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NORM CONTINUITY AND COMPACTNESS PROPERTIES FOR SOME

PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS IN BANACH

SPACES

SAIFEDDINE GHNIMI

Abstract. In this work, we study the norm continuity and compactness properties to the solution

operator for some partial functional integrodifferential equations. The results are established by

using the resolvent operator theory suggested by Grimmer in [11].

1. Introduction

The purpose of this paper is to establish some properties of a solution operator for the following
partial functional integrodifferential equations with a finite delay

u′(t) = Au(t) +

t∫
0

B(t− s)u(s)ds+ L(ut) for t ≥ 0,

u0 = ϕ ∈ C = C
(
[−r, 0];X

)
,

(1.1)

where A : D(A) → X is a closed linear operator on a Banach space X, for t ≥ 0, B(t) is a closed
time-independent linear operator on X with domain D(B) ⊃ D(A), L is a linear bounded operator
from C

(
[−r, 0];X

)
to X. C([−r, 0];X) is the Banach space of all continuous functions from [−r, 0] to

X endowed with the uniform norm topology. For u ∈ C
(
[−r,+∞), X

)
and for every t ≥ 0, ut denotes

the history function of C defined by

ut(θ) = u(t+ θ) for θ ∈ [−r, 0].

The theory of partial functional integrodifferential equations has been emerging as an important
area of investigation in recent years. Many physical and biological models are represented by this
class of equations. As a model, one may take the equation arising in the study of heat conductivity
in materials with memory [14],

∂

∂t
w(t, ξ) =

∂2

∂ξ2
w(t, ξ) +

t∫
0

h(t− s) ∂2

∂ξ2
w(s, ξ)ds

+

0∫
−r

F
(
w(t+ θ, ξ)

)
dθ for t ≥ 0 and ξ ∈ [0, π],

w(t, 0) = w(t, π) = 0 for t ≥ 0,

w(θ, ξ) = w0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],

(1.2)

where r is a positive number, F, h are two continuous functions and w0 is a given initial function.
Other models arising in viscoelasticity and reaction diffusion problems are given in [4, 5, 12].

In [15], the authors considered equation (1.1) for B = 0. They established some results concerning
the existence and stability, and the solutions are studied as a semigroup operator on C([−r, 0];X).
Due to the importance of this semigroup operator, able to give some information on the stability and
growth rate of solutions, many authors studied its properties. The works of Hale [13] for ordinary linear
functional differential equations, Webb [16] for ordinary nonlinear functional differential equations, Wu
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[17] and Adimy et al. [1] for partial functional differential equations are worth mentioning. Recently,
in [8], the authors established many results on the existence of solutions for equation (1.1). The
solutions are studied via the variation of constant formula by using resolvent operators. Similarly,
many works have been established in this direction; we refer to [9, 10]. However, the properties of
the solution operator for equation (1.1) is an untreated topic and this is the main motivation of the
present paper.

In this paper we use the theory of resolvent operators as developed by Grimmer [11] to define the
solution operator (V (t))t≥0 on C([−r, 0];X) which solves equation (1.1) in a mild sense (see Section 3).
We then show the norm continuity and compactness properties of the solution operator. Our approach
and results generalize some results for differential equations (B = 0). See, for example, [13, 15,17].

2. Resolvent operators

Throughout this work, we make the following assumptions:

(H1) A is a closed densely defined linear operator in a Banach space
(
X, | · |

)
. Since A is closed,

D(A) equipped with the graph norm ‖x‖ := |Ax|+ |x| is a Banach space which is denoted by
(
Y, ‖ ·‖

)
.

(H2) (B(t))t≥0 is a family of linear operators on X such that B(t) is continuous from Y into X

for almost all t ≥ 0. Moreover, there is a locally integrable function b : R+ → R+ so that B(t)y is
measurable and

∣∣B(t)y
∣∣ ≤ b(t)‖y‖ for all y ∈ Y and t ≥ 0.

(H3) For any y ∈ Y , the map t→ B(t)y belongs to W 1,1
loc (R+, X) and∣∣∣ d

dt
B(t)y

∣∣∣ ≤ b(t)‖y‖ for y ∈ Y and a.e. t ∈ R+.

(H4) L is a linear bounded operator from C
(
[−r, 0];X

)
to X.

Now, we consider the following integrodifferential equation
y′(t) = Ay(t) +

t∫
0

B(t− s) y(s) ds for t ≥ 0

y(0) = y0 ∈ X.

(2.3)

Definition 2.1 ( [11]). A resolvent operator for equation (2.3) is a bounded linear operator valued
function R(t) ∈ L(X) for t ≥ 0 having the following properties:

(a) R(0) = I and |R(t)| ≤Meβt for some constants M and β.

(b) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.

(c) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y , R(·)x ∈ C1(R+;X) ∩ C(R+;Y ) and

R′(t)x = AR(t)x+

t∫
0

B(t− s)R(s)x ds

= R(t)Ax+

t∫
0

R(t− s)B(s)x ds for t ≥ 0.

For the properties of resolvent operators, we refer the reader to the papers [3, 11]. The following
theorem gives an existence result of the resolvent operator for equation (2.3).

Theorem 2.2 ( [6]). Assume that (H1)–(H3) hold. Then equation (2.3) admits a resolvent operator
if and only if A generates a C0-semigroup.

From now, we suppose that

(H5) A generates a C0-semigroup (T (t))t≥0 on the Banach space X.
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Remark 2.3. It is worth noting that assumption (H5) ensures the existence of a resolvent operator
for equation (2.3). This is a direct consequence of Theorem 2.2.

Lemma 2.4 ( [6]). Assume that (H1)–(H3) and (H5) hold. Then for all a > 0 there exists a constant
H = H(a) such that ∣∣R(s+ h)−R(h)R(s)

∣∣ ≤ Hh for 0 < h ≤ s ≤ a.

Theorem 2.5 ( [6]). Assume that (H1)–(H3) and (H5) hold. Let T (t) be compact for t > 0. Then
the corresponding resolvent operator R(t) of equation (2.3) is also compact for t > 0.

The following theorem provides the necessary and sufficient conditions for the resolvent operator
to be continuous in the uniform operator topology.

Theorem 2.6 ( [7]). Assume that (H1)–(H3) and (H5) are satisfied. Then T (t) is norm continuous
(or continuous in the uniform operator topology) for t > 0 if and only if the corresponding resolvent
operator R(t) of equation (2.3) is norm continuous for t > 0.

3. Main Results

We state some relevant definitions and results taken from [8] for the case where L is autonomous.

Definition 3.1 ( [8]). A continuous function u : [−r,+∞) → X is said to be a mild solution of
equation (1.1) if u0 = ϕ and

u(t) = R(t)ϕ(0) +

t∫
0

R(t− s)L(us)ds for t ≥ 0.

Theorem 3.2 ( [8]). Assume that (H1)–(H5) hold. Then for each ϕ ∈ C, equation (1.1) has a mild
solution u(ϕ)(·) on [−r,+∞) which is given by

u(ϕ)(t) =


u(ϕ)(t) = R(t)ϕ(0) +

t∫
0

R(t− s)L
(
us(ϕ)

)
ds for t ≥ 0,

u0(ϕ)(t) = ϕ(t) for t ∈ [−r, 0].

(3.4)

For each t ≥ 0 define the solution operator V (t) : C → C by

V (t)ϕ = ut(ϕ).

Proposition 3.3. The family
(
V (t)

)
t≥0 satisfies the translation property

(
V (t)ϕ

)
(θ) =

{(
V (t+ θ)ϕ

)
(0) for t+ θ ≥ 0,

ϕ(t+ θ) for t+ θ ≤ 0,

for t ≥ 0, θ ∈ [−r, 0] and ϕ ∈ C.

Proof. For t ≥ 0 and θ ∈ [−r, 0], it follows from (3.4) that

ut(ϕ)(θ) =


u(ϕ)(t+ θ) = R(t+ θ)ϕ(0) +

t+θ∫
0

R(t+ θ − s)L
(
us(ϕ)

)
ds

for t+ θ ≥ 0,

u0(ϕ)(t+ θ) = ϕ(t+ θ) for t+ θ ≤ 0.

Hence, for ϕ ∈ C, we have(
V (t)ϕ

)
(θ) =

(
ut(ϕ)

)
(θ) =

{(
V (t+ θ)ϕ

)
(0) for t+ θ ≥ 0,

ϕ(t+ θ) for t+ θ ≤ 0.

The proof of the above Proposition is completed. �

Let B =
{
ϕ ∈ C : |ϕ| ≤ 1

}
. Take N ≥ 0 such that

∣∣L(V (s)ϕ)
∣∣ ≤ N for all s ≥ 0 and ϕ ∈ B.
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3.1. Norm continuity of
(
V (t)

)
t≥0. To establish the norm continuity of the solution operator, we

need the following

Lemma 3.4. The map

R+ × C → C

(t, ϕ)→ V (t)ϕ is locally bounded with respect to t and ϕ.

Proof. Let 0 ≤ t ≤ a and ϕ ∈ B. Then∣∣V (t)ϕ
∣∣ = sup

−r≤θ≤0

∣∣(V (t)ϕ)(θ)
∣∣.

For t+ θ ≤ 0, we have ∣∣V (t)ϕ
∣∣ = sup

−r≤θ≤−t

∣∣ϕ(t+ θ)
∣∣ ≤ sup

−r≤θ≤0

∣∣ϕ(θ)
∣∣ ≤ |ϕ|.

This implies that

sup
0≤t≤a, |ϕ|≤1

∣∣V (t)ϕ
∣∣ ≤ 1.

For t+ θ ≥ 0, we have

∣∣(V (t)ϕ)(θ)
∣∣ ≤ ∣∣R(t+ θ)ϕ(0)

∣∣+

∣∣∣∣
t+θ∫
0

R(t+ θ − s)L
(
V (s)ϕ

)
ds

∣∣∣∣
≤Ma|ϕ|+MaN

t∫
0

∣∣V (s)ϕ
∣∣ds,

where Ma = sup
0≤s≤a

|R(s)|. Thus

∣∣V (t)ϕ
∣∣ ≤Ma|ϕ|+MaN

t∫
0

∣∣V (s)ϕ
∣∣ds.

By Gronwall’s Lemma, we deduce that∣∣V (t)ϕ
∣∣ ≤Mae

MaN |ϕ|.

Consequently,

sup
0≤t≤a, |ϕ|≤1

∣∣V (t)ϕ
∣∣ ≤Mae

MaN ,

and the proof of the lemma is completed. �

Theorem 3.5. Assume that (H1)–(H5) are satisfied. If t→ T (t) is norm continuous for t > 0. Then
the solution operator t→ V (t) is norm continuous on t > r.

Proof. Let t > r and θ ∈ [−r, 0]. Then∣∣V (t+ h)− V (t)
∣∣ = sup

|ϕ|≤1

∣∣V (t+ h)ϕ− V (t)ϕ
∣∣.

For h < 0 to be sufficiently small, we have∣∣(V (t+ h)ϕ
)
(θ)−

(
V (t)ϕ

)
(θ)
∣∣ =
∣∣R(t+ h+ θ)ϕ(0)−R(t+ θ)ϕ(0)

∣∣
≤ sup
t−r≤s≤t

∣∣R(s+ h)−R(s)
∣∣ ∣∣ϕ(0)

∣∣.
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Let us now fix t, h such that 0 < a < t− r < t+ h < b, then

sup
t−r≤s≤t

∣∣R(s+ h)−R(s)
∣∣ ∣∣ϕ(0)

∣∣ ≤ sup
a≤s≤b

∣∣R(s+ h)−R(s)
∣∣ ∣∣ϕ(0)

∣∣
≤ sup
|ϕ|≤1

sup
a≤s≤b

∣∣R(s+ h)−R(s)
∣∣ ∣∣ϕ(0)

∣∣
≤ sup
a≤s≤b

∣∣R(s+ h)−R(s)
∣∣.

Theorem 2.6 implies that ∣∣V (t+ h)ϕ− V (t)ϕ
∣∣

tends to 0 as h→ 0 uniformly in ϕ ∈ B. Let h > 0 be such that t+ h− r > 0. Then

(
V (t+ h)ϕ

)
(θ)−

(
V (t)ϕ

)
(θ) =

t+θ∫
0

(
R(t+ θ + h− s)−R(t+ θ − s)

)
L
(
V (s)ϕ

)
ds

+

t+θ+h∫
t+θ

R(t+ θ + h− s)L
(
V (s)ϕ

)
ds.

By virtue of Lemma 3.4, there exists C̃ such that∣∣∣∣
t+θ∫
0

R(t+ θ + h− s)−R(t+ θ − s)L
(
V (s)ϕ

)
ds

∣∣∣∣
≤

t+θ∫
0

∣∣R(t+ θ + h− s)−R(t+ θ − s)
∣∣ C̃ ds.

Thus, there exists θ0 ∈ [−r, 0] such that

sup
−r≤θ≤0

t+θ∫
0

∣∣R(t+ θ + h− s)−R(t+ θ − s)
∣∣ds

=

t+θ0∫
0

∣∣R(t+ θ0 + h− s)−R(t+ θ0 − s)
∣∣ds,

which implies that

lim
h→0

∣∣∣∣
t+θ∫
0

R(t+ θ + h− s)−R(t+ θ − s)L
(
V (s)ϕ

)
ds

∣∣∣∣ = 0.

On the other hand, using Definition 2.1 and Lemma 3.4, we deduce that there exists δ(h) such that∣∣∣∣
t+θ+h∫
t+θ

R(t+ θ + h− s)L(V (s)ϕ)ds

∣∣∣∣ ≤MNδ(h).

This implies that

lim
h→0

∣∣∣∣
t+θ+h∫
t+θ

R(t+ θ + h− s)L(V (s)ϕ)ds

∣∣∣∣ = 0.

Thus,

lim
h→0

∣∣V (t+ h)− V (t)
∣∣ = 0.

Hence the map t→ V (t) is norm continuous for t > r. �
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3.2. Compactness of the solution operator. To study the compactness of the solution operator,
we introduce the Kuratowski measure of noncompactness α(·) defined on each bounded subset B of
the Banach space X by

α(B) = inf
{
d > 0; B can be covered by a finite number of sets of diameter < d

}
.

Some basic properties of α(·) are given in the following.

Lemma 3.6 ( [2]). Let X be a Banach space and B, C ⊆ X be bounded. Then

(1) α(B) = 0 if and only if B is relatively compact;

(2) α(B) = α(B) = α(coB), where coB is the closed convex hull of B;

(3) α(B) ≤ α(C), when B ⊆ C;

(4) α(B + C) ≤ α(B) + α(C);

(5) α(B ∪ C) ≤ max{α(B), α(C)};

(6) α(B(0, r)) ≤ 2r, where B(0, r) = {x ∈ X : |x| ≤ r}.

We need to add the following assumption:

(H6) the C0-semigroup T (t) is compact for t > 0.

Theorem 3.7. Assume that (H1)–(H6) are satisfied. Then the solution operator V (t) is compact
for t > r.

Proof. By the Ascoli-Arzela theorem we prove that {V (t)ϕ : ϕ ∈ B} is relatively compact for each
r < t. The proof is divided into two steps.

Step 1. We show that {(V (t)ϕ)(θ) : ϕ ∈ B} is relatively compact in X for every θ ∈ [−r, 0]. Let
θ ∈ [−r, 0]. Then

(
V (t)ϕ

)
(θ) = R(t+ θ)ϕ(0) +

t+θ∫
0

R(t+ θ − s)L
(
V (s)ϕ

)
ds.

Since t+ θ > 0, by (H5) together with Theorem 2.5, we infer that R(t+ θ) is compact. Thus Lemma
3.6 gives

α
({
R(t+ θ)ϕ(0) : ϕ ∈ B

})
= 0. (3.5)

Now we prove that

{ t+θ∫
0

R(t+θ−s)L
(
V (s)ϕ

)
ds : ϕ ∈ B

}
is relatively compact in X. Let 0 < ε < t+θ.

Then

t+θ∫
0

R(t+ θ − s)L
(
V (s)ϕ

)
ds =

t+θ−ε∫
0

R(t+ θ − s)L
(
V (s)ϕ

)
ds

+

t+θ∫
t+θ−ε

R(t+ θ − s)L
(
V (s)ϕ

)
ds

=

tθ−ε∫
0

[
R(t+θ−s)−R(ε)R(t+θ−s−ε)

]
L(V (s)ϕ)ds

+R(ε)

t+θ−ε∫
0

R(t+ θ − s− ε)L
(
V (s)ϕ

)
ds
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+

t+θ∫
t+θ−ε

R(t+ θ − s)L
(
V (s)ϕ

)
ds.

By Lemma 2.4, we obtain∣∣∣∣
t+θ−ε∫
0

[
R(t+ θ − s)−R(ε)R(t+ θ − s− ε)

]
L
(
V (s)ϕ

)
ds

∣∣∣∣
≤

t+θ−ε∫
0

∣∣R(t+ θ − s)−R(ε)R(t+ θ − s− ε)
∣∣∣∣L(V (s)ϕ)

∣∣ds
≤ εH

t+θ−ε∫
0

∣∣L(V (s)ϕ)
∣∣ds ≤ ε(t− ε)HN.

Let t ≤ b. Then Lemma 3.6 gives

α

({ t+θ−ε∫
0

[
R(t+ θ − s)−R(ε)R(t+ θ − s− ε)

]
L
(
V (s)ϕ

)
ds : ϕ ∈ B

})
≤ 2ε(b− ε)HN. (3.6)

Moreover, since R(ε) is compact, we find that{
R(ε)

t+θ−ε∫
0

R(t+ θ − s− ε)L
(
V (s)ϕ

)
ds : ϕ ∈ B

}
is relatively compact in X and, consequently

α

({
R(ε)

t+θ−ε∫
0

R(t+ θ − s− ε)L
(
V (s)ϕ

)
ds : ϕ ∈ B

})
= 0. (3.7)

Note that ∣∣∣∣
t+θ∫

t+θ−ε

R(t+ θ − s)L
(
V (s)ϕ

)
ds

∣∣∣∣ ≤MNδ(ε).

Therefore,

α

({ t+θ∫
t+θ−ε

R(t+ θ − s)L
(
V (s)ϕ

)
ds : ϕ ∈ B

})
≤ 2MNδ(ε). (3.8)

Combining (3.5)–(3.8) and using Lemma 3.6, we obtain

α
({

(V (t)ϕ)(θ) : ϕ ∈ B
})
≤ 2ε(b− ε)HN + 2MNδ(ε).

Letting ε→ 0, we deduce that

α
({

(V (t)ϕ)(θ) : ϕ ∈ B
})

= 0.

Consequently,
{

(V (t)ϕ)(θ) : ϕ ∈ B
}

is relatively compact in X for all θ ∈ [−r, 0].

Step 2. We show that {V (t)ϕ : ϕ ∈ B} is equicontinuous on [−r, 0]. To see this, let −r ≤ θ1 <
θ2 ≤ 0. Then∣∣∣(V (t)ϕ

)
(θ2)−

(
V (t)ϕ

)
(θ1)

∣∣∣ ≤ ∣∣∣(R(t+ θ2)−R(t+ θ1)
)
ϕ(0)

∣∣∣
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+

t+θ2∫
t+θ1

∣∣∣R(t+ θ2 − s)L
(
V (s)ϕ

)∣∣∣ds
+

t+θ1∫
0

∣∣∣(R(t+ θ2 − s)−R(t+ θ1 − s)
)
L
(
V (s)ϕ

)∣∣∣ds
≤
∣∣∣R(t+ θ2)−R(t+ θ1)

∣∣∣ ∣∣ϕ(0)
∣∣∣+MNδ(θ2 − θ1)

+N

t+θ1∫
0

∣∣∣R(t+ θ2 − s)−R(t+ θ1 − s)
∣∣∣ds.

Since ∣∣R(t+ θ2 − s)−R(t+ θ1 − s)
∣∣→ 0 as θ2 → θ1 for almost all s 6= t+ θ1

and ∣∣R(t+ θ2 − s)−R(t+ θ1 − s)
∣∣ ≤M(eβ(t+θ2−s) + eβ(t+θ1−s)

)
∈ L1

(
[0, t+ θ1]

)
,

the Lebesgue Dominated Convergence theorem ensures that

t+θ1∫
0

∣∣R(t+ θ2 − s)−R(t+ θ1 − s)
∣∣ds→ 0 as θ2 → θ1.

Using Theorem 2.6, we obtain∣∣(V (t)ϕ)(θ2)− (V (t)ϕ)(θ1)
∣∣→ 0 as θ2 → θ1,

uniformly in ϕ ∈ B. This implies that {V (t)ϕ : ϕ ∈ B} is equicontinuous. Hence, {V (t)ϕ : ϕ ∈ B} is
relatively compact by the Ascoli Arzela theorem and so, V (t) is compact for t > r. �
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