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THE METHOD OF PROBABILISTIC SOLUTION FOR DETERMINATION OF
ELECTRIC AND THERMAL STATIONARY FIELDS IN CONIC AND
PRISMATIC DOMAINS

MAMULI ZAKRADZE*, MURMAN KUBLASHVILI, NANA KOBLISHVILI, AND ALEKSANDRE CHAKHVADZE

Abstract. In this paper, for determination of the electric and thermal stationary fields the Dirichlet
ordinary and generalized harmonic problems are considered. The term “generalized” indicates that
a boundary function has a finite number of first kind discontinuity curves. For numerical solution of
boundary problems the method of probabilistic solution (MPS) is applied, which in its turn is based
on a modeling of the Wiener process. The suggested algorithm does not require an approximation
of a boundary function, which is main of its important properties. For examining and to illustrate
the effectiveness and simplicity of the proposed method four numerical examples are considered on
finding the electric and thermal fields. In the role of domains are taken: finite right circular cone
and truncated cone; a rectangular parallelepiped. Numerical results are presented.

1. INTRODUCTION
Let D be a finite domain in the Euclidian space R, bounded by one closed piecewise smooth

P ,
surface S (i.e., S = |J 57), where each part S7 is a smooth surface. Besides, we assume: equations
=1

of the parts S7 are given; for the surface S it is easy to show that a point z = (21, 22, 23) € R3 lies in
D or not.

It is known (see, e.g., [1,2,6,12,14-17]) that in practical stationary problems (for example, for the de-
termination of the temperature of the thermal field or the potential of the electric field, and so on) there

are cases when it is necessary to consider the Dirichlet ordinary (or generalized) harmonic problems: A
(or B).

Problem A. Find a function u(x) = u(x1,z2,73) € C?(D) (N C (D) satisfying the conditions:
Au(z) =0, z €D,
u(y) = h(y), y €S,

3
where A = >° % is the Laplace operator and h(y) = h(y1,y=2,ys) is a continuous function on S.
i=1

It is known (see, e.g., [12,16,17]) that Problem A is correct, i.e., its solution exists, is unique and
depends on data continuously. It should be noted that in general the difficulties and respectively
the laboriousness of solving problems sharply increase along with the dimension of the problems
considered. Therefore, as a rule, one fails to develop standard methods for solving a wide class of
multidimensional problems with the same high accuracy as in the one-dimensional case. For example,
the exact solution of Problem A for a circle is written by one-dimensional Poisson’s integral and in the
case of kernel by two-dimensional Poisson’s integral. The given simple example shows the difficulty in
determining of the solution with the high accuracy of the Dirichlet ordinary harmonic problem when
the dimension increases. In this paper, besides the fact that numerical solution of problems of type A
by MPS is interesting and important (see, e.g., [3,4,18]), it has an additional role in this paper (see
section 3).
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Problem B. Function g(y) is given on the boundary S of the domain D and is continuous everywhere,
except a finite number of curves lq, [, ..., [, which represent discontinuity curves of the first kind for

the function g(y). It is required to find a function u(z) = u(xy,xs,23) € C*(D)NC(D\ U )
k=1

satisfying the conditions:

Au(xz) =0, z€D, (1.1)
uy)=9g(y), yes, yelkcS (k=1n), (1.2)
lu(y)| < e, y €D, (1.3)

where c is a real constant.

It is shown (see [5,20]) that Problem (1.1), (1.2), (1.3) has a unique solution depending continuously
on the data, and for a generalized solution u(x) the generalized extremum principal is valid:
Iznenslu(x) < qi(egjjg) < I;leaécu(x), (1.4)
where for z € S it is assumed that €l (k =1,n).
It is evident that actually, the surface S is divided into open parts S; (i = 1,m) by curves i

(k=1,n)or S= (U Si)U(U lg), where for the concrete case, between m and n from the following
i=1 k=1

conditions: n =m, n < m, n > m take place one of. On the basis of noted, the boundary function
g(y) has the following form

g1(y), ye€ S,

o(y) = 92(y), y € S, (1.5)

Im(Y), Y E Sm,
where the functions g;(y),y € S; are continuous on the parts S; of S, respectively.

Note (see [20]) that the additional requirement (1.3) of boundedness concerns actually only the
neighborhoods of discontinuity curves of the function g(y) and it plays an important role in the
extremum principle (1.4).

On the basis of (1.3), in general, the values of u(y) are not defined on the curves l;. For example,
if Problem B concerns the determination of the thermal (or the electric) field, then u(y) = 0 when
y € li, respectively, in this case, in physical sense the curves [ are non-conductors (or dielectrics).

Remark 1. If inside the surface S there is a vacuum then we have the ordinary and generalized
problems with respect to closed shells.

In general, it is known (see [6,7,20]) that the methods used to obtain an approximate solution to
ordinary boundary problems are less suitable (or not suitable at all) for solving boundary problems of
type B. In particular, the convergence of the approximate process is very slow in the neighborhood of
boundary singularities and, consequently, the accuracy of the approximate solution of the generalized
problem is very low.

The choice and construction of computational schemes (algorithms) mainly depend on problem
class, its dimension, geometry and location of singularities on the boundary, e.g., Dirichlet generalized
plane problems for harmonic functions with concrete location of discontinuity points in the cases of
simply connected domains are considered in [1,2,6,8,15], and general cases for finite and infinite
domains are studied in [9-11,13,14,19].

In the case of 3D harmonic generalized problems, due to their higher dimension, the difficulties
become more significant. In particular, there does not exist a standard scheme which can be applied
to a wide class of domains. In the classical literature, simplified, or so called “solvable” generalized
problems (problems whose “exact” solutions can be constructed by series, whose terms are represented
by special functions) are considered, and for their solution the classical method of separation of
variables is mainly applied and therefore the accuracy of the solution is rather low. In the mentioned
problems, the boundary functions (conditions) are mainly constants, and in the general case, the
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analytic form of the “exact” solution is so difficult in the sense of numerical implementation, that it
only has theoretical significance (see, e.g., [1,2,6,12,15]).

As a consequence of the above, from our viewpoint, the construction of high accuracy and effec-
tively realizable computational schemes for approximate solution of 3D Dirichlet generalized harmonic
problems (whose application is possible to a wide class of domains) have both theoretical and practical
importance.

It should be noted that in literature (see, e.g., [1,2,6,12,15]), while solving Dirichlet generalized
harmonic problems, the existence of discontinuity curves often is neglected. This fact and application
of classical methods to solving problems of type B are reasons of the inaccuracies. Therefore, for
numerical solution of generalized harmonic problems we should apply such methods which do not
require approximation of a boundary function and in which the existence of discontinuity curves is
not ignored. The suggested algorithm is one of such methods.

2. THE METHOD OF PROBABILISTIC SOLUTION

In this section the essence of the suggested algorithm for numerical solving problems of type A and
B is given, and its detail description is in [21]. The main theorem in realization of the MPS is the
following one (see, e.g., [5])

Theorem 1. If a finite domain D € R? is bounded by piecewise smooth surface S and g(y) is
continuous (or discontinuous) bounded function on S, then the solution of the Dirichlet ordinary (or
generalized) boundary problem for the Laplace equation at the fized point x € D has the form

u(z) = Eqg(x(7)). (2.1)

In (2.1): E,g(z(7)) is the mathematical expectation of the values of the boundary function g(y) at
the random intersection points of the trajectory of the Wiener process and the boundary S; 7 is the
random moment of first exit of the Wiener process (t) = (x1(t), z2(t), z3(t)) from the domain D. It
is assumed that the starting point of the Wiener process is always z(tg) = (x1(to), z2(to), x3(to)) € D,
where the value of the desired function is being determined. If the number N of the random intersection
points y® = (yi,y,yl) € S (i = 1,2,...,N) is sufficiently large, then according to the law of large
numbers, from (2.1) we have

u(z) R un (@) = & Zg(yi) (2.2)

or u(z) = limuy(z) for N — oo, in probability. Thus, in the presence of the Wiener process the
approximate value of the probabilistic solution to Problems A and B at a point € D are calculated
by formula (2.2).

In order, to simulate of the Wiener process we use the following recursion relations (see, e.g., [21]):

w1 (ty) = 21 (te—1) +71(tx)/nq,

wo(ty) = x2(te—1) + 72(tr)/nq,

w3(ty) = x3(tp—1) + 73(7519)/”%
2,...), z(tp) =

according of which the coordinates of the point z(ty) = (z1(tx), x2(tr), 3(tx)) are being determined.
In (2.3): v1(tx),v2(tk), v3(tr) are three normally distributed independent random numbers for the
k-th step, with zero means and variances one; ng is a number of quantification (ng) such that 1/ng =
/T — tik—1 and when ng — oo, then the discrete process approaches to the continuous Wiener process.
In the implementation, the random process is simulated at each step of the walk and continues until
it crosses the boundary.

In the considered case computations and generation of random numbers are done in MATLAB.

(2.3)
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3. NUMERICAL EXAMPLES

In this section, problems of type A and B are solved for one and the same domain. The reason of
this is the following: since there exist exact test problems for type A, and there are none for type B,
therefore, Problem A has an additional role in this paper. Namely, verification of a scheme needed for
numerical solution of Problem B and corresponding calculating program is carried out with the help
of Problem A, which consists in following.

Function

u(2,z) = reD, 2°=(a29,29,29) €D, (3.1)

|z — 20|’
is taken in the role of the exact test solution for Problem A under boundary condition h(y) =
leo\? y € S, where |z — 2°| denotes the distance between the points x and 2. After this, function
h(y) is taken in the role of functions g;(y) (i = 1,m) in Problem B and consequently in calculating
program. Evidently, in this case curves I represent removable discontinuity curves for function gy),
therefore instead of problem of type B we have problem of type A. For the obtained problem, verifica-
tion of the scheme needed for numerical solution of Problem B and corresponding calculating program
(comparison of the obtained results with exact solution) is carried out first of all, and then Problem
B is being solved under boundary conditions (1.5).

In the case when Problems A and B concern electrostatic field, for full investigation of the field
it is necessary to find both potential and strength of the field. It is known [6, 15] that the strength
E(z) = (E1(x), Ex(z), E5(z)) of electrostatic field is defined as follows:

ou Ou Ou

where u(z) is potential of electrostatic field. It is known that the vector E(x) is directed where the
potential of the electric field is less.

Since in our case Problems A and B are solved by a numerical method, therefore, for the test
problem, coordinates of vector F(z) are defined by formula (3.2), and in the case of numerical solution
by the central difference formula

S +h)— f(t—h)

f'(t) ~ 57 (3.3)

is used, whose accuracy is O(h?)
Thus on the basis of (3.2) and (3.3) for definition components of the vectors FE(z) and EV (z) we
have:

COu(x)  ay— )

Bilr) = =570 = Gk (=1,2.3) (3.4)
EY(z) = —&giix) ~ —[un((x1 + h)d1k, (x2 + h)dok, (x3 + h)dsk)
—un((x1 — h)o1k, (x2 — h)0ok, (23 — h)dax)]/(2h), (3.5)

where ;5 is Kronecker symbols.

In the present paper the MPS is applied to four examples. In tables, N is the number of the
implementation of the Wiener process for the given points x! = (2%, 2%, 2%) € D, and nq is the
number of the quantification. For simplicity, in the considered examples the values of nqg and N
are the same. In tables for problems of type A we present the maximum absolute errors A’ at the
points ' € D of un (), in the MPS approximation, for nqg = 200 and various values of N, and under
notations of type (E + k), 10** are meant. In particular, A’ = |uy(2?) — u(z°, 2?)|, where uy (x?)
is the approximate solution of Problem A at the point z¢, which is defined by formula (2.2), and the
exact solution u(z", z%) of the test problem is given by (3.1). In tables, for problems of type B, the
probabilistic solution uy (z) is presented at the points 2%, defined by (2.2).

Remark 2. The Problems A and B for ellipsoidal, spherical, cylindrical domains and for the kernel
layer are considered in [21].
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Example 3.1. In the first example it is required to determine the electrostatic field in the domain D.
In the role of D is taken interior of the finite right circular cone S, :
2
(1) +(@2)? = (7) (h=22)* =0,  0<wg<h, (3.6)

where h is a height of the cone, r is a radius of its base Sy, and x(x1, T2, x3) is a current point of the
conic surface S. (the full surface S of D is S = S.|JS1).

In numerical experiments for the considered example, is taken: 1) h = 2, r = 1; 2) in the test
Problem A the boundary function h(y) = 1/]y — 2°|, y € S, 2° = (0,0, —5); 3) in Problem B the
boundary function g(y) = g(y1,y2,ys3) has the form

2, yeSi={yeS|0< () + (y2)? <1,y3 =0},
1.5, yeSy={yeS.|0<ys<0.5},
9(y) =41, yeS3={yes. [05<ys<1}, (3.7)
05, yeSi={yes |l<ys;<2}
0, y €l (k=1,2,3).

It is evident that in the considered case [; is the circle of the base Si; I3 and I3 are the circles,
which are obtained by intersection of the planes x3 = 0.5, x3 = 1 and the surface S.. Besides, in the
physical sense the circles [ are non-conductors.

In order to determine the intersection points y* = (yi,v,44) (i = 1,N) of the trajectory of the
Wiener process and the surface S, we operate in the following way. During the implementation of
the Wiener process, for each current point x(ty), defined from (2.3), its location with respect to S is
checked, i.e., for the point z(t;) the value

4= (r (000 + (a(t)? — (7) (h = ws(13))?

is calculated and the following conditions: 1) d = 0 and 0 < 23(tx) < h; 2) d < 0 and 0 < x3(t;) < h;
3)d<0ord>0and x3(t) < 0;4) d >0 and 0 < z5(tx) < h are checked. In the first case z(tx) € S.
and y* = x(t;). In the second case x(t;) € D and the process continuous until it crosses the boundary
of D. In the cases (3) and (4) z(tx) € D.

Let o(ty_1) € D for the moment t = t;,_; and x(t;) € D for the moment ¢ = ¢;. In the mentioned
case we have only two variants: 3) or 4). In the case 3) we find the intersection point y = (y1,y2,0) of
the plane x3 = 0 and a line [ passing through the points z(tx_1) and x(tg). If 0 < (y1)? + (y2)? < 72
then y* = (y1,¥2,0). In the case 4), for approximate determination of the point y¢, a parametric
equation of a line L passing through the points x(tx—1) and z(tx) is firstly obtained, which has the
following form

oy = a4 (of — 2y,
zy = 2h 1 4 (ak — 257, (3.8)
x3 =kt 4 (af —2b7he,

where (21, 2, 23) is the current point of L and 6 is a parameter (—oo < 6 < oo), and =¥ ™1 = z;(ty_1),
¥ = 2;(t) (i = 1,2,3). After this, for definition of the intersection points z* and x** of the line L
and the surface S equation (3.6) is solved with respect to 6.

It is easy to see that for parameter § we obtain an equation
A0* +2BO+C =0 (3.9)

whose discriminant d* = B? — AC > 0.

Since the discriminant of (3.9) is positive, the points 2* and z** are defined respectively on the
basis of (3.8) for solutions of (3.9) §; and . In the role of the points y* the one (from z* and z**)
for which |z(tx) — 2| is minimal is chosen.

In Table 3.1A the errors A’ of the approximate solution uy(z) of the test problem at the points
z' € D (i =1,5) are presented. On the basis of (3.4) and (3.5) we calculated exact and approximate
strengths of the electric field (or E3(x) and EJ (z)) on the axis Oxs at the points x' (i = 1,2,3)
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TABLE 3.1A. Results for Problem A (in Example 3.1)

z' | (0,0,05) | (0,0,1) | (0,0,1.8) [ (0.2,0.2,0.5) | (—0.2,—0.2,0.5)

N AT AZ A3 Al AS
5E+3|030E—3|039E—3 | 0.74E —5| 052E —4 0.17E — 4
1E+4|063E—4|014E—3|0.13E—4| 0.11E—3 0.15E — 3
5E+4|098E—4|072E—4|040E —4| 0.25E —4 0.72E — 4
1E+5|024F —4 | 0.49E —4 | 0.18E —4 | 0.49E — 4 0.21E — 4
5E+5|0.66E—5|0.26E—4|031E—4| 0.18E —4 0.36E — 4
1E+6|032E—5|042E—4|031E—4| 0.15E—4 0.27F — 4

for N = 10%,ng = 200,h = 0.03. We obtained the following results: FE3(0,0,0.5) = 0.033111;
E5(0,0,1) = 0.027778; E3(0,0,1.8) = 0.021626; EN(0,0,0.5) = 0.033061; EN(0,0,1) = 0.027781;
EN(0,0,1.8) = 0.021651;

It is evident that the results obtained for EJ'(z%) are in good agreement with the values of E3(z?)
(i=1,2,3).

TABLE 3.1B. Results for Problem B (in Example 3.1)

27 [(0,0,05) ] (0,0,1) [ (0,0,1.8) | (0.2,0.2,0.5) | (—0.2, —0.2,0.5)
N un(2l) | un(2?) | un(23) uy (z) un (z°)
oF +3 | 1.32910 | 0.77620 | 0.50010 1.31410 1.31470
1E+4| 1.33335 | 0.77370 | 0.50010 1.32060 1.31690
S5E +4 | 1.33374 | 0.77282 | 0.50016 1.31599 1.32765
1E+5 | 1.33447 | 0.77314 | 0.50035 1.32166 1.32319
S5E +5 | 1.33318 | 0.77234 | 0.50023 1.32131 1.32318
1E+6 | 1.33356 | 0.77211 | 0.50023 1.32223 1.32185

In Table 3.1B the values of the approximate solution uy(z) to Problem B at the same points
x'(i = 1,5) are given. The boundary function (3.7) is symmetric with respect to the axis Ouxs,
respectively, the obtained results for 2% and z° are symmetric with respect to the axis Oxs and have
sufficient accuracy for many practical problems.

For illustration, we calculated the electrostatic field strength by (3.5) on the axis Ox3 at the
same points z%(i = 1,2,3) for N = 105 ng = 200,h = 0.03. We obtained the following results:
EN(0,0,0.5) = 1.234714; EY(0,0,1) = 0.989775; EY¥ (0,0, 1.8) = 0.00426. The obtained results are in
good agreement with the real physical picture.

Example 3.2. In this example, the problem on the temperature distribution is considered. In the role
of domain D the interior of a truncated right circular cone S, is taken:

(:131)2 + (:132)2 - (R}:T)Q(RRjLT —x3)2 =0, 0<z3<h,

where h is the height, R the radius of the lower base, r is the radius of the upper base, and x(x1,x2, x3)
is a current point of the conic surface S.. The boundary of D is S = S1|J Sc|J Sz, where S = {y €
S0<d<R,y3 =0} and So={y € S [0 <d < r,ys =h}, and d = sqrt((y1)? + (y2)?).
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The problems A and B are solved when h =2, R =1, r = 0.5, 2° = (0,0, —5), and the boundary
function g(y) has the form

2, y € 51,
0, y € So,
1.5, Yy € Ss,
9(y) = {1, y € S, (3.10)
1.5, Y € Ss,
1, y € S,
0, y €l (k=1,6).

In (3.10): {3,y are the circles of the bases Sy and Ss; I3, l4, 5, lg are the generatices of the conic
surface S, which pass through the points (R,0), (0, R), (—R,0), (0,—R), respectively; S3 = {y €
Selr<d<R,y1 >0,y2 >0,0<ys <h}; Sy={yeS.|r<d< Ry <0,y2 >0,0<ys<h};
Ss={yeS.|r<d<Ryy1 <0,52<0,0<ys<h}; Ss={yeS.|r<d<R,y1 >0,y2 <0,0<
ys < h}. Besides, in this case the curves [ and S are non-conductors.

In the considered case, for determination of the intersection points y* (i = 1, N) of the trajectory
of the Wiener process and the surface S the same algorithm, described in Example 3.1 is applied.

In Table 3.2A the errors A’ of the approximate solution uy () of the test problem are presented
at the points z* € D (i = 1,5).

TABLE 3.2A. Results for Problem A (in Example 3.2)

i [ (0,0,05) | (0,0,1) | (0,0,1.8) | (0.5,0.5,1) | (—0.5,—0.5, 1)

N Al A? AB AT AP
5E 13 |099E —4|027E —3 | 099E —4| 0.58E —4 | 0.10E —3
1E+4|066FE—4|011E—3|088E —4| 048FE —4 | 0.58F —4
S5E+4|0.65E—4|052E —4|090E—4| 027E—4 | 0.30E —4
1E+5|040E —4 | 0.26E —4 | 0.25E —4 | 0.17TE —4 | 0.48F —4
5E+5|016E —4|019E —4 | 0.55E —4 | 0.24E —4 | 0.23E —4
1E+6|081F—5|028E—4|053E—4| 027FE —4 | 0.25F —4

The values of the approximate solution uy(z) of Problem B at the same points 2% are given in
Table 3.2B. Since the boundary function (3.10) is symmetric with respect to the axis Oxs, therefore,
for control in the role of z* (i = 4,5), the points which are symmetric with respect to the axis Ox3
are taken. The obtained results have sufficient accuracy for many practical problems and are in good
agreement with the real physical picture.

TABLE 3.2B. Results for Problem B (in Example 3.2)

27 [(0,0,05) ] (0,0,1) [ (0,0,1.8) ] (0.5,0.5,1) | (—0.5, —0.5,1)

N un (D) [ un(@?) | un(2®) un (z%) un (z°)
5E 43| 1.53710 | 1.29085 | 0.56980 1.48650 1.48660
1E+4 | 1.52895 | 1.29140 | 0.56875 1.48575 1.48580
S5E 44| 1.52950 | 1.28705 | 0.57235 1.48548 1.48538
1E+5 | 1.52615 | 1.28884 | 0.57426 1.48584 1.48558
5E 4+ 5| 1.52680 | 1.28701 | 0.57756 1.48578 1.48579
1E+6 | 1.52670 | 1.28710 | 0.57615 1.48558 1.48566

Example 3.3. Here in the role of domain D the interior of rectangular parallelepiped
MNKOMN1K10; is taken with the vertex at the origin 0(0,0,0) of Cartesian coordinate right-
handed system and measurements a, b and c. It is evident that the boundary S of D is S =
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6 12
(U S;)U(U ), where S; are open faces and ly, are edges. In this example, the problem on the
j=1 k=1
temperature distribution is considered.

In order to determine the intersection points y* = (y¢,v4,44) (i = 1,N) of the trajectory of the
Wiener process and the surface S of mentioned parallelepiped the following way is used. During the
implementation of the Wiener process, for each current point z(tx), defined by (2.3), its location with
respect to S is checked, i.e., for the point x(t;) the following conditions

0<zi(tg) <a, 0<m(ty)<b, 0<uz3(ty)<c

are checked. If the mentioned conditions are fulfilled then the process (2.3) continuous. If z(tx) € S
then y' = x(t,).

Let z(t) € D for the moment ¢t = t;_; and x(t) € D for the moment ¢t = t;. In this case, for
approximate determination of the point %*, a parametric equation of a line L passing through the
points z(tr—1) and x(ty) is firstly obtained in the form (3.8). After this, the intersection point z*
of the line L and that face, which is intersected by the trajectory of wiener process is found and
respectively, in this case y* = x*.

In numerical experiments, we took: 1) a = 1, b = 2, ¢ = 3; 2) in the test Problem A, z° =
(0.5,1,—5); 3) in Problem B the boundary function g(y) has the following form

3, yeSi={yeS|y1=0,0<y: <b,0<y;<c}
1, yeSe={yesS|yn=0a,0<y<b0<ys<c}
05, yeS3={yesS|0<y <a,y2=0,0<ys <c},
gy) =405, yeSi={yeS|0<y <a,y2=>,0<ys <c}, (3.11)
0, yeSs={yeS|0<y <a,0<ys <bys=0}
2, yeSe={yeS|0<y <a,0<ys<bys=c}
0, y €l (k=1,12),

where [ and S5 are dielectrics.
The errors A® of the approximate solution ux () to test Problem A at the points z' € D (i = 1,5)
are given in Table 3.3A.

TABLE 3.3A. Results for Problem A (in Example 3.3)

27 ](05,1,0.5) | (0.5,1,1) | (0.5,1,1.5) | (0.5,1,2) | (0.5,1,2.5)

N Al AZ A® AT AS
5E+3| 0.11E—3 |028E—3| 0.17E—3 |0.14E—3 | 0.14E — 3
IE+4| 0.73E—4 |0.28E—4| 025E—3 | 0.77TE —4 | 0.13E —4
S5E+4| 057TE—4 | 0.66E—4 | 0.40E —4 | 048E —4 | 0.12E — 4
IE+5| 0.17E—4 | 0.20E —4| 0.61E —4 | 0.29E —4 | 0.15F — 4
S5E+5| 0.35E—4 |032E—4| 0.25E—4 | 0.15E—4 | 0.21E —4
1E+6| 0.65E—5 | 0.43E —5| 049E —5 | 0.19E —4 | 0.19E — 4

The values of the approximate solution uy(z) of Problem B at the points 2* € D (i = 1,2,3) are
given in Table 3.3B. Since the boundary function (3.11) is symmetric with respect to the plane o = 1,
therefore, for control in the role of % (i = 4,5), the points which are symmetric with respect to the
plane xo = 1 are taken. The obtained results have sufficient accuracy for many practical problems
and are in good agreement with the real physical picture (see Table 3.3B).

Example 3.4. In this ezample, the problems A and B on the temperature distributionn are considered.
In the role of D we took the same rectangular parallelepiped as in Example 3.3. In this case, Problem
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B under the boundary function g(y) with specific form

v1, yeSi={ye S|y =0,0<y; <b0<ys<c},
_ V2, yESQZ{yGS|i‘/1:a70<y2<b70<y3<0}7
9(9)— 6 12
0. weUsHuUm

is solved, where S;(j =

1t is evident that S (J

1,

)y le(k = 1,12
3,6) and lj; (k:

)

are the same as in FExample 3.3, v1 and ve are constants.
12) are non-conductors.

TABLE 3.3B. Results for Problem B (in Example 3.3)

27 [(05,1,0.5) | (0.5,1,1.5) | (0.5,1,2.5) | (0.5,0.5,1.5) | (0.5,1.5,1.5)

N un (xh) un (2?) un (23) un () un (2°)
SE+3 1.36592 1.77016 1.87272 1.51024 1.50580
1E+4 | 1.37656 1.79118 1.87680 1.48596 1.49162
5E+4| 1.38256 1.79529 1.87079 1.49502 1.50417
1E+5| 1.37245 1.79176 1.87154 1.51296 1.49943
SE+5 1.36930 1.78991 1.86844 1.50475 1.50233
1E+6 1.37228 1.78882 1.86735 1.50309 1.50362

In numerical experiments we took: a =1,b=2,c=3,v; =3, v, = 1 and 20 =
determination of the intersection points y® (i = 1, N) the same algorithm is applied, which is described

in Example 3.3.

In Table 3.4A the errors A’ of the approximate solution uy () of the test problem A are presented

at the points 2 € D (i = The obtained results have sufficient accuracy for many practical

problems.

1,5).

TABLE 3.4A. Results for Problem A (in Example 3.4)

27 ](0.9,1,1.5) [ (0.8,1,1.5) [ (0.5,1,1.5) | (0.2,1,1.5) [ (0.1,1,1.5)

N AT A2 A3 AT AS
5E+3| 017E—3 | 048E —4 | 0.19E—3 | 0.17TE—3 | 0.53E —4
1E+4| 040E —4 | 0.14E—4 | 0.69E —4 | 0.23E —3 | 0.69E — 5
5E+4| 052E—4 | 046E —4 | 0.14E—6 | 0.39E—4 | 0.25E —4
1E+5| 023E—4 | 0.73E—5 | 0.188—4 | 0.51E—4 | 0.51E—5
5E+5| 0.72E—5 | 02TE—4 | 0.19E—4 | 0.19E—5 | 0.27TE —5
1E+6| 0.69E—5 | 0.56E—5 | 0.19E—4 | 0.14E —4 | 0.38E — 5

(0.5,1,—

The values of the approximate solution ux(z) of Problem B at the same points 2! € D are given
in Table 3.4B. The obtained results have sufficient accuracy for many practical problems and are in
good agreement with the real physical picture.

It should be noted that Example 3.4 is considered in [2], where it is solved by the method of
separation of variables. It is shown that in conditions (3.12) the analytical solution to Problem B has
the following form

oo
u(x) = u(z1, 22, 73) = —SZZ —fl ) f2(2, 73)
=0¢q

3.13
2p+1)(2¢+1)’ ( )

where
vish(l(a — x1)) + vosh(lxy)
sh(la) ’

fi(z1) =



244 M. ZAKRADZE, M. KUBLASHVILI, N. KOBLISHVILI, AND A. CHAKHVADZE

(2p + 1)7T$2 E (2(] + 1)7‘(5(}3
b sim . s

fa(za,x3) = sin

1= V(@ + D)7+ (620 + D).

and sh(t) is hyperbolic sine.

TABLE 3.4B. Results for Problem B (in Example 3.4)

27 [(09,1,15) | (08,1,1.5) | (0.5,1,,1.5) | (0.2,1,1.5) | (0.1,1,1.5)

N un(zh) un (2?) un (23) uy (z%) nuy (z°)
5E 43 1.13260 1.26040 1.75080 2.46040 2.73280
1E+4 1.12920 1.27440 1.74840 2.44380 2.70770
5E + 4 1.12640 1.25490 1.74864 2.44730 2.71620
1E+5 1.12798 1.25773 1.74749 2.45006 2.71432
4FE +5 1.12858 1.26055 1.75092 2.44749 2.71528
1E+6 1.12824 1.25857 1.75128 2.44603 2.71731

It is easy to see that the series (3.13) converges rapidly for all points = (z1,z2,23) € D, when
p,q — oo. In order to compare the results obtained by the MPS and the (3.13), the partial sum
um(x) of the series (3.13) for p = 0,m and ¢ = 0,m at the points z° (i = 1,5) were calculadet
(see Table 3.4B). Because of rapid convergence of the series (3.13) when z € D, the calculations
have shown that practically wm,(0.9,1,1.5) = 1.12524, u,,(0.8,1,1.5) = 1.25747, u(0.5,1,1.5) =
1.75388, 4, (0.2,1,1.5) = 2.45277, u,, (0.1, 1, 1.5) = 2.72234, when m = 50, 100, 150. These results are
sufficiently close to results which are presented in Table 3.4B.

6 12
It is evident that for the solution u(x) the boundary condition (3.12) is satisfied on ( |J S;) U(U ).
j=3 k=1

If © € S1J Sz, then the rate of convergence of (3.13) becomes worse, especially in the neighborhood
of the discontinuity curves. In particular, the convergence is very slow and consequently, the accuracy
in the satisfaction of boundary condition on S; |J S2 is very low (see Section 1). This is caused by the
fact that, when x € S JS2 and tends to the discontinuity curves (edges), then all the terms of the
series (3.13) tend to zero.

TABLE 3.4C. Results for partial sum w,, ()

i ! U (), m = 50 | up (), m = 100 | up,(z), m = 150
1 (1,1,1.5) 0.987309 0.993644 0.995760
2 (1,1.8,1.5) 0.973200 0.986554 0.991000
3 (1,1.9,1.5) 1.033759 0.976574 1.011400
4 (1,1.99,1.5) 0.867110 1.175235 1.021747
) (1,1.999,1.5) 0.099228 0.198273 0.295694
6 (1,1,2.99) 0.623372 1.044791 1.176482
7 (1,1,2.999) 0.662021 0.132586 0.198485
8 (1,1.99,2.99 0.547480 1.235730) 1.207186
9 | (1,1.999,2.999) 0.006653 0.026456 0.058941
10 | (1,0.001,0.5) 0.100479 0.199549 0.295065

From Table 3.4C it is clear that accuracy of the solution u(x) is very low in the neighborhood of
the discontinuity curves, as expected.

Remark 3. if V7 or V5 is not constant then the analytic form of the solution is so difficult in the
sense of numerical implementation, that it has only theoretical significance (see [1]).
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In this work the problems of type B are specially solved when boundary functions g;(y) (i = 1,m)
are constants. This was caused by our interest to find out how much the obtained results were in
agreement with real physical picture. It is evident that solving Problem B under condition (1.5) is as
easy as Problem A. In general, Problem B can be solved for all such locations of discontinuity curves,
which give the possibility to establish the part of surface S where the intersection point is located.

The analysis of the results of numerical experiments show that the results obtained by the suggested
algorithm are reliable and it is effective for numerical solution of problems of type A and B. In
particular, the algorithm is sufficiently simple for numerical implementation.

Besides, it should be noted that the accuracy of probabilistic solution of problems A and B is
not significantly increasing (except some cases, see tables) when N — oo. It is caused by the fact
that ng (the number of the quantification) is fixed. If more accuracy is needed then calculations for
sufficiently large values of nq and N (see [20]) must be realized. In this case, numerical realization on
a PC takes much time. This difficulty can be avoided by applying the method of parallel calculation.
For this suitable computing technique is needed. Respectively, significantly less time will be needed
for numerical realization and besides the accuracy of the obtained results will improve.

4. CONCLUDING REMARKS

1. In this work have demonstrated that the method of probabilistic solution(MPS) is ideally suited
for numerical solving of both ordinary and generalized(2D and 3D) Dirichlet problems for rather a
wide class of domains, in the case of Laplace equation.

2. The MPS does not require an approximation of a boundary function, which is one of its important
properties.

3. The MPS is a fast solver for the above noted problems. Besides, it is easy to programme, its
computational cost is low, it characterized by an accuracy which is sufficient for many problems.
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