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THE DIRECTED GRAPHS OF SOME FUNCTIONS

MARIAM GOBRONIDZE1 AND ARCHIL KIPIANI2

Dedicated to Professor Alexander Kharazishvili on the occasion of his 70th birthday

Abstract. A description of the digraphs associated with Hamel’s coordinate functions and with

some elementary functions is given. Some cardinal invariants of the corresponding mono-unary
algebras are found. It is also proved that the digraph of the function tan is an universal graph for

the class of digraphs of functions of a certain type.

1. Introduction

Given a function f : R→ R, it can be studied from different points of view including analysis, ge-
ometry, algebra, graph theory, combinatorics, etc. Many well-known functions, for example, functions
constructed by Hamel [2] and having huge values in Linear algebra, Geometry, Functional analysis and
Measure theory (see [1], [3], [5], [6], [9–11], [13]), or elementary functions are not sufficiently studied,
especially, in algebra and graph theory. Every function f naturally generates the mono-unary algebra
and the corresponding functional digraph [12]. In this article, we consider the mono-unary algebras
and the corresponding digraphs for coordinate functions of Hamel’s basis and for basic elementary
functions. A description of the connected components of the digraphs of the above functions is given;
the cardinalities of automorphism groups of such digraphs and the cardinality of the set of all mono-
unary algebras, isomorphic to a given one, are established also. It is proved that for every coordinate
function of Hamel’s basis f : R → R there exists an effectively constructed (without the axiom of
choice) simple function g : R → R such that the algebras (R, f) and (R, f) are isomorphic. It is also
proved that for any basic elementary functions, except for a constant, there are 2c many functions
from R to R such that the mono-unary algebras (graphs) generated by any of them are isomorphic
to the mono-unary algebras (graphs) generated by the function f . Obviously, most of these functions
(in view of cardinality) are discontinuous.

2. Preliminary

We will use the standard algebraic, set-theoretic and graph theoretic notations. A partial mono-
unary algebra is a pair (A, f), where A is a non-empty set and f is a map f : B → A for some subset
B ⊂ A. If B = A, then the pair (A, f) is called a mono-unary algebra. For each partial mono-unary
algebra, the corresponding digraph Gf is determined as follows:

Gf = (A, {(x, f(x)) : x ∈ Dom(f)}).
If (A, f) is a partial mono-unary algebra, we define a relation E on A in the following way: xEy, if
and only if for some natural numbers n and m the equality fn(x) = fm(y) holds, where

f0(x) = x, fn+1(x) = f(fn(x)), for n ∈ ω.
Then E is an equivalence relation on A, and we call E-equivalence classes of algebra A with the
induced operation, connected components of the partial algebra (A, f). If {Ai : i ∈ I} is the family
of all E-equivalence classes, then we have A = ∪

i∈I
Ai and the family {(Ai, fi) : i ∈ I}, where fi = f|Ai

is called the injective family of all connected components of partial mono-unary algebra (A, f). The
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corresponding digraphs of the subalgebras {Ai, fi} : i ∈ I are connected components of the digraph
Gf .

The ordinal ω, is the set of all naturals, i.e., of all nonnegative integers, at the same time, ω denotes
the cardinality of the set of natural numbers. The cardinality of the continuum is denoted by c. The
symbols: Z,Q,R denote the sets of integers, of rational numbers and the set of reals, respectively. |X|
denotes the cardinality of a set X.

(a) If n ≥ 1 is the smallest integer such that fn(x) = x for some element x, the following set
{(x, f(x)), (f(x), f2(x)), . . . , (fn−1(x), x)} is called an n-cycle.

(b) If an injective family {an : n ∈ ω} of elements of A such that f(an+1) = an(f(an) = an+1

respectively), n ∈ ω, then we say that the algebra (A, f) contains an ω-chain (ω∗-chain, respectively).
(c) If there is an injective family {aq : q ∈ Z} of elements of A such that f(aq) = aq+1, q ∈ Z, then

we say that the algebra (A, f) contains an ω∗ + ω -chain.
(d) Every graph, which is considered in this article is a digraph of a partial function, respectively,

a root tree is called a tree, in which each vertex is oriented in the direction to the root.
(e) The points, whose in-degree and out-degree is 0, are called isolated points.

3. The Digraphs of Hamel Coordinate Functions

Definition 3.1. Let b be an element of some Hamel basis of the vector space R(Q). The coordinate
function f of Hamel basis is defined as follows: for any x ∈ R, f(x) is the b-th coordinate of the vector
x [1]; The set of all coordinate functions of some Hamel basis of the vector spaces R(Q) is denoted
by H.

The following lemma is trivial to prove.

Lemma 3.2. If f ∈ H, then the following hold:
(a) f(0) = 0,
(b) for each r ∈ Q the set f−1({r}) has the cardinality c,
(c) for each x ∈ R\Q we have f−1({x}) = ∅,
(d) |H| = 2c.

Definition 3.3.
3.1.1. A root tree of cardinality c whose root is an incident to any vertex, except the root, is called

a tree of type H0.
3.1.2. If T is a tree of type H0 and r0 is its root, then the digraph T ∪ (r0, r0) is called a graph of

type H1 (see Figure 1).
3.1.3. Let (Ti)i∈ω be a family of disjoint digraphs of type H0 and ri be a root of the tree Ti for each

i ∈ ω, then the following graph (∪Ti) ∪ {(ri, r0) : i ∈ ω} is called a graph of type H2 (see Figure 2).
3.1.4. Let (Tk)k∈Z be a family of disjoint graphs of type H0 and rk be a root of the tree Tk for

each k ∈ Z, then the following digraph (∪k∈Z Tk) ∪ {(rk, rk+1) : k ∈ Z} is called a graph of type H3

(see Figure 3).

Remark 3.4. It is easy to verify that the graphs of the same types are pairwise isomorphic, and
those of different types are pairwise non-isomorphic.

3 
 

(a) 𝑓(0) = 0, 

(b) for each 𝑟 ∈ ℚthe set  𝑓−1({𝑟}) has the cardinality 𝐜, 

(c) for each 𝑥 ∈ ℝ\ℚwe have 𝑓−1({𝑥}) = ∅, 

(d) |𝐻| = 2𝑐. 

Definitions 3.3.  

3.1.1. A root tree of cardinality 𝐜 whose root is incident to any vertex except the root is called a tree 

of type 𝐻0.  

3.1.2. If T is a tree of type 𝐻0, and 𝑟0 is its root, then the digraph 𝑇∪ {(𝑟0, 𝑟0)} is called a graph of 

type 𝐻1 (See Figure 1). 

3.1.3. Let   (𝑇𝑖)𝑖𝜖𝜔be a family of disjoint digraphs of type 𝐻0 and 𝑟𝑖be a root of the tree 𝑇𝑖 for each 

𝑖𝜖𝜔, then the following graph (∪ 𝑇𝑖)∪ {(𝑟𝑖, 𝑟0): 𝑖𝜖𝜔}is called a graph of type 𝐻2 (See Figure 2). 

3.1.4. Let   (𝑇𝑘)𝑘𝜖ℤ be a family of disjoint graphs of type 𝐻0 and 𝑟𝑘 be a root of the tree 𝑇𝑘 for each 

𝑘𝜖ℤ, then the following digraph (∪ 𝑇𝑘)∪ {(𝑟𝑘, 𝑟𝑘+1): 𝑘𝜖ℤ}is called a graph of type 𝐻3 (See 

Figure 3).   

Remark 3.4. It is easy to verify that graphs of same types are pairwise isomorphic, and graphs of 

different types are pairwise non-isomorphic. 
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Theorem 3.5. If f ∈ H, then the following hold:
(a) if f(1) = 0, then Gf is the graph of type H2;
(b) if f(1) = 1, then the graph Gf consists of infinitely countably many connected components of

type H1;
(c) if f(1) ∈ Q\{0; 1}, then the graph Gf consists of countably infinitely many connected compo-

nents, among them, only one component is of type H1, all other components are of types H3.

Proof. (a) It is clear that f(1) = 0 iff for any r ∈ Q we have f(r) = 0. Therefore, from Lemma 3.2 it
follows that if f(1) = 0, then the digraph Gf of the function f will be of type H2.

(b) If f(1) = 1, then we have f(r) = r, r ∈ Q. Let {ri : i ∈ Z} be an injective family of all rational
numbers. It is obvious that for each i ∈ Z the cardinality of the set f−1(ri) is c and the digraph
(f−1(ri), {(x, ri) : x ∈ f−1(ri)}) is a connected component of type H1 of the digraph Gf .

(c) Let f(1) = r ∈ Q\{0; 1}. If r0 ∈ Q\{0}, then for each k ∈ Z we have f(rk · r0) = rk+1 · r0.
Therefore {(rk · r0, rk+1 · r0) : k ∈ Z} is an ω∗ + ω chain in the digraph Gf . If r1 6= r2, then
f(r1) 6= f(r2). Thus, for every nonzero rational number q, the set f−1({q}) contains a unique rational
number, and the graph Gf contains a unique loop (0, 0). Consequently, each nonzero rational number
forms a component of type H3. It is easy to prove that there are infinitely many different components
of type H3. In addition to the connected components of type H3, the graph Gf will contain a single-
connected component of type H1 corresponding to the number 0. �

Corollary 3.6. The maximal family of pairwise non-isomorphic mono-unary algebras (R, f), where
f is an element of H, consists of 3 elements.

Corollary 3.7. For f ∈ H, the automorphisms group of mono-unary algebra (R, f) has the cardinal-
ity 2c.

Theorem 3.8. For each f ∈ H, there exists an effectively (without the axiom of choice) constructed
function g : R→ R such that the digraphs Gg and Gf are isomorphic.

Proof. (a) If f(1) = 0, consider the function defined as follows:

ga(x) =


0, if x ∈ Z or − 1 < x < 1,

n, if n < x < n+ 1, n ∈ ω\{0},
−n, if − n− 1 < x < −n, n ∈ ω\{0}.

It is easy to prove that in this case the digraphs Gf and Gga are isomorphic.
(b) If f(1) = 1, consider the function defined as follows:

gb(x) =


n, if n ≤ x < n+ 1, n ∈ ω\{0},
0, if − 1 < x < 1

−n, if − n− 1 < x ≤ −n, n ∈ ω\{0}.
It is easy to prove that in this case the digraphs Gf and Ggb are isomorphic.

(c) Let f(1) = r, for some r ∈ Q\{0; 1}.
Then for any prime number p, define the function gp(x) by the following equality:

gp(x) =

{
pk+1, if x ∈ (pk − 1; pk], for k ∈ ω\{0}
−pk, if x ∈ [−pk+1;−pk+1 + 1), for k ∈ ω\{0}).

Evidently, for any prime number p, the digraph Ggp is a digraph of type H3.
If we now combine the functions gp for all prime numbers and consider a function gc defined as

follows:

gc(x) =

{
gp(x), if x ∈ Dom(gp), for some prime number p,

0, for all other values of x ∈ R,
then it is easy to verify that in this case the digraphs Gf and Ggc are isomorphic. �

Remark 3.9. Despite the fact that the functions ga, gb and gc are constructed effectively, the proof
of the existence of the corresponding isomorphisms requires a countable form of the Axiom of Choice.
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4. The Digraph of the Algebra (R, sin)

Definition 4.1.
4.1.1. A countably infinite root tree in which each vertex, except the root, is connected to the root,

is called a tree of type S0 (Figure 4).
4.1.2. If T is a tree of type S0 and r0 is its root, then the digraph T∪{(r0, r0)} is called a digraph

of type S1 (Figure 5).
4.1.3. Let (Ti)i∈ω be a family of disjoint digraphs of types S0 and ri be a root of the tree Ti, for

each i ∈ ω, the following digraph ∪ {Ti : i ∈ ω} ∪ {(ri, ri+1) : i ∈ ω} is called a graph of type S2

(Figure 6).
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Theorem 4.2. The set of all connected components of mono-unary algebra (R, sin) has the cardinality
of the continuum, among them one component is a graph of type S1 and all the other components are
the graphs of type S2.

Proof. It is obvious that the in-degree of each vertex of the graph Gsin is 0 or ω. It is also obvious
that the component containing the number 0, is a component of type S1.

If x ∈ R\{πk : k ∈ Z}, then it is clear that

|x| >
∣∣ sin |x|∣∣ > ∣∣ sin ∣∣ sin |x|∣∣∣∣ > · · ·

holds. Therefore, there aren’t any cycles in the component, which doesn’t contain 0. It is clear that
such components contain an ω∗-chain. From the trivial inequality

|x− y| > | sinx− sin y|, (x 6= y)

it follows that the sequence x, arcsinx, arcsin2 x, . . . is always finite. Therefore, there aren’t any ω-
chains in the digraph Gsin.

Obviously, each connected component of the digraph Gsin contains a countably infinite set of
vertices, hence the set of all connected components of Gsin has the cardinality of the continuum. �

5. The digraph of the algebra (R, cos)

Definition 5.1.
5.1.1. If T0 and T1 are two disjoint trees of types S0, and r0 and r1 are their roots, then the

digraph T0 ∪T1 ∪ {(r0, r1)} is a tree of type C0 (Figure 7).
5.1.2. If T is a tree of type C0 and r0 is its root, then T ∪ {(r0, r0)} is a digraph of type C1

(Figure 8).
5.1.3. Let (Ti)i∈ω be a family of disjoint root trees of type C0 and ri be a root of the tree Ti,

i ∈ ω, the following digraph ∪ {Ti : i ∈ ω}∪{(ri, ri+1) : i ∈ ω} is called a graph of type C2 (Figure 9).
5.1.4. Let T be a tree of type S0 whose root is r, (Ti)i∈ω be a family of disjoint root trees of type

C0 and let ri be the root of a tree Ti, i ∈ ω. Then the graph T ∪Ti ∪ {(ri, ri+1) : i ∈ ω} ∪ {(r, r0)}
is called the graph of type C3 (Figure 10).

Theorem 5.2. The set of all connected components of mono-unary algebra (R, cos) has the cardinality
of the continuum, among them there is one component of type C1, one component of type C2 and all
others are of type C3.

Proof. Let d be a fixed point of the function cos. It is obvious that the in-degree of each vertex
of the digraph of cos is 0 or ω. It is also obvious that the component containing the fixed point
d, is a component of type C1, in this component only two vertices d and −d will have in-degrees
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equal to ω. From the fact that the function cos has only one fixed point, it follows that the graph
has only one component, which has a loop. For any x ∈ R\{d}, the injective sequence of iterations
x, cos (x), cos(cos (x)), . . . converges to d, so the digraph Gcos does not contain cycles, except for a
single loop (d, d), and contains an ω∗ chain. It follows from the parity of function cos that the other
connected components are of type C2 or of type C3, clearly that type C2 will have a single component
containing the number 0. Evidently, that the set of all such components has the cardinality c. �

Remark 5.3. It should be remarked that the digraphs Gsin and Gcos are not isomorphic, they don’t
even have components, isomorphic to each other.

6. The Digraph of the Partial Mono-unary Algebra (R, tan)

Definition 6.1.
6.1.1. Let’s define the component of type Tan0 as a root tree, whose in-degree of every vertex is

countably infinite (Figure 11).
6.1.2. Let (Ti)i ∈ ω be a family of disjoint components of type Tan0 and ri be the root of the tree

Ti for each i ∈ ω\{0}. For every n ∈ ω\{0}, the following digraph( n⋃
i=1

Ti

)
∪
( n−1⋃
i=1

{(ri, ri+1)}
)
∪ {(rn, r1)}

is called a component of type Tann (Figure 12) and (∪i∈ω Ti)∪{(ri, ri+1) : i ∈ ω} is called a component
of type Tan∞ (Figure 13).

Theorem 6.2. The set of connected components of partial mono-unary algebra (R, tan) consists of
countably infinitely many components of type Tann, for each n ∈ ω, and continuum-many components
of type Tan∞.

Proof. It is obvious that:

• The in-degree of each vertex of the graph of the function tan is ω.
• For each rk = π/2+πk, k ∈ Z, there is a component Tk in the graph of the partial mono-unary

algebra (R, tan), which is a component of type Tan0 and whose root is rk. There aren’t any
other components of type Tan0.

• Due to the reason that for each natural n, the equality-

tann(x) = x

has countably infinitely many solutions, therefore there are countably infinitely many compo-
nents of type Tann, for each natural n, in the graph of partial mono-unary algebra (R, tan).
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It’s obvious that the union of sets of vertices of all components of type Tann, n ∈ ω, is countably
infinite. We can say that each of the remaining points is in the set of domains of the function tan as in
the set of ranges of the function tan, the cardinality of the set of all such points is c. In addition, we
know that the cardinality of the set of vertexes of each component of the graph of (R, tan) is countably
infinite. Therefore, the components which are not of type Tann, n ∈ ω, are the components of type
Tan∞ and the cardinality of the set of all such components is c. �

Remark 6.3. In the same way we can find out that (R, cotan) has the same structure of the digraph
as (R, tan). Therefore, we have (R, tan) ∼= (R, cotan).

7. The Digraphs of Some Basic Elementary Functions

It’s easy to show, what kinds of graphs have the following functions: see Figure 14

F0 = {arcsin, arccos, arctan, arccotan, ax, loga x, x
n, x

1
n (n = 1, 2, 3, . . . )}

8. Universality of the Digraph of the Function tan

Theorem 8.1. For each mono-unary algebra (R, f), f ∈ F , there is a monomorphism from (R, f)
into the (R, tan).

Proof. The corresponding monomorphisms can be easily constructed. We construct a monomorphism
of the algebra (R, cos) into the partial algebra (R, tan). The remaining monomorphisms are con-
structed more simply.

First, we build a monomorphism from the component C0
1 of type C1 with root d, which is the fixed

point of cos, into any component T1 of type Tan1, whose root is r.
Define the sets: A′1 = {x : cos(x) = d}; B′1 = {x : tan(x) = r}.
Let f ′1 be a bijection between these two sets.
Now we define the following sets: A′′1 = {x : cos(x) = −d} and B′′1 = {x : tan(x) = f ′1(−d)}. Let

f ′′1 be a bijection between these two sets.
So, we can define monomorphism f ′ from the component of type C0

1 , into the component of type
T1 as follows:

f ′(x) =


r, if x = d;

f ′1(x), if x ∈ A′1;

f ′′1 (x), if x ∈ A′′1 .
Second, we build a monomorphism from the component C0

2 of type C2 into any component T∞ of
type Tan∞.

Let b be a point from the component T∞.
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Define the sets

Ai = {x : cos (x) = cosi+1 (π/2)&x 6= cosi(π/2)}, i ∈ ω,
A′i = {x : cos (x) = − cosi+1(π/2)}, i ∈ ω\{0},

Bi = {x : tan (x) = tani+1 (b)&x 6= tani(b)}, i ∈ ω\{0}.
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For each i ∈ ω\{0}, let bi be a point for which:

tan (bi) = tani+2(b)&bi 6= tani+1(b) and let B′i = {x : tan (x) = bi}, i ∈ ω\{0}.
Let us denote a bijection between the sets Ai and Bi by fi and the bijection between the sets A′i

and B′i by f ′i . Let’s define a monomorphism from the component C0
2 into T∞ as follows:

f0(x) =


tani (b), if x = cosi(π/2) i ∈ ω;

fi(x), if x ∈ Ai i ∈ ω;

f ′i(x), if x ∈ A′i i ∈ ω\{0}.
Since C2 can be presented by the union of component of type C3 and component of type S0, there is
a monomorphism from the component of type C3 into the component of type Tan∞.

Therefore, there is a monomorphism from mono-unary algebra (R, cos) into the (R, tan). For the
other mono-unary algebras (R, f), f ∈ F , the proof is similar. �

Remark 8.2. Since the cardinality of the set of all connected components of (R, cos) mono-unary
algebra is c, we have used the continuum form of the axiom of choice.

9. Some Cardinal Invariants

Definition 9.1.
9.1.1. Let (E,R) be a relational structure. By σ(E,R) we denote the cardinality of the set of all

relational structures (E,A) isomorphic to (E,R);
9.1.2. For a partial mono-unary algebra (R, f), let σ(f) denote the cardinality of the set of all

partial algebras (R, g), isomorphic to the (R, f).
9.1.3. Denote

F = {sin, cos, tan, cotan, arcsin, arccos, arctan, arccot,
1

x
, ax, loga x, x

n, x1/n, (n = 2, 3, . . . )}.

Finding the cardinal invariants σ(f) and |Aut(R, f)| for any function f , are special cases of Ulam’s
product-isomorphism problems (see [14]). In the general case, the problem of finding the cardinal
number σ(E,R) depends on GCH (see [4]).

Lemma 9.2 ([7]). Let (E,R) be an infinite relational structure, |E| = ε,∆E be a diagonal of E2 and
let R be the functional relation with respect to the first or second coordinate. Then:

1) if |∆E ∩R| = ε&|∆E \R| = δ, then σ(E,R) = εδ;
2) if (∃l) (l ⊂ E2&(l = {x} × E ∨ l = E × {x})&|l ∩R| = ε&|l\R| = δ), then σ(E,R) = εδ+1;
3) if δ = max{|pr1R|, |pr2R|} < ε, then σ(E,R) = εδ;
4) in all the remaining cases σ(E,R) = 2ε.

Theorem 9.3. If f ∈ F , then
σ(f) = |Aut(R, f)| = 2c

holds.

Proof. If f ∈ F , then:
(i) f has at most countably many fixed points;
(ii) for any l, where l = {x} × R or l = R × {x}, the function f has at most countable set of

intersections with l;
(iii) the cardinalities of the sets Dom(f) and Ran(f) are equal to c.
So, from Lemma 9.2 it follows that σ(f) = 2c holds.
If f ∈ F , then the digraph Gf has continuum many pairwise isomorphic components, therefore

|Aut(R, f)| = 2c. �

Corollary 9.4. If f ∈ F , then there are 2c-many discontinuous functions that have isomorphic
digraph with the digraph of f .

Remark 9.5. For the values of cardinalities of the automorphism groups of mono-unary algebras in
the general case, see [8].
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Remark 9.6. If f : A→ A is a bijection, then (A, f) and (A, f−1) mono-unary algebras are isomor-
phic and the cardinality of the set of all isomorphisms between the algebras (A, f) and (A, f−1) is
|Aut(A, f)|.

Proof. It is not difficult to produce isomorphism between those two mono-unary algebras by building
an isomorphism between the digraphs of those two mono-unary algebras, because the components of
digraphs of bijections can be only n-cycle for some an n ∈ ω\{0} or an ω∗ + ω chain.

If f : A → A is bijection, h is any automorphism of algebra (A, f) and ϕ is any isomorphism
between (A, f) and (A, f−1) mono-unary algebras, then ϕ ◦ h will also be an isomorphism between
(A, f) and (A, f−1) mono-unary algebras. �

10. Open Problem

For which function f ∈ F there exists a non-measurable function g : R → R, whose digraph is
isomorphic to the digraph of f?
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