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HIGHLIGHTS OF RESEARCH WORK OF ESTATE KHMALADZE

ROBERT M. MNATSAKANOV

The goodness of fit problem and scanning martingales. Here we briefly outline one of the
central problems of mathematical statistics, the difficulties which remained open there from the mid
50s to the early 80s and the way they were overcome using very unexpected “martingale approach”
developed by Khmaladze (1981), as well as its nontrivial extension to the case of multidimensional
time.

Let Fn be an empirical distribution function of a sequence of n independent scalar random variables
with distribution function F . The normalised difference

√
n(Fn − F ) = vn, one of the basic processes

in statistical theory, is called the empirical process.
Certainly, both the distribution of the process vn for finite n and its limiting distribution as n→∞

depend on F (the limiting process v is called F -Brownian bridge). However, the amazingly simple
Kolmogorov’s transformation (Kolmogorov (1933)), un = vn ◦ F−1 with the condition that F is con-
tinuous, maps vn into the so-called uniform empirical process un with the standard (and independent
of F ) distribution. This opens an extremely important possibility to use asymptotic theory for un
only in asymptotic statistical inference concerning any continuous F . This “asymptotic distribution
freeness” of un became one of the basic facts in nonparametric statistics and in the theory of the so
called goodness of fit tests.

In the late 1950’s and early 1960’s it was discovered (see Kac, Kiefer and Wolfowitz (1955) or
Gikhman (1953)) that in most practical cases, where F = Fθ is known only up to a finite dimensional
parameter θ to be estimated from the data, the process vn,θ̂ =

√
n(Fn − Fθ̂) has the asymptotic

distribution not only different from that of F -Brownian bridge, but also such that vn,θ̂ ◦ F
−1
θ̂

is no

longer asymptotically distribution free. The bibliography on this subject is huge; one review paper
is Durbin (1973). Chibisov (1971) and Moore and Spruill (1975) demonstrated that the chi-square
statistics with estimated parameter is, in general, also not asymptotically chi-square distributed. All
developments in the late 1960’s and throughout the 1970’s persuaded statisticians that this was an
unavoidable complication which needed to be lived with.

However, Khmaladze’s paper (1981) changed this stereotype completely. It was shown that using
a different point of view on vn, a transformation of vn,θ̂ can be found, wn,θ̂ =

√
n(Fn −Kθ̂,n), which

converges to Fθ-Brownian motion, and therefore wn,θ̂ ◦ F
−1
θ̂

, is asymptotically a standard Brownian

motion on [0, 1], and thus asymptotically distribution free. The process wn,θ̂ can be thought of as the

innovation martingale of the process vn,θ̂ with respect to the natural filtration of the later. In this

way, the whole beauty and usefulness of asymptotically distribution free procedures were restored.
Further work of E. Khmaladze developed similar transformations in the difficult case of empirical

processes based on multidimensional random variables. As is know, the existing theory of martingales
in multidimensional time is complicated and involves restrictive conditions, not satisfied by many
important processes with multidimensional time (cf., e.g., Wong and Zakai (1974), Cairoli and Walsh
(1975), Hajek and Wong (1980), Gikhman (1982), Nualart (1983)). Therefore a new approach to
the stochastic calculus of Gaussian random processes with multidimensional time was required. The
notion of “scanning martingales”, suggested by Khmaladze (1988a, 1993), provides such an approach
and leads to an elegant and simple theory of innovation martingales in multidimensional spaces. In
Khmaladze (1988a), the general goodness of fit problem for simple hypothesis was formulated for the
first time, and Khmaladze (1993) gives the solution of this problem in a completely general setting and
opens a way to distribution free “model testing” in multidimensional spaces, the possibility, previously
nonexistent in the statistical theory.
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Mathematically, the paper establishes new connections between the goodness of fit problem of
statistics and empirical processes with functional time on one side, and the theory of stochastic
differential equations for measure-value processes and Volterra decompositions of Hilbert-Schmidt
operators on the other side.

The paper of Einmahl and Khmaladze (2001) gives a similar solution in Rd for another classical
problem of statistics, the so- called two-sample problem in a multidimensional space.

Sequential ranks. The sequential rank Sk of a random variable Xk is its rank among random vari-
ables X1, X2, . . . , Xk as compared with the “ordinary” rank Rkn which is the rank of Xk amongst all
n “available” random variables X1, X2, . . . , Xk, . . . , Xn, with k ≤ n. Sequential ranks are practically
very convenient when observations arrive one-by-one. However, their asymptotic theory meets with
certain difficulties; it was not known how to study the efficiency of statistical procedures based on
sequential ranks. Consequently, this theory fell into disuse, whereas the theory of “ordinary” ranks
received considerable attention in the 1960’s through to the 1980’s. For example, in Sen (1978),
although primarily devoted to sequential problems, it was necessary for the authors to work with “or-
dinary” ranks, which are inconvenient in this setting, because asymptotic methods were unavailable
for sequential ranks.

On the other hand, if X1, X2, . . . , Xn are independent and identically distributed, the sequential
ranks are of very nice behaviour: S1, S2, . . . , Sn are independent and each Sk has uniform distribution
on integers 1, 2, . . . , k.

The difficulties connected with efficiency of the tests based on sequential ranks were overcome
in the papers of Khmaladze and Parjanadze (1986), Pardzhanadze and Khmaladze (1986), which
established an asymptotic theory of sequential ranks in the same basic framework as the existing
theory for “ordinary” ranks. This was possible due to the development of asymptotic methods, not
normally applied in the theory of rank statistics. Namely, it was shown that the partial sum processes
based on (functions of) “ordinary” ranks and those based on sequential ranks may be asymptotically
connected through a linear stochastic differential equation and hence the properties of one can be
carried over into the properties of another.

In particular, it was shown that asymptotic distributions of linear statistics
n∑
k=1

cka(Rkn/n)

from “ordinary” ranks and linear statistics
n∑
k=1

(
ck −

∑
m≤k

cm/k

)
a(Sk/k)

from sequential ranks have the same asymptotic distribution under all contiguous alternatives. Equiv-
alently, statistics

n∑
k=1

cka(Sk/k) and

n∑
k=1

(
ck −

∑
m≥k

cm/m

)
a(Rkn/n)

have the same limit distributions under all contiguous alternatives. Thus, whenever one of them is
optimal against some contiguous alternative, the other is also optimal for the same alternative.

Multinomial distributions of increasing dimension. The research in this field may be of interest
to the colleagues in discrete mathematics.

The sequence of multinomial distributionsM(·, pN , n), where pN = {pin}N1 , pin > 0 and
N∑
1
pin = 1,

which have the number of different possible outcomes N = Nn increasing with number of trials n, form
a surprisingly rich class of distributions. They reflect and illustrate a very large number of interesting
problems found in other parts of statistics, such as:
• the asymptotic behaviour and properties of statistics like the classical χ2-statistic when Nn →∞

as n→∞ are sharply different from those which one can deduce when first letting n→∞ and then
N →∞;



HIGHLIGHTS OF RESEARCH WORK OF ESTATE KHMALADZE 129

• statistical problems with increasing numbers of parameters, like the problem of estimating spectra
of matrices of increasing dimension or problems with “fine” partitions, are very similar to what one
meets in the asymptotic analysis of M(·, pN , n) — the normalised probabilities npin, i = 1, . . . , Nn,
are these parameters;
• the class of asymptotic laws of which the famous Zipf - Mandelbrot’s law is the most remarkable

representative, are highly connected with the sequences M(·, pN , n) where n → ∞. We comment on
Zipf – Mandelbrot’s law separately below.

The paper of Khmaladze (1983) completely modified the tools and approaches used in this field.
Instead of considering sums, called “divisible statistics”,

Nn∑
i=1

g(νin, npin)

and limit theorems for each sum, the paper studied partial sums

k∑
i=1

g(νin, npin), k = 1, 2, . . . , Nn,

and derived limit theorems for these processes. They are treated as semimartingales associated not
with its natural filtration, but with richer filtration Fk = σ{ν1n, . . . , νkn}, k = 1, 2, . . . , Nn, based
on underlying frequencies. The point of it is that the conditional distribution of νin given previous
frequencies νjn, j = 1, 2, . . . , i−1, is much simpler object, than conditional distribution of g(νin, npin)
given previous summands g(νjn, npjn), j = 1, 2, . . . , i− 1.

It showed how new at a time limit theorems for semimartingales could be utilised and lead to
general functional limit theorems for the basic statistics of the field – the so-called additively divisible
statistics (statistics of increasing numbers of small, separate frequencies). The paper demolished an
unnecessary partition between different parts of asymptotic statistics (for a better picture, see Ivchenko
and Levin’s review paper (1996)). It led to similar advances in the theory of general spacings (see
Borovikov (1987)) and in the analysis of the so-called “very rare events” (see Mnatsakanov (1985) or
Prakasa Rao (1987)).

Large number of rare events (LNRE) theory. The text of Dante’s “Divina Comedia” is in
length some 100,000 words. Approximately 13,000 of these words are different, that is, the vocabulary
of “Divine Comedia” is only 13,000 words. It would be, however, very incorrect to suppose that each
word was used by Dante approximately 8 times. There is certainly nothing like an even usage of
words, few words were used hundreds of times, while about 6,000 words (half the vocabulary) were
used only once and about 2,000 words were used only twice.

This is the typical situation in a surprisingly large number of applied statistical problems, not only
in all sorts of large texts, but also in studies of the number of species in an environment, opinions in
a survey, chemical analysis, income distributions, distribution of languages, etc.

According to Zipf’s law, if µn(m) is the number of words (species, opinions, etc.) which occurred
m times in a sample of size n and if µn is the number of all different words (species, opinions, etc.)
in the same sample, then

µn(m)

µn
→ 1

m(m+ 1)
as n→∞.

Its slightly modified form
µn(m)

µn
→ 1

(a+ bm)q
as n→∞

is called Zipf - Mandelbrot’s law. In the words of Mandelbrot (1953), “The form of Zipf’s law is so
striking and also so very different from any classical distribution of statistics that it is quite widely felt
that it “should” have a basically simple reason, possibly as “weak” and general as the reasons which
account for the role of Gaussian distribution. But, in fact, these laws turn out to be quite resistant to
such an analysis. Thus, irrespective of any claim as to their practical importance, the “explanation”
of their role has long been one of the best defined and most conspicuous challenges to those interested
in statistical laws of nature”.
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The present interest in Zipf’s law is, perhaps, characterised by the increase of interest in the more
general concept of LNRE distributions, which was introduced and first systematically studied in an
unpublished paper of Khmaladze (1988b), partly reproduced by Khmaladze and Chitashvili (1989)
and called and treated as “fundamental” in the monograph of Baayen (2001).

“Chimeric” contiguous alternatives. The theory of contiguity of probability measures is a main
tool in asymptotic statistics to study the efficiency and power of statistical procedures. Contiguous
distributions or contiguous alternatives (to a given distribution) form a class of alternatives which are,

heuristically speaking, most difficult to detect. It is well known that if P and P̃ are two distributions,
then n-fold direct products P(n) and P̃(n) are either asymptotically singular as n → ∞ or coincide
(alternative of Kakutani). In order for P̃(n) to be contiguous to P(n), the distribution P̃ must depend
on n in such a way, basically, that(

dP̃
dP

)1/2

= 1 +
1√
n
hn with lim sup

n→∞
‖hn‖L2(P) <∞

(see, e.g., Oosterhof and van Zwet (1979)). Practically all papers which use contiguity theory replace

the latter condition by hn
L2(P)−→ h and for very good reasons. Nevertheless, the paper of Khmaladze

(1998) studies such contiguous alternatives that ‖hn‖ ≥ 1, but hn
ω→ 0, that is, hn has no limiting

points in L2(P). It is clear that no classical goodness of fit test based on empirical process can detect
any such “chimeric” alternative. Yet the paper of Khmaladze (1998) shows that new versions of
empirical processes can be constructed and a goodness of fit theory can be developed which is no less
rich than that which exists for converging contiguous alternatives.

The paper also shows that although they look exotic, “chimeric” alternatives can frequently be
found in real problems. After all, the existence of our civilisation is itself an enormous “chimeric”
alternative.

Change-set problem (spacial change-set problem). The idea of transferring the range of prob-
lems usually unified by the term “change-point problem” for real line to finite-dimensional Euclidean
space was entertained and discussed by E. Khmaladze at the end of 80-ies, while still in Moscow, in
particular, at the Moscow Seminar of Young Statisticians. But he started working himself only in
1996.
With the help of the concept of the local covering numbers, the papers of Khmaladze, Mnatsakanov
and Toronjadze (2006a, 2006b) investigated the convergence of statistical estimators of the change-set
and finally obtained the correct rate of n−1. This is the rate of convergence of what is called “super-
efficient” estimators in statistics. The smoothness of the boundaries were not required – only that the
class of possible change-sets was locally compact.

Differentiation of set-valued functions. The research work of E. Khmaladze here has a story.
Heuristically, the idea came from the work on the change-set problem. In this problem, the object of
interest is a set, say A ∈ Rd as a hypothesis, and a sequence of sets Bn ∈ Rd, converging in Hausdorff
metric to A as a sequence of contiguous alternatives. What a statistician observes is a point process
Nn in Rd, and, as n→∞, the intensity of this point process increases, so that there appear more and
more points, and symmetric difference A∆Bn shrinks towards the boundary of A at the same time.
Since the number of points increases, it is not necessary that their number in A∆Bn decreases to zero.
In the most interesting cases this number becomes a Poisson random variable. So, the corresponding
points do not disappear; but where do they eventually “live”? The first intuition was that they must
“live” on the boundary of A. But later the feeling grew that this should not be true. Some sort of
“differentiation” seems to be lurking behind the scenes.

All this were talks and guesses, and some reading for several years. The actual work started after
2004. In Karlsruhe, a very good colleague and very highly regarded geometer, Wolfgang Weil, came
one day to the small temporary library room, where Estate was accommodated, and put down the
famous book of J-P. Aubin and E. Frankowska (1990) on a set-valued analysis. The book contained
two chapters on differentiation of set-valued functions. And this meant that secure, but not very
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original work, lied ahead. W. Weil was not too enthusiastic about this prospect. And in spite of joint
paper of Khmaladze and Weil (2008), which was then the work in progress, Estate was on his own.

A year later, the draft of the paper on differentiation of set-valued functions was ready and in 2007
the paper Khmaladze (2007) was published. One short corollary of the new notion of a derivative is
the following:
• if, as t → 0, the symmetric difference A∆Bt is differentiable at the boundary ∂A, then for any

absolutely continuous distribution P in Rd there exists an absolutely continuous distribution Q on the
normal cylinder of ∂A such that

d

dt
P(A∆Bt) = Q

( d
dt
Bt

)
.

Later, a review article with W. Weil was invited to the Annals of the Institute of Statistical Mathe-
matics, Khmaladze and Weil (2018), where the derivative was given a name of “fold-up derivative” and
was defined in more general class of situations. Before that, a paper with John Einmahl established
CLT for the point process Nn on classes of sets in shrinking neighbourhoods of ∂A (see Einmahl and
Khmaladze (2011)).

In a personal letter to E. Khmaladze, J.-P. Aubin calls the work of fold-up derivatives a “mathe-
matical virtuosity”.

Questionnaires – the problem of diversity in spaces of increasing dimension. A person
is asked q binary questions: “yes” or “no”. The person fills in this questionnaire and this is one
“opinion”. Altogether 2q different opinions are possible. Lots of people, N , are asked to fill this
questionnaire. So, there are lots of questionnaires with many possible opinions expressed in them.
Exactly, how many different opinions will be found in the sample? How many opinions will be unique?
These and all other similar questions have been answered by Khmaladze (2011). But the answers did
not come without surprise also for the author.

Imagine, again, that we are in [0, 1]q = [0, 1] × · · · × [0, 1], and we divide the first interval [0, 1]
in proportion a1 : 1 − a1, the second [0, 1] as a2 : 1 − a2, and so on. In this way one will obtain
2q elementary cubes. In one-dimensional space, each of subintervals [0, a1] and [a1, 1] is divided as
a2 : 1 − a2, then each of the resulting four are divided as a3 : 1 − a3, and so on, q times. The
first impression was that this would be some other version of random partition of a “stick” into 2q

subintervals: if 0 < U1 < U2 < · · · < U2q−1 < 1 are uniformly distributed random variables, arranged
in increasing order, then the spacings [Ui, Ui+1] are forming this random partition. If we now throw
N random points on [0, 1], or in [0, 1]q, and count frequencies of these points in each subinterval, or
small cubes, what will be their behaviour?, how many subintervals will remain empty?, how many will
contain just one point?, etc. For a random partition, the answers are more or less known and initially
Estate wanted an analogue of this.

However, the behaviour of these frequencies turn out to be very different. Very uneven. Behaviour
of spacings is, strictly speaking, also “uneven”, but not so far from being even. But sizes of intervals, or
volumes of cubes, obtained through these ai-s are sharply uneven. And behaviour of the frequencies of
random points in them, consequently, is also uneven. First of all, the number of cells with some filling
turns to be o(N), i.e., much smaller than the number of points thrown; or the number of different
opinions is much smaller, than the number of persons asked. The fraction of cells with one, two, and
in general k points in them, relative to the number of all non-empty cells, follows some “law”, which
“almost” does not depend on the choice of ai-s. Yet, this law is not the famous Zipf’s law, which
many of us could have heard about.

A complete description of the situation is given by Khmaladze (2011) and partly in the 18-years
earlier paper of Khmaladze and Tsigroshvili (1993). This was a strong step forward within the theory of
diversity and occupation problem. Division in more than two subintervals at each step is a fascinating
problem for the future.

Unitary operators. The last several years a new development took place in the direction of distri-
bution free testing theory. The main idea can be explained as follows.

The empirical process with estimated parameter vn,θ̂, or estimated empirical process for short, is

not just a process with different limit distribution from the empirical process vn, it has the specific
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structure – its limit distribution is that of the projection of Fθ-Brownian bridge, orthogonal to the
score function ḟθ/fθ. Thus the distribution of the projected Fθ-Brownian bridge is dependent on this
score function. This asymptotic phenomenon was first described by Khmaladze (1979). It implies
that for any regular parametric family of distributions Gθ, θ ∈ Θ, as a limit of the estimated empirical
process, one will obtain again a projection of Gθ-Brownian bridge, orthogonal to a corresponding score
function. However, if the dimension of parameters in both families is the same, than with the help of
unitary mappings one projection can be mapped to another projection thus rendering the two testing
problems equivalent, in the sense that one can be transformed into other and the other way around.

Convenient framework for application of operators on empirical processes is provided by the function-
parametric version of empirical processes

vn,θ̂(φ) =

∫
φ(x)vn,θ̂(dx), φ ∈ L2(Fθ),

because then the operator U on vn,θ̂ can be naturally defined as the adjoint operator U∗ on L2(Fθ):

(Uvn,θ̂)(φ) = vn,θ̂(U
∗φ).

However, this notion of equivalence creates very wide classes of equivalence, and in each class one
needs only one representative, for which the distributional work for test statistics should be carried
through; this is no different to assuming that the sample came from uniform distribution while testing
simple hypothesis.

The projections, as a result of estimation of parameters, are ubiquitous. They appear in situations
where so far nobody considered testing problems. Estimation of parameters - yes, but not testing,
in particular, not goodness of fit testing. From the families of discrete distributions, for which the
goodness of fit testing theory appeared only in 2013 (see Khmaladze (2013)), to empirical processes
in regression, and now testing models for point processes (see the article of Khmaladze (2020) in this
issue), testing parametric hypothesis for Markov chains and for Markov diffusion processes, like the
Ornstein – Uhlenbeck process, all are work in progress.

In this account of scientific contribution of Estate Khmaladze in statistics and stochastic models
we do not comment on the other fields of his research such as

– kernel density estimators,
– asymptotic of non-crossing probabilities with moving boundaries,
– formulation of the strong law of large numbers for Voronoi tessalation,
– extreme value theory and record processes

and various others. One can find these, e.g., in Mnacakanov and Hmaladze (1981), Kotel’nikova and
Khmaladze (1982), Khmaladze, Nadareishvili and Nikabadze (1997), Khmaladze and Shinjikashvili
(2001), Khmaladze and Toronjadze (2001) (see also Schneider and Weil (2008)), Can, Einmahl, Khmal-
adze and Laeven (2015).
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