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ON DOUBLE FOURIER SERIES WITH RESPECT TO THE CLASSICAL

REARRANGEMENTS OF THE WALSH–PALEY SYSTEM

ROSTOM GETSADZE

Abstract. The following theorem is established: there exists a continuous function on [0, 1]2 with
a certain smoothness, whose double Fourier-Walsh series diverges by rectangles on a set of positive

measure. Similar theorem is true also for the double Walsh–Kaczmarz system.

1. Introduction

There are two classical rearrangements of the Walsh–Paley system: (a) the Walsh system and (b)
the Walsh–Kaczmarz system. It is well-known (see [3, 4]) these systems are systems of convergence.
The system of Rademacher functions {rn(x)}∞n=0 on [0, 1) is defined as follows. Set

r0(x) =

{
1 for 0 ≤ x < 1

2 ,

−1 for 1
2 ≤ x < 1.

We extend the function r0(x) on (−∞,∞) with period 1. For n ≥ 1, we set

rn(x) = r0(2nx).

For each k ∈ N = {0, 1, 2, . . . }, we introduce a function αk : [0, 1)→ {0, 1} defined by the dyadic
expansion of x

x =

∞∑
k=0

αk(x)

2k+1
.

If x is a dyadic rational, then we suppose that its dyadic expansion contains infinitely many zeros.
The Walsh–Paley system of functions {Wn(x)}∞n=0 on [0, 1) is defined as follows. Set W0(x) = 1

for all x ∈ [0, 1). For n ≥ 1, we consider the dyadic representation n = 2m1 + 2m2 + · · ·+ 2mq , (n ≥ 1,
m1 > m2 · · · > mq ≥ 0) and set

Wn(x) = rm1
(x)rm2

(x) . . . rmq
(x) x ∈ [0, 1).

The modulus of continuity ω (F ; δ) of a continuous function F on [0, 1]2 is defined by

ω (F ; δ) = sup√
(x1−x2)2+(y1−y2)2≤δ

{|F (x1, y1)− F (x2, y2)|, (x1, y1), (x2, y2) ∈ [0, 1]2}.

Recently [2], we have proved the following

Theorem 1. There exists a continuous function F on [0, 1]2 such that

ω (F ; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of F with respect to the double Walsh–Paley system {Wm(x)Wn(y)}∞m,n=0

diverges on a set of positive measure by rectangles.
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The Walsh system {ϕm(x)}∞m=0 was introduced by Walsh (see, e.g., [4]) and defined as follows:

ϕ0(x) = 1, ϕ1(x) = (−1)α0(x), ϕ2n(x) = (−1)αn−1(x)+αn(x),

ϕ2n+k(x) = ϕ2n(x)ϕk(x), k = 0, 1, . . . , 2n − 1; n = 0, 1, . . . ,

To define the Walsh–Kaczmarz system {hm(x)}∞m=1, we first introduce an auxiliary system of
functions

ψn,i(x) = rn−j1−1(x)rn−j2−1(x) . . . rn−jp−1(x), x ∈ [0, 1),

where n, i ∈ N , 2 ≤ i ≤ 2n, n ≥ 1 and

i− 1 = 2j1 + 2j2 + · · ·+ 2jp ,

with j1 > j2 > · · · > jp ≥ 0, is the dyadic expansion of the integer i− 1.
For i = 1 and n ≥ 1, we set

ψn,1(x) = 1, x ∈ [0, 1).

The Walsh–Kaczmarz system {hm(x)}∞m=1 on [0, 1) is defined as follows:

h1(x) = 1 and h2(x) = r0(x), x ∈ [0, 1).

For m = 2n + i, n ≥ 1, 1 ≤ i ≤ 2n, we set

hm(x) = h2n+i(x) = ψn,i(x)rn(x), x ∈ [0, 1).

We establish the following two theorems.

Theorem 2. There exists a continuous function G on [0, 1]2 such that

ω (G; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of G with respect to the double Walsh system {ϕm(x)ϕn(y)}∞m,n=0 diverges on
a set of positive measure by rectangles.

Theorem 3. There exists a continuous function H on [0, 1]2 such that

ω (H; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of H with respect to the double Walsh–Kaczmarz system {hm(x)hn(y)}∞m,n=1

diverges on a set of positive measure by rectangles.

A weaker result than Theorem 3 has been proved by us in [1].
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