n)

0 = (∅,Ω) in what follows,

for simplicity, we use the notation ξ
(n)
k , η

(n)
ij and F (n)

k instead of ξk, ηij Fk.

Lemma 1. The stochastic sequence (ξk,Fk)k≥1 is a martingale difference

Lemma 2 ( [7]). Let K(x) ∈ H(τ) and p(x), 0 ≤ x ≤ 1, be a function of bounded variation. If
nbn →∞, then

1

nbn

n∑
i=1

Kν1
(x− ti

bn

)
Kν2

(y − ti
bn

)
pν3(ti)
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=
1

bn

1∫
0

Kν1
(x− u

bn

)
Kν2

(y − u
bn

)
pν3(u) du+O

( 1

nbn

)
,

uniformly with respect x, y ∈ [0, 1], where νi ∈ N ∪ {0}, i = 1, 2, 3.

Lemma 3. Let K(x) ∈ H(τ), p(x) ∈ C1[0, 1] and let u(x) be a continuous function on [0, 1]. If

nb2n →∞ and αn = n−1/2b
−1/4
n , then, for the hypothesis H1n

b−1
n σ2

n −→ σ2(p) = 2

1∫
0

p2(x)(1− p(x))2 dx

∫
|x|≤2τ

K2
2 (x) dx (1)

and

b−1/2
n (∆n −∆(p)) = O(b1/2n ) +O(αnb

−1/2
n ) +O

( 1

nb
3/2
n

)
, (2)

where

∆n = ET (1)
n , ∆(p) =

1∫
0

p(x)(1− p(x)) dx

∫
|x|≤τ

K2(u) du, K2 = K ∗K,

and ∗ denotes the operation of convolution.

The following statement is true:

Theorem 1. Let K(x) ∈ H(τ) and p(x), u(x) ∈ C1[0, 1]. If nb2n → ∞ and αn = n−1/2b
−1/4
n , then,

for the hypothesis H1n,

b−1/2
n (Tn −∆(p))σ−1(p)

d−→ N(a, 1),

where ∆(p) and σ2(p) are defined in Lemma 3,
d−→ denotes the convergence in distribution, N(a, 1)

is a random variable having normal distribution with parameters (a, 1), and

a =
1

2σ(p)

1∫
0

u2(x) dx.

Proof. We have

Tn = T (1)
n + L(1)

n + L(2)
n ,

where

L(1)
n = nbn

∫
Ωn(τ)

[
p̃1n(x)− p̃2n(x)

] [
Ep1n(x)−Ep2n(x)

]
dx,

L(2)
n =

1

2
nbn

∫
Ωn(τ)

[
Ep1n(x)−Ep2n(x)

]2
dx.

By virtue of Lemma 2, we conclude that

b−1/2
n L(2)

n =
1

2
nb1/2n α2

n

∫
Ωn(τ)

{
1

bn

1∫
0

K
(x− t

bn

)
u(t) dt+O

( 1

nbn

)}2

dx. (3)

Since
[
x−1
bn

, xbn

]
⊃ [−τ, τ ] for all x ∈ Ωn(τ), it follows from (3) that

b−1/2
n L(2)

n =
1

2
nb1/2n α2

n

∫
Ωn(τ)

[ τ∫
−τ

K(t)u(x− bnt) dt+O
( 1

nbn

)]2

dx. (4)
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Further, since u(x) ∈ C1[0, 1], in view of (4), we get

b−1/2
n L(2)

n −→
1

2

1∫
0

u2(t) dt. (5)

We now show that

b−1/2
n L(1)

n
P−→ 0.

Thus, we have

b−1/2
n L(1)

n =
1

2
nb1/2n

∫
Ωn(τ)

p̃1n(x)
(
Ep1n(x)−Ep2n(x)

)
dx

− nb
1/2
n

2

∫
Ωn(τ)

p̃2n(x)
(
Ep1n(x)−Ep2n(x)

)
dx = I(1)

n + I(2)
n . (6)

It is clear that

E|I(1)
n | ≤

(
E(I(1)

n )2
)1/2

=
1

2
nb1/2n

[
E

( ∫
Ωn(τ)

p̃1n(x)
(
Ep1n(x)−Ep2n(x)

)
dx

)2]1/2

=
1

2
nb1/2n

[ ∫
Ωn(τ)

cov
(
p1n(x1), p1n(x2)

)(
Ep1n(x1)−Ep2n(x1)

)

×
(
Ep1n(x2)−Ep2n(x2)

)
dx1 dx2

]1/2

, Ωn(τ) = Ωn(τ)× Ωn(τ).

It is easy to see that

cov
(
p1n(x1), p1n(x2)

)
=

1

(nbn)2

n∑
i=1

K
(x1 − ti

bn

)
K
(x2 − ti

bn

)
p1(ti)(1− p1(ti)).

By virtue of Lemma 2, we find

cov
(
p1n(x1), p1n(x2)

)
= n−1b−2

n

1∫
0

K
(x1 − u

bn

)
K
(x2 − u

bn

)
p1(u)(1− p1(u)) du+O

( 1

(nbn)2

)
.

Hence,

E|I(1)
n | ≤

1

2
nb1/2n

{ ∫
Ωn(τ)

[
1

nb2n

×
1∫

0

K
(x1 − u

bn

)
K
(x2 − u

bn

)
p1(u)(1− p1(u)) du+

1

(nbn)2

]

×
(
Ep1n(x1)−Ep2n(x1)

)(
Ep1n(x2)−Ep2n(x2)

)
dx1 dx2

}1/2

≤ c3
√
n b1/2n αn = c3

1√
nαn

−→ 0,
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because
√
nαn =

1

b
1/4
n

−→∞.

Therefore, I
(1)
n

P−→ 0. Similarly, we prove that I
(2)
n

P−→ 0.
By using (6), we get

b−1/2
n L(1)

n
P−→ 0. (7)

To prove the theorem, it remains to show that

T
(1)
n −∆n

σn

d−→ N(0, 1).

We have
T

(1)
n −∆n

σn
= K(1)

n +K(2)
n ,

where

K(1)
n =

n∑
k=1

ξk, K(2)
n =

n∑
i=1

(ε2
i −Eε2

i )Qii

2nbnσn
.

We now show that K
(2)
n

P−→ 0. Indeed,

V ar(K(2)
n ) = (2nbnσn)−2

n∑
i=1

V arε2
iQ

2
ii

= (2nbnσn)−2
n∑
i=1

( 2∑
k=1

pk(ti)(1− pk(ti))
[
1− 3pk(ti)(1− pk(ti))

])
Q2
ii.

Since Qii ≤ c4bn b−1
n σ2

n −→ σ2(p) as n→∞, this yields

V ar(K(2)
n ) ≤ c5

1

nbn
.

Thus, K
(2)
n

P−→ 0.

We now prove that K
(1)
n

d−→ N(0, 1). To this end, we show that it is possible to apply Corollaries
2 and 6 of Theorem 2 in [4]. It is necessary to check the validity of conditions imposed in these
statements and guaranteeing the asymptotic normality of a square-integrable martingale difference
and to take into account the fact that, according to Lemma 1, the sequence {ξk,Fk}k≥1 is, in fact, a
square-integrable martingale difference.

It is easy to see that
n∑
k=1

Eξ2
k = 1. The asymptotic normality of K

(1)
n is realized whenever

n∑
k=1

E
[
ξ2
kI
(
|ξk| ≥ ε

)
| Fk−1

]
P−→ 0 (8)

and
n∑
k=1

ξ2
k

P−→ 1 (9)

as n→∞. In [4], it is proved that, under the conditions

sup
1≤k≤n

|ξk|
P−→ 0

and (9), condition (8) is also satisfied.
Note that, for ε > 0, we have

P

{
sup

1≤k≤n
|ξk| ≥ ε

}
≤ ε−4

n∑
k=1

Eξ4
k.
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Hence, by virtue of relation (11) presented in what follows, in order to prove

K(1)
n

d−→ N(0, 1)

it remains to check the validity of condition (9). To this end, it suffices to show that

E
( n∑
k=1

ξ2
k − 1

)2

−→ 0 as n→∞

i.e., since
n∑
k=1

Eξ2
k = 1, we get

E
( n∑
k=1

ξ2
k

)2

=

n∑
k=1

Eξ4
k + 2

∑
1≤k1<k2≤n

Eξ2
k1ξ

2
k2 −→ 1. (10)

We now prove (10). Taking into account the definitions of ηik and ξk, we obtain

n∑
k=1

Eξ4
k = I(1)

n + I(2)
n ,

where

I(1)
n =

1

(nbn)4σ4
n

n∑
k=2

Eε4
k

k−1∑
j=1

Eε4
jQ

4
jk,

I(2)
n =

3

(nbn)4σ4
n

n∑
k=2

∑
i 6=j

Eε2
jEε

2
iQ

2
jkQ

2
ik.

Since

Qij ≤ c6bn, Eε4
j ≤ 8

2∑
k=1

pk(tj)
(
1− pk(tj)

)[
1− 3pk(tj)

(
1− pk(tj)

)]
≤ 4,

Eε2
j ≤

1

2
, |Eε3

j | ≤
2∑
k=1

pk(tj)
(
1− pk(tj)

)[(
1− pk(tj)

)2
+ p2

k(tj)
]
≤ 1

and b−1
n σ2

n −→ σ2(p), we find

I(1)
n = O

( 1

(nbn)2

)
, I(2)

n = O
( 1

nb2n

)
.

Hence,
n∑
k=1

Eξ4
k −→ 0 for n→∞. (11)

Further, it follows from the definition of ξi that

ξ2
k1ξ

2
k2 = B

(1)
k1k2

+B
(2)
k1k2

+B
(3)
k1k2

+B
(4)
k1k2

,

where

B
(1)
k1k2

= σ2(k1)σ2(k2), B
(2)
k1k2

= σ2(k1)σ1(k2),

B
(3)
k1k2

= σ1(k1)σ2(k2), B
(4)
k1k2

= σ1(k1)σ1(k2),

σ1(k) =
∑

1≤i 6=j≤k−1

ηikηjk, σ2(k) =

k−1∑
i=1

η2
ik.

Therefore,

2
∑

1≤k1<k2≤n

Eξ2
k1ξ

2
k2 =

4∑
i=1

A(i)
n ,
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where
A(i)
n = 2

∑
1≤k1<k2≤n

EB
(i)
k1k2

, i = 1, 2, 3, 4.

We now consider A
(3)
n . By using the definition of ηij , we can easily show that EB

(3)
k1k2

= 0 and, hence,

A(3)
n = 0. (12)

We now estimate A
(2)
n . We have

|EB(2)
k1k2
| = 1

(nbnσn)4

∣∣∣ k1−1∑
i=1

Eε3
iEε

3
k1Eε

2
k2Q

2
ik1Qik2Qk1k2

∣∣∣.
Since E|ε3

i | ≤ 1 and Qij ≤ c6bn, we get

|EB(2)
k1k2
| ≤ c6

k1 − 1

(nσn)4
.

Further, since ∑
1≤k1<k2≤n

(k1 − 1) = O(n3) and b−1
n σ2

n −→ σ2(p) > 0,

we obtain

|A(2)
n | ≤ c7

n3

n4σ4
n

= c7
1

nb2n(b−1
n σ2

n)2
= O

( 1

nb2n

)
. (13)

We now establish that A
(1)
n → 1 as n→∞. It is clear that

A(1)
n = 2

∑
1≤k1<k2≤n

EB
(1)
k1k2

= S(1)
n + S(2)

n ,

where

S(1)
n = 2

∑
1≤k1<k2≤n

( k1−1∑
i=1

Eη2
ik1

)( k2−1∑
j=1

Eη2
jk2

)
,

S(2)
n = 2

( ∑
k1<k2

EB
(1)
k1k2
−
∑
k1<k2

( k1−1∑
i=1

Eη2
ik1

)( k2−1∑
j=1

Eη2
jk2

))
.

It follows from the definition of σ2
n that

S(1)
n = 1−

n∑
k=2

( k−1∑
i=1

Eη2
ik

)2

.

Furthermore,
n∑
k=2

( k−1∑
i=1

Eη2
ik

)2

≤ c8
b4nn

3

(nbn)4σ4
n

= O
( 1

nb2n

)
.

This yields

S(1)
n = 1 +O

( 1

nb2

)
. (14)

Further, we show that S
(2)
n → 0. The quantity S

(2)
n can be rewritten in the form

S(2)
n = 2

∑
k1<k2

[ k1−1∑
i=1

cov(η2
ik1 , η

2
ik2) +

k1−1∑
i=1

cov(η2
ik1 , η

2
k1k2)

]
.

It is easy to see that

cov(η2
ik1 , η

2
ik2) = O

( 1

n4σ4
n

)
.

However, since ∑
1≤k1<k2≤n

(k1 − 1) = O(n3),
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we conclude that

S(2)
n = O

( 1

nσ4
n

)
= O

( 1

nb2n

)
. (15)

Hence, according to (14) and (15), we find

A(1)
n = 1 +O

( 1

nb2n

)
. (16)

Finally, we show that A
(4)
n → 0 as n → ∞. By using the definition of ηij and the inequalities

Qij ≥ 0 and

Eε2
i = d(ti) ≤

1

2
,

we obtain

EB
(4)
k1k2

= 4
∑

1≤t<s≤k1−1

Eηsk1ηtk1ηsk2ηtk2

≤ c8
n4b4nσ

4
n

∑
1≤t<s≤k1−1

Qsk1Qtk1Qsk2Qtk2 .

Thus,

A(4)
n ≤

c9
n2b4nσ

4
n

∑
k1<k2

Ak1k2 ,

where

Ak1k2 =
1

n2

∑
1≤t<s≤k1−1

Qsk1Qtk1Qsk2Qtk2 .

At the same time, ∑
k1<k2

Ak1k2 ≤
n∑

k1,k2=1

( 1

n

n∑
t=1

Qtk1Qtk2

)2

.

Therefore,

A(4)
n ≤ c10

1

n2b4nσ
4
n

n∑
k1,k2=1

[ ∫
Ω(τ)

∫
Ωn(τ)

K
(x− xk1

bn

)
K
(y − xk2

bn

)

× 1

n

n∑
i=1

K
(x− xi

bn

)
K
(y − xi

bn

)
dx dy

)]2

. (17)

Further, in view of Lemma 2, it follows from (17) that

A(4)
n ≤

c11

b4nσ
4
n

n∑
k1,k2=1

{
1

n

1∫
0

∫
Ωn(τ)

∫
Ωn(τ)

K
(x− xk1

bn

)
K
(y − xk2

bn

)

×K
(x− u

bn

)
K
(y − u

bn

)
du dx dy

}2

+O
( 1

nb2n

)
. (18)

In relation (18), we now apply Lemma 2 once again. This yields

A(4)
n ≤

c12

b4nσ
4
n

1∫
0

1∫
0

1∫
0

1∫
0

ψn(u1, v2)ψn(u1, v1)

×ψn(u2, v1)ψn(u2, v2) du1 du2 dv1 dv2, (19)

where

ψn(x, y) =

∫
Ωn(τ)

K
( t− x

bn

)
K
( t− y
bn

)
dt.
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We now estimate the integral in (19). Since
[
x−1
bn

, xbn

]
⊇ [−τ, τ ] for all x ∈ Ωn(τ), we get

1∫
0

ψn(u1, v2)ψn(u1, v1) du1

= bn

∫
Ωn(τ)

K
( t− v2

bn

)
K
(z − v1

bn

)
K2

(z − t
bn

)
dt dz

≤ c13b
3
n, K2 = K ∗K, Ωn(τ) = Ωn(τ)× Ωn(τ).

Hence,

A(4)
n ≤ c14

1

bnσ4
n

1∫
0

1∫
0

1∫
0

ψn(u2, v1)ψn(u2, v2) du2 dv1 dv2 +O
( 1

nb2n

)
. (20)

Further, in a similar way, we derive the following result from (20):

A(4)
n ≤ c15

b4n
bnσ4

n

+O
( 1

nb2n

)
= O

( b4n
b3n(b−1

n σ2
n)2

)
+O

( 1

nb2n

)
= O(bn) +O

( 1

nb2n

)
. (21)

Combining relations(12), (13), (16) and (21), we conclude that

2
∑

1≤k1<k2≤n

Eξ2
k1ξ

2
k2 −→ 1.

In view of relation (11), this yields that

E
( n∑
k=1

ξ2
k − 1

)2

−→ 0 for n→∞.

Hence,

T
(1)
n −∆n

σn

d−→ N(0, 1). (22)

Further, by using the representation Tn = T
(1)
n +L

(1)
n +L

(2)
n , Lemma 3 and relations (5), (7), and (22)

we get

b−1/2
n

(Tn −∆(p)

σ(p)

)
d−→ N

(
1

2σ(p)

1∫
0

u2(x) dx, 1

)
.

Theorem 1 is proved. �

Corollary 1. Let K(u) ∈ H(τ) and p(x) ∈ C1[0, 1]. If nb2n →∞, then the following relation is true
for the hypothesis H0:

b−1/2
n (Tn −∆(p))σ−1(p)

d−→ N(0, 1). (23)

As an important application of Corollary 1, we construct a criterion for the testing of a simple
hypothesis H0 of equality of two Bernoulli regression functions p1(x) = p2(x) = p(x), where the
function p(x) is completely defined. The critical domain is determined by the inequality

Tn ≥ dn(α) = ∆(p) + b1/2n σ(p)λα,

where Φ(λα) = 1− α and Φ(λ) is the standard normal distribution.

Corollary 2. Let K(u) ∈ H(τ) and p(x), u(x) ∈ C1[0, 1]. If nb2n → ∞ and αn = n−1/2b
−1/4
n , then

the local behavior of the power PH1n
(Tn ≥ dn(α)) has the form

PH1n
(Tn ≥ dn(α)) −→ 1− Φ

(
λα −

A(u)

σ(p)

)
,
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where

A(u) =
1

2

1∫
0

u2(x) dx > 0.

We now assume that p(x) is not defined by the hypothesis (i.e., we testing a composite hypothesis).
In this case, it is impossible to apply inequality (1) directly. First, it is necessary to replace the

unknown parameters ∆(p) and σ2(p) appearing in (23) by certain estimates ∆̃n and σ̃2
n, respectively.

As the estimates ∆(p) and σ2(p), we take the following statistics:

∆̃n =

∫
Ωn(τ)

λn(x) dx

∫
|x|≤τ

K2(x) dx,

σ̃2
n = 2

∫
Ωn(τ)

λ2
n(x) dx

∫
|x|≤2τ

K2
2 (x) dx,

λn(x) =
1

2

[
p1n(x)

(
pn(x)− p1n(x)

)
+ p2n(x)

(
pn(x)− p2n(x)

)]
.

We now show that

b−1/2
n (∆̃n −∆(p))

P−→ 0, σ̃2
n

P−→ σ2(p). (24)

Indeed, since

pn(x) = 1 +O
( 1

nbn

)
uniformly with respect to x ∈ Ωn(τ) and |pin(x)| ≤ c16, x ∈ [0, 1], i = 1, 2, we find

b−1/2
n E|∆̃n −∆(p)|

≤ c17b
−1/2
n

[ ∫
Ωn(τ)

(
E
(
p1n(x)−Ep1n(x)

)2)1/2

dx

+

∫
Ωn(τ)

(
E
(
p2n(x)−Ep2n(x)

)2)1/2

dx

]

+b−1/2
n

∫
Ωn(τ)

∣∣Ep1n(x)− p(x)
∣∣ dx+ b−1/2

n

∫
Ωn(τ)

∣∣Ep2n(x)− p(x)
∣∣ dx.

Further, by using Lemma 2 and taking into account the facts that p(x) ∈ C1[0, 1] and
[
x−1
bn

, xbn

]
⊃

[−τ, τ ] for all x ∈ Ωn(τ), we immediately conclude that

b−1/2
n E|∆̃n −∆(p)|

≤ c18b
−1/2
n

{ ∫
Ωn(τ)

[
1

nbn

1

bn

1∫
0

K2
(x− u

bn

)
p(u)(1− p(u)) du+O

( 1

(nbn)2

)]1/2

+O(bn) +O
( 1

nbn

)}
= O

( 1√
n bn

)
+O(b1/2n ) +O

( 1

nb3/2

)
.

Hence, b
−1/2
n (∆̃n −∆(p))

P−→ 0. Similarly, we can show that σ̃2
n

P−→ σ2(p).

Theorem 2. Let K(x) ∈ H(τ) and p1(x) = p2(x) = p(x) ∈ C1[0, 1]. If nb2n →∞, then, as n→∞,

b−1/2
n (Tn − ∆̃n)σ̃−1

n
d−→ N(0, 1).

The proof follows from (23) and (24).
Theorem 2 enables us to construct an asymptotic criterion for the testing of the composite hy-

pothesis
H0 : p1(x) = p2(x), x ∈ [0, 1].
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The critical domain for the testing of this hypothesis is given by the inequality

Tn ≥ d̃n(α) = ∆̃n + b−1/2
n σ̃nλα, Φ(λα) = 1− α. (25)

Now let us investigate the asymptotic property of criterion (25) (i.e., the behavior of the power
function as n→∞).

Theorem 3. Let K(x) ∈ H(τ), p1(x), p2(x) ∈ C1[0, 1]. If nb2n →∞, then

γn(p1, p2) = PH1

(
Tn ≥ d̃n(α)

)
−→ 1

as n→∞. Any pair (p1(x), p2(x)), 0 ≤ pi(x) ≤ 1, pi(x) ∈ C1[0, 1], i = 1, 2, such that p1(x) 6= p2(x)
at at least one point x, x ∈ [0, 1]. is an alternative of the hypothesis H1.

Proof. Denote

Tn =
1

2
nbn

∫
Ωn

(
p1n(x)− p2n(x)

)2
dx,

pin(x) = pin(x)−Epin(x), i = 1, 2.

By analogy with (1), (2) and (24), we can readily show that the following is true for the hypothesis H1

b−1
n σ2

n −→ σ2(p1, p2) = 2

1∫
0

d2(x) dx

∫
|x|≤2τ

K2
2 (x) dx,

σ̃2
n

P−→ σ2(p1, p2), ∆̃n
P−→ ∆(p1, p2), ETn −→ ∆(p1, p2),

∆(p1, p2) =

1∫
0

d(x) dx

∫
|x|≤τ

K2(x) dx,

d(x) =
1

2

2∑
k=1

pk(x)(1− pk(x)).

(26)

Further, in view of Lemma 2 and the fact that
[
x−1
bn

, xbn

]
⊃ [−τ, τ ], x ∈ Ωn(τ) we obtain∫

Ωn

(
Ep1n(x)−Ep2n(x)

)2
dx

=

∫
Ωn

( τ∫
−τ

K(t)
(
p1(x− bn(u))− p2(x− bn(u))

)2
du

)
dx+O

( 1

nbn

)
.

According to the condition p1(x), p2(x) ∈ C1[0, 1], we get∫
Ωn

(
Ep1n(x)−Ep2n(x)

)2
dx =

1∫
0

(
p1(x)− p2(x)

)2
dx+O(bn) +O

( 1

nbn

)
. (27)

By using (26) and (27), after simple transformations, we find

γn(p1, p2) = PH1

[
Tn −ETn

σn

≥ −nb1/2n

( 1∫
0

(
p1(x)− p2(x)

)2
dx+ op(1)

)]
. (28)

Finally, since

(Tn −ETn)σ−1
n

d−→ N(0, 1)
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(the proof of this statement is similar to the proof of (22)) and nb
1/2
n →∞, it follows from (28) that

γn(p1, p2)→ 1 as n→∞. �
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