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EXISTENCE RESULTS FOR A CLASS OF NONLINEAR DEGENERATE
(p, 9)-BIHARMONIC OPERATORS IN WEIGHTED SOBOLEV SPACES

ALBO CARLOS CAVALHEIRO

Abstract. In this paper we are interested in the existence of solutions for Navier problem associated
with the degenerate nonlinear elliptic equation
n
Afw(z) |Au|P~2 Au + v(x)\Au|q_2Au] — Z Dj[w(z)Aj(z,u, Vu)]
j=1

= fo(z) = Y_ Djfj(x), in Q
Jj=1

in the setting of the weighted Sobolev spaces.

1. INTRODUCTION

In this paper we prove the existence of (weak) solutions in the weighted Sobolev space X =
W2P(Q,w) "W, (Q,w) (see Definitions 2.3 and 2.4) for the Navier problem

P Lu(z) = fo(x)—;pjfj(x), in Q,

u(z) = Au(z) =0, on 90,

where L is the partial differential operator
Lu(z) = Alw(z) |[AulP " Au 4 v(z) |Au|** Au] — Z Dj[w(z)A;(z,u(z), Vu(z))]
j=1
where D; = 0/0x;, Q0 is a bounded open set in R™, w and v are two weight functions, A is the usual
Laplacian operator, 2<¢ < p < oo and the functions A; : @ xR xR"—=R (j = 1,...,n) satisfying
the following conditions:

(H1) z—A;(x,n,£) is measurable on  for all (1,&) € RxR™, (n,§) — A;(x,n,§) is continuous on
R x R™ for almost all z€€);

(H2) there exists a constant 6; > 0 such that [A(x,n,&) — A(x,n/,&)]. (€ —¢&)>6,1€ ¢,
whenever ¢, &'eR"™ ££E', where A(z,n, &) = (A1 (z,n,8),. .., An(z,n,£)) (where the dot denotes here
the Euclidean scalar product in R™);

(H3) A(z,n,£).£ > \|€[", where \; is a positive constant;

(H4) |A(z,n,6)| < K1(z) + hi(@)|n]P’?" + ho(2)|€]P/P’, where K1, hy and hy are positive functions
with by and he€L®(2), and K €L? (Q,w) (with 1/p+1/p’ = 1).

Let © be an open set in R™. By the symbol W(Q2) we denote the set of all measurable a.e. in
Q positive and finite functions w = w(z), x € Q. Elements of W(Q) will be called weight functions.
Every weight w gives rise to a measure on the measurable subsets of R™ through integration. This

measure will be denoted by p,,. Thus, p,(E) = /w(x) dx for measurable sets £ C R".

E
In general, the Sobolev spaces WP (Q) without weights occur as spaces of solutions for elliptic and

parabolic partial differential equations. In the particular case for p = ¢ = 2 and w = v=1, we have
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the equation

n
A%y — Z D;A;(z,u,Vu) = f,
j=1
where A2y is the biharmonic operator. If p = ¢, w = v=1 and A(x,n,£) = \§|p_2£, we have the
equation
A(JAP72 Au) — div(|Vul’*Vu) = f.

Biharmonic equations appear in the study of mathematical model in several real-life processes as,
among others, radar imaging (see [1]) or incompressible flows (see [17]).

For degenerate partial differential equations, i.e., equations with various types of singularities in the
coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [4], [5], [6], [3] and [9]). In
various applications, we can meet the boundary value problems for elliptic equations whose ellipticity
is disturbed in the sense that there appear some degeneration or singularity appears. There are several
very concrete problems from practice which lead to such differential equations, e.g., from glaceology,
non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics,
climatology, petroleum extraction and reaction-diffusion problems (see some examples of applications
of degenerate elliptic equations in [2] and [8]).

A class of weights, which is particularly well understood, is the class of Ap-weights (or Muckenhoupt
class) that was introduced by B. Muckenhoupt (see [18]). These classes have found many useful
applications in harmonic analysis (see [20]). Another reason for studying A,-weights is the fact that
powers of distance to submanifolds of R™ often belong to A, (see [15]). There are, in fact, many
interesting examples of weights (see [14] for p-admissible weights).

In the non-degenerate case (i.e., with w(z) = 1), for all f € LP(Q2), the Poisson equation associated
with the Dirichlet problem

—Au= f(z) inQ,
u(z) =0 on 09,
is uniquely solvable in W22(Q) N WyP() (see [13]), and the nonlinear Dirichlet problem
—Apu=f(z) inQ,
u(zx) =0 on 09,
is uniquely solvable in W, "*(2) (see [7]), where Apu = div(]Vul’*Vu) is the p-Laplacian operator. In
the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [19]

and the references therein), and the degenerated p-Laplacian was studied in [9].
The following theorem will be proved in Section 3.

Theorem 1.1. Let 2<q < p < oo and assume (H1) — (H4). If
(H5) we A,, veW(Q) and Ve L"(Q,w), where r =p/(p —q);
w

(H6) f;/wel? (Q,w) (j=0,1,...,0).
Then the problem (P) has a unique solution ue X = W2P(Q,w) Wy (Q,w). Moreover, we have

1 n p'/p
||u||X§M(cgnfo/wnmm,wﬁzfj/wnmfm,w)) 7

j=1
where v = min{A1,1} and Cq is the constant in Theorem 2.2.
2. DEFINITIONS AND BASIC RESULTS

Let w be a locally integrable nonnegative function in R™ and assume that 0 < w < oo almost
everywhere. We say that w belongs to the Muckenhoupt class A,, 1 < p < oo, or that w is an
Ap-weight, if there is a constant C' = Cp ,, such that

L L[ )
E wdx @ w P)dx SC,

B B
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for all balls B C R™, where |.| denotes the n-dimensional Lebesgue measure in R™. If 1 < ¢ <p, then
A, C A, (see [12], [14] or [20] for more information about Ap,-weights). The weight w satisfies the
doubling condition if there exists a positive constant C' such that

(B(x;2r)) < C p(B(a;r)),
for every ball B = B(x;r) CR™, where u(B) = [pw(x)dz. If weA,, then p is doubling (see [14],
Corollary 15.7).

As an example of A,-weight, the function w(z) = |z|*, z€R™, is in A, if and only if —n < a <
n(p — 1) (see [20], Corollary 4.4, Chapter IX, Corollary 4.4).

If we Ay, then
P
(1) <oms)
| B 1(B)

whenever B is a ball in R” and E is a measurable subset of B (for a strong doubling property see 15.5
in [14]). Therefore, if u(E) = 0, then |E| = 0. The measure p and the Lebesgue measure | - | are
mutually absolutely continuous, i.e., they have the same zero sets (u(F) = 0 if and only if |E| = 0);
80, there is no need to specify the measure when using the ubiquitous expression almost everywhere
and almost every, both abbreviated a.e. .

Definition 2.1. Let w be a weight, and let Q CR™ be open. For 0 < p < oo we define LP(Q,w) as
the set of measurable functions f on 2 such that

1/p
11l 2o (00 = (/|f|pwdx) < .
o

Ifwe A, 1 <p< oo, then w /=1 is locally integrable and we have LP(Q,w) C Li,.(Q) for every
open set € (see [21, Remark 1.2.4]). It thus makes sense to talk about weak derivatives of functions
in LP(Q,w).

Definition 2.2. Let 2 C R" be a bounded open set, 1 < p < 0o, k be a nonnegative integer and w € A,,.
We shall denote by W*P?(Q, w) the weighted Sobolev spaces, the set of all functions u € LP(, w) with
weak derivatives D%u € LP(Q,w), 1 <|a| <k. The norm in the space WP (Q,w) is defined by

1/p
lulhwirge = ( [lPwast Y [IDwupwar) . (2.1)
Q

1<lal<k

If we A,, then WHP(Q,w) is the closure of C°°(£2) with respect to the norm (2.1) (see [21, Theorem
2.1.4]). The spaces W1P(Q,w) are Banach spaces.

The space Wol’p(Q,w) is the closure of C§°(€2) with respect to the norm (2.1). Equipped with
this norm, WO1 P(Q,w) is a reflexive Banach space (see [16] for more information about the spaces
WLP(Q,w)). The dual of the space W, *(Q,w) is the space

WP, = {T = fo = div(F), F= (.o fa) 0 2

It is evident that a weight function w which satisfies 0 < ¢; <w(z) <cg for x € Q (where ¢; and ¢ are
constants), gives nothing new (the space W(l)’p (Q,w) is then identical with the classical Sobolev space

€L’ (Qw), j=0,1,...,n}.

W(l)’p (©2)). Consequently, we shall be interested above all in such weight functions w which either
vanish somewhere in 2, or increase at infinity (or both).
In this paper we use the following results.

Theorem 2.1. Letw€ Ay, 1 < p < 00, and let  be a bounded open set in R™. If u,,—u in LP(Q, w)
then there exist a subsequence {unm, } and a function ® € LP(Q,w) such that

(1) um, ()= u(z), mp =00 a.e. on Q;

(ii) |ty (2)| < P(x) a.e. on Q.

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [11]. O
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Theorem 2.2 (The weighted Sobolev inequality). Let 2 be an open bounded set in R" and weA,
(1 < p < o0). There exist the constants Co and & positive such that for all ue Wy*(Q,w) and all k
satisfying 1 <k<n/(n—1)+4,

Hu||LkP(Q,w) < Caq [Vul ||LP(Q,w)' (2.2)

Proof. Tt suffices to prove the inequality for the functions u€ C5°(2) (see [10, Theorem 1.3]). To
extend the estimates (2.2) to arbitrary u e Wy '* (€, w), we let {u,, } be a sequence of C§°(Q) functions
tending to u in Wy ?(Q,w). Applying the estimates (2.2) to differences t,,, — tm,, we see that {u,}
will be a Cauchy sequence in L*P(2,w). Consequently, the limit function u will lie in the desired
spaces and satisfy (2.2). O

Lemma 2.3. Let 1 < p < 0.
(a) There exists a constant o, > 0 such that

"

-2 _
[Pz — |y" y| <oy lz — yl(lz| + [y])P 2,

for all x,y e R™.
(b) There exist two positive constants By, v, such that for every x,y € R,

_ 2 -2 -2 _ 2
By (|2 + [P 2o — yl” < (j2" "2 — [P "y)-(x — y) < (2] + [y])P 2|z — y[™.
Proof. See [7], Proposition 17.2 and Proposition 17.3. O
Remark 2.4. If 2<¢g < p < oo and Ye L"(Q,w) (where r = p/(p — q)), then there exists a constant
w
Cpq = ||U/OJ||LT(Q ) Such that

||uHLq(Q,v) < Cp,q”uHLp(Q,w)-
In fact, by Holder’s inequality (1/r +¢q/p=(p—q)/p+q/p = 1),

q _ q _ q¥
. _/\u| vdx—/|u\ Y
Q Q
q/p 1/r
S(/|u|pwdx> (/(v/w)rwd:ﬁ>
Q Q

:”uH%p(Q w) ||U/w||LT(Q,w)'

Hence, ||UHL« 0,0 < Cp, q||UHLp(Q wyr With Cp g = ||”/w‘ Lr (Q w)

Definition 2.3. We denote by X = W?2P(,w) N W, (Q,w) with the norm

1/p
lully = ( [ivuras [ |Au|pwdx) |
Q Q

Definition 2.4. We say that an element ue X = WP(Q,w)NW P (Q,,w) is a (weak) solution of
problem (P) if

/|Au|p 2AuA<pwdx+/|Au\q 2 AuApvds + Z/A z,u, Vu) Djpwdx
J= 1Q
/fOSﬁd‘TJFZ/f] Djpdz,
J= 1Q

for all p € X.
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3. PROOF OF THEOREM 1.1

The basic idea is to reduce problem (P) to an operator equation Au = T and apply the theorem
below.

Theorem 3.1. Let A : X—X* be a monotone, coercive and hemicontinuous operator on the real
separable, reflexive Banach space X. Then the following assertions hold:
(a) for each T € X*, the equation Au =T has a solution ueX;

(b) if the operator A is strictly monotone, then the equation Au =T is uniquely solvable in X
Proof. See Theorem 26. A in [23].

To prove Theorem 1.1, we define B, B;, Bs, B3 : X x X >R and T : X — R by

B(u, ) = Bi(u,¢) + Ba(u, ) + Bs(u, ),
Bi(u, ) Z/.A (z,u, Vu) jwwdx—/AxuVu) Vowdx

Jlg

By (u, ) :/ |AuP? Au Apwda

Bs(u, ) :/\Au|q_2AuAcpvd:c

/fogod;v—kZ/f] Djpdzx.

J= 1Q
Then v € X is a (weak) solution to problem (P) if
B(u, @) = Bi(u, ) + Ba(u, ) + Bs(u, 0) = T(p),
for all p€ X.
Step 1. For j =1,...,n, we define the operator F; : X —LP (Q,w) as

(Fju)(x) =A; (z, u(z), Vu(z)).
We now show that the operator F} is bounded and continuous
(i) Using (H4), we obtain

1Bl :/\Fju(a:)v’ wdz
Q

:/\Aj(x,u,Vuﬂp/wdx
Q

/

’ ’ p
§/(K1+h1|up/p +h2Vu|p/p> wdx
o)

<, / {(K”l +hp/u|p+h’2’,|Vu|p)w} da

=C, [/K wd:z:—l—/h?f/|upwdx+/h§/|Vu|pwd$], (3.1)
)

where the constant C,, depends only on p.
We have, by Theorem 2.2 (with k = 1),

/hf |u|pwdx§Hh1||px(Q)/|u\pwdx
Q Q
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<Ol I / Vul? wda
Q

<Cq 1Ml 0 1l

and /hg |Vu|Pwdz < ||h2||’£(x,(9) / |Vul? wdr < ||h2HpOC(Q)||uH§(. Therefore, in (3.1) we obtain
O o)

1Full oy < O (1K @y + (CE Wl gy + el o) )

(ii) Let up—u in X as m — co. We need to show that Fju,,—Fju in LP' (€, w). We will apply the
Lebesgue Dominated Convergence Theorem. If u,,— u in X, then |Vu,,|— |[Vu| in LP(Q,w). Using
Theorem 2.1, there exist a subsequence {u,, } and a function ®; such that

D, (x) = Dju(x), ae. in Q,
|V, ()| <Py (x), a.e. in Q.
By Theorem 2.2, we obtain
||u’mk||LP(Q,w) <Cq || |Vumk| ||LP(Q,w) <Cq ”q:’l”LP(Q,w)'
Next, applying (H4), we obtain

[ Fjtm, = Fjullpy g0 =/ | Fjtim, (z) — Fyu(z)]” wdz
Q
:/ | A (@, Uy, Vi, ) — Aj(a:,u,Vu)|p, wdz
Q

SC;D / (|Aj(1',umk,Vumk)‘p, + |Aj(x’u7 vu)|pl)wd1’

/

’ "\ P
<G, /<K1+h1|umk|p/p +h2|Vumk|p/p> wdz
Q

’

Q
’ ’ p
+/(K1+hllum’ +thul”“’> wdw}
Q

<c,| [ K7 wd:z:+||h1\|ioc(m/|umk|1’wdx+ Hh2||pm(m/|Vumk|Pwda:

Q Q

b [ K wdot Il [ wdo + [l [ |Vuf’wdx]
Q Q

Q
SQCP[/Kf’wdx+cg|h1||P;(Q)/q>f;wdx+||h2||§;o(m/q>fwd4
Q Q Q

=20, [nKln’;;/w + (OBl gy + Il e )||<I>1|’;p<g,w>]
By condition (H1), we have
Fiupm, (z) = Aj(z, upm, (z), Vum, (2))— Aj(z,u(x), Vu(z)) = Fiu(z),
as my — +00. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
| Fjtm,, — FjuHLp/(Q7w)—> 0,

that is,
Fjum, = Fju in LP (Q,w).
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We conclude from the Convergence Principle in Banach spaces (see [22, Proposition 10.13]) that
Fjtum— Fju in LY (Q,w). (3.2)
Step 2. We define the operator G; : X — Lp/(Q7w) by
(Gru)(@) = |Au(@)["~* Au().

This operator is continuous and bounded. In fact,
(i) we have

’ —92 /
X :/||AU|P Auf" wdz

Q
:/|Au|(p71)p/wdx
o)

:/|Au|pwdx
)

<Jull-
-1
Hence, ||G1U||Lp’(g,w) <Jlull%

(ii) If wp, — win X, then Au,,— Auin LP(, w). By Theorem 2.1, there exist a subsequence {uy,, }
and a function @2 € LP(,w) such that

Ay, () = Au(x), a.e. in Q, (3.3)
Aty (2)] < Do), ac. in O
i _p _ r_ (p - 2) . .
Hence, using Lemma 2.3 (a),§ = — =p—1and 0’ = , we obtain (since 2<gq < p < 00),

P (-1
HGlumk - Glu”ip’(ﬂ,w) - / | Gtim,, — G1u|p wdx
Q

’

P
= / ‘ | Aty [P Ay, — | AufP™? Au|  wda
Q

’

p
= / [% Aty — Au| (|Attyn, | + |Aul>""”} wdz

Sag, / | Aty — Au|p/ (20,) PP y da
Q

., , 1/6 L 1/6’
< 2= gp </|Aumk — Aul? ewdm) (/q)épz)p o wdx)
Q )

) , p'/p (p=2)/(r—1)
<ab 2=2p </|Aumk —Au|pwdac> (/@&udm)
Q Q

/ _ ’ 4 —2)p’
< a2 202 fu, —uly s 52

since (p — 2)p'0’ = (p—2)(p€ 0 Ez:;; =pif p#2. Then

- -2
1G1Um,, — Grull o g,y < 2P 2y 192117, (g, lltm, — ull x-

Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain (as my — 00)

||G1umk — Gl’UHLp'(Q,w)% O’



40 A. C. CAVALHEIRO

that is, Gium, — Giu in Lpl(Q,w). By the Convergence Principle in Banach spaces, we have
Gty — Gru in LP' (9, w). (3.5)
Step 3. We define the operator Go : X— L*(Q,w), where s = p/(¢ — 1), by
(Gau) (@) = [ Au(@)|" > Au(a).

We also have that the operator G5 is continuous and bounded. In fact,
(i) we have

S —2 s
|Gl ey = [ N1l 80" wds
Q

= / |Au|7Y W da

Q
:/|Au|pwd17
Q

<lull,

and [|Gaull . g0y < [l
(ii) If up—w in X, then Auy,— Auin LP(Q,w). If 2 < ¢ < p < o0, by (3.3), (3.4) and Lemma
2.3(a), we have

HGQUmk - G2u|

2‘*(Q,w) :/ ‘|Aumk|q_2 Aty — |Au|q_2Au’sw dx
o)

§/ {aqmumk — Aul| (|Aumk| + \Au|>q_2rwd:p
o)

R (g—2)s
:aZ/|Aumk — 8l (Bt |+ |A]) T e
Q
< 2(‘172)5042 / | Ay, — Aul® @gq_mswd:z:. (3.6)
Q

Ford =gq—1and ' =(¢—1)/(¢ —2), in (3.6) we have
||G2umk - G2u|

s
Le(Q,w)

§2(q_2)5a2/|Aumk — Aul Y dw
o)

1/8 , 1/8'
§2(‘12)5a2(/Aumk Au|55wdx> (/(I)gq—z)sg wdx)
) Q
1/(q—1) /6’
= 2(‘12)5(12(/Aum,v —Au|pwdx) (/@gwdz‘>
9) Q

< 2@=2) Ay |ty — U”I))(/(q ) ||(I>2‘|1£/P(va)'

_ —2
Lo <2972 ag [, — ull 2] %3.

In the case 2 = ¢ < p < 0o, we have (Gou)(z) = Au(z) and s = p. Hence,

Hence, ||Gatm, — Gaul

1G2ul Lo .w) < llullx

HG2umk - GQU||LP(Q7W) S Humk - u”X
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Therefore, for 2<¢q < p < o0, by the Lebesgue Dominated Convergence Theorem, we obtain (as
my — 00)

|Gatim, — Gaul

Le(@w) 0
that is, Gaty, — Gau in L*(, w). By the Convergence Principle in Banach spaces, we have
Goup— Gou in L°(Q,w). (3.7)

Step 4. Since Ji e (Quw) (j =0,1,...,n), therefore T € [Wol’p(Q,w)]* C X*. Moreover, by

w
Theorem 2.2, we have

|</|fo\|w|dﬂf+2/\fJIIDMIdfv

Jlg

Jlg

SHfO/WHLP’(Q,w)||<P||Lp(9,w) + Z ||fj/WHLp'(Q7w)||Dj50||Lp(Q,w)

j=1

<Co o/l grn| 1V ey + (Z ||fj/w||m/m,w)) 21
=1

< (ca TYA s ||fj/w||Lp/(Q,w)) lolx.

=1

Moreover, we also have

| B(u, 0)|<[Bi(u, 0)| + [B2(u, @)| + | Bs(u, ¢)|

< Z/\A z,u Vu)||Dj<p|wdx+/|Au|p % | Aul| Ap|w da
J=lg

+/|Au|q_2|AuHAgp|vdm. (3.8)
In (3.8), by (H4), we have

/|.A(x,u,Vu)| [Vo|wdr < / (K1 + h1|u\p/p/ +h2\Vu\p/p/)|V<p|wdac
Q

<1 1 1196 ey + 1l goe e N2y 90

t 2l oo oIl V0] 117 Qw)H Vel Lo

< (1K) + (CHF Tl + Wl ) 2 Yl

and

/|Au|p_2|Au||A¢|wdm=/|Au|p_1|A<p|wdx
) )

1/p’ 1/p
S(/Au|pwdx) (/A(p|pwdx>
o) )

<IlullBP Nollx s
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1 1

1
and since s = p/(q—1), r =p/(p—q) and — + — + — = 1, by the generalized Holder inequality, we
s r p

obtain
/|Au|q*2|Au| \A@md:p:/murﬂ 1A L wdz
w
Q Q

1/s 1/p v 1/r
< </|Au|(q1)swdm> </|A<p|pwdx) (/()dex>
w
) o) )
(¢—1)/p 1/p v 1/r
- </|Au|pwd:ﬂ> </|Ag0pwdx> </()dem>
w
o) o) O

-1
<l el 0/l 2 g
Hence, in (3.8), for all u, p € X, we obtain
|B(u, ¢)]

<Kl o7 .y + CHP Ml oo oy lBP + B2l oo ey 1l BE + Il 3P

-1
10/ g Nl

Since B(u,.) is linear, for each u € X, there exists a linear and continuous functional on X denoted by
Aw such that (Au, ¢) = B(u, ¢), for all u, ¢ € X (here (f,z) denotes the value of the linear functional
f at the point x). Moreover,

1Aull, UKL Lo 0.0y + CHP il oo g 1lBP + 2l e g 1l 3P+ a5

—1
il /el gy Il

where ||Au||, = sup{|(Au, ¢)| = |B(u, )| : ¢ € X, |||l x = 1} is the norm of the operator Au.
Hence, we obtain the operator

AX— X"
u— Au.
Consequently, problem (P) is equivalent to the operator equation
Au=T, ueX.
Step 5. Using condition (H2) and Lemma 2.3 (b), we have
(Aup — Aug,uy — ug) = B(uy,u; — uz) — B(ug,u; — ug)
:/,,4(:107 u1, Vug) - V(ug — ug) wdz + / | Aug |72 Ay A(uy — ug) w da
Q Q

—|—/|Au1\q_2 Auy A(uy — ug)vde
Q

— /A(z,uQ, Vug) - V(ug — uz) wdx — / | Auz|p_2 Aug A(uy — ug) wdzx
Q Q

7\/|AU2“172 Aug Auy — ug) vdx
Q

/ (A(a:,ul, Vuy) — Az, usg, Vug)) -V(ug —ug)wdz

Q
+ /(| Ay P72 Auy — | Augl? ™% Aug) Aluy — up) wdz
Q
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+ /(| Ay |97 Auy — | Aug|"% Aug) Auy — ug) v da
Q

>0, / |V (ug — u2)[P wdz + B, /(| Auq| 4+ | Au2|)p_2 |Auy — Au2|2wdx
Q Q

+5, /(| Aug| + | Aug|)? 2 |Auy — Aug|? vda
Q

>0, / IV (1 — up)|? wdz + 5,,/(| Aus — Aus|)P~2 | Auy — Aus|? wda
Q Q

+04 /(| Au; — Au2|)q72 |Auy — Au2|2 vdz
Q

:91/|V(u1 —uz)|pwdx+6p/|Au1 — Aug|P wdz
Q O
+Bq/|Au1—Au2|qua:
)

291/|V(u1 —u2)|pwdx—|—ﬁp/|Au1 — AuglP wdz
Q Q

>0 Jur — ua%,

where § = min {61, 8,}. Therefore, the operator A is strongly monotone, and this implies that A is
strictly monotone. Moreover, from (H3), we obtain

(Au,u) = B(u,u) = By(u,u) + Ba(u,u) + Bs(u,u)

:/A(x,u,Vu)~Vuwdx+/|Au|p_2AuAuwdz +/|Au|q_2AuAuvd9:
Q Q Q

2/)\1|Vu|pwdx—|—/|Au\pwdx+/|Au|qux
Q Q Q
2/)\1|Vu|pwdx+/|Au\pwdx
Q Q
> [|ull’
where v = min {\1, 1}. Hence, since 2< ¢ < p < 0o, we have
(Au,u)

[l x

— 400, as ||ul x = + oo,

that is, A is coercive.
Step 6. We need to show that the operator A is continuous.
Let u,,—u in X as m — co. We have

|Bl(um7@) - Bl(uﬂ (,0)|§ Z/ ‘Aj(fvvumvvum) - Aj(xvuvvu)||Dj‘p|de
j:1Q

=3 [ 1Fyunn — Fyul Dyl w s
i=lg

n

< Z [ Ejtam, — FjuHLP/(Q7w)||Dj30||LP(Q7w)
j=1
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<(Z 155 = Frullaeay ) Il

j=1
and
|B2(um7 30) - B2(“’7 SO)|
= ‘ / | At |72 Aty Apw da — / | AulP 2 AuApw dx
Q Q
g/ | Aty [P72 Aty — | AulP?Au| | Ap|w da
Q
= / |Gy, — Gru| |Ap|wdz
Q
<[Grum = Grull o () lellx
1 1 1
and since — 4+ — + — = 1 (remember that s = p/(¢ — 1) (see Step 3) and r = p/(p — q), by (H5)),
s r D

|BS(um7 @) - B3(ua Sﬁ)‘

= ’/|Aum|q2Aum Acpvdx—/|Au|q72AuA<pvdx
) O

/

= / |Goty, — Goul |Ayp] %wdx
Q

1/s 1/p
§</|G2umG2u|swdx> (/|A<p|pwdx> (/(
Q Q Q

<||G2tuy — Gaul
for all ¢ € X. Hence,
|B(um, ) — B(u, ¢)|
< IBi(um, p) — Bi(u, ©)| + |Ba(um, ) — Ba(u, )| + | Bs(um, ) — Bs(u, ¢)|

| A2 Aup, — |Au| 2 Au | |[Ap|vda

1/r
)rwd:c)

€l

L5 (Qw) ||<P||X ”U/WHLT(Q,LU)’

< 15 = Fyl g+ Gt = Gl
j=1

T |Gt — quuLsm,w)||v/w||m,w>} lollx-

Then we obtain

| Aty — Au||* < Z ”Fj“m - Fju”LP'(Q)w) + |Gt — GluHLp/(Q,w)
j=1
+ [|G2um — Gaull s (.0 [V/@ - (,)-
Therefore, using (3.2), (3.5) and (3.7), we have ||Au,, — Aul/,—0 as m — +oo, that is, A is
continuous and this implies that A is hemicontinuous.
Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution u € X and it is

the unique solution for problem (P).
Step 7. In particular, by setting ¢ = w in Definition 2.4, we have

B(u,u) = By(u,u) + Ba(u,u) + Bs(u,u) = T(u). (3.9)



NONLINEAR DEGENERATE (p, q)-BIHARMONIC OPERATORS 45

Hence, using (H3) and v = min {1, 1}, we obtain
Bi(u,u) + Ba(u,u) + Bs(u,u)

:/A(x,u,Vu)~Vuwdx+/|Au\p_2AuAuwdm+/|Au|q_2AuAuvdas
Q Q Q

2/)\1|Vu|p+/|Au|pwdx+/|Au|quac

o) O Q
>\ /|Vu|p+/|Au|pwda:
Q Q
>l
and

T(u) = [ foudz+ Z fj Djudx
[ f

j:1Q

<N o/l o gray Tl zogrsy + S M3/l oI Dyt o

j=1

<Callfo/wll o @, 1Vl oy + S 165/l ey 1Vl oy

j=1
<(Calliofellirau + 3 Mileley )l
j=1
Therefore, in (3.9),
n
Tl < (Co o/l + 15/l ) Tl

j=1

and we obtain

1 n p'/p
Il x < 75 (cg 1o/l o @y + 3 IIfj/wlle'm,w)) ~

Jj=1

Example. Let Q = {(z,y) €R? : 22 + y?> < 1}, the weight functions w(z,y) = (2 + y?)~"/? and
v(z,y) = (22 +y?)71/3 (we Ay, v€ Az, p=4 and ¢ = 3), and the function

A:Qx xR*—R?
A((xay)vnag) = hZ(xvy) |£|£7

where h(z,y) = 2e@*+¥") Let us consider the partial differential operator
Lu(z,y) = Alw(e,y) [Aul® Au+ (e, y) |Auldu] - div (@2 +y?)~2 A((@,y), u, Vu).

Therefore, by Theorem 1.1, the problem
Lu(z) = cos(zy) _8((sm(aﬁy) >_8<(sm(my))>7 w0

(> +9?) 0z \(z>+¢?)/) Oy\(a®+y°
u(x) =0, on O

(P)

has a unique solution u€ X = W24(Q,w) N W, *(Q,w).
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Corollary 3.2. Under the assumptions of Theorem 1.1 with 2 < ¢ < p < oo, if u,us € X are
solutions of

Luy=fo— Y Dif; in 9
=1

(P1)
up(xz) =Aui(z) =0 on 99,
and
L’LLQ =4go — Zngj in Q,
(%) =
uz(2) = Aug(z) =0 on Of),
then 1/(p—1)
1 _ n . p—
||u1—u2||X§ﬁ <CQ fO 9o + f] g] > ,
at/p w L' (Qw) =1 w L' (Q,w)

where « is a positive constant and Cq is the constant in Theorem 2.2.
Proof. If u; and usy are the solutions of (P1) and (P2), then for all ¢ € X, we have

/|Au1|p72Au1 Acpwdm+/|Au1|q72Au1 Acpvdx+/A(x,u1,Vu1)~V<pwdx
o) o)

— (/|Au2|p_2Au2 A(pwdx+/|AU2|q_2Au2 Agpvdm—&—/A(m,ug,Vug)-V(p(udx)
Q Q

/(fo—go gadx+2/ \Dyp da. (3.10)
1= 1Q
In particular, for ¢ = u; — ug, we obtain in (3.10):

(i) By Lemma 2.3 (b) and since 2<g¢ < p < o0, there exist two positive constants 5, and 3, such
that

/ <|Au1\p_2Au1 - \Auz|p_2Au2) Auy — ug) wdz
Q

p—2 9
Z/Bp/ (|Au1\ + |Auz|) [Auy — Aug|” wdx
Q

> B, /|Au1 — Au2|p72\Au1 — AupPwdr = ﬂp/|A(u1 —ug)P wdz,

and, analogously,

/ (|Au1\q72Au1 - \AuQ|q72AuQ> A(uy —ug)vdz >3, / |A(ug — ug)|*vdx > 0.
Q )
(ii) By condition (H2)

/ (A(x,uh Vuy) — Az, ua, Vug)).V(ul — ug) wdr> 6y / [Vup — Vug |’ wda.
Q
(iii) By condition (H6) and Theorem 2.2, we also have

‘/fo—go U1—u2)d$+2/(fj—gj)Dj(u1—ug)d:n

Ji=1q

n

191 — ) o gy + (Z

j=1

0 — 9o
w

<05 fi—9;

) 19 — )l

Lr' (Qw) Lr' (Qw)
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0— 9o
w

fj*gj

w

n
+
Lr/(Quw) =1

< (CQ

Hence, with oo = min{,, 61}, we obtain

! ))ul .
Lr" (Q,w

allug — us|% §5P/|A(u1 —ug) [P wdx + 0, / [Vuy — Vug)|P wdz

)
< <OQ

Therefore, since 2<¢g < p < o,

n
0— 9o
w

n fi—9;

Lr'(Quw) =1

)nul sy

L' (Q,w)

1/(p—1)
) . O
L' (Q,w)

Corollary 3.3. Assume2<q < p < co. Let the assumptions of Theorem 1.1 be fulfilled, and let {f()m}

me fo ) (Q w) and =™ — &
w w

+2
L' (Qw) =1

fi—gj
w

fo— 90
w

1
lur = w2llx < 7=y (CQ

and {fim} (j =1,...,n) be sequences of functions satisfying —

in LP'(Q,w) as m — co. If um € X is a solution of the problem

Lum () = fom(x ZD fim in Q,

U (2) = Aup, (z ):O on Of),

(Pm)

then um— u in X and u is a solution of problem (P).

Proof. By Corollary 3.2, we have
Jom — fo

w

f]m f]k

w

+
Lr'(Qw) =1

1/(p—1)
Lp’(Q,w)> '

Therefore {u,,} is a Cauchy sequence in X. Hence, there is u € X such that u,, —u in X. We find
that u is a solution of problem (P). In fact, since u,, is a solution of (P,,), for all ¢ € X we have

1
o — el x < 75 <CQ

/|Au|p_2AuA<pwd1'+/\Au|q_2AuA<pvd:cJr/A(x,u,Vu)~Vg0wd:1:
Q

= / <|Au|p72Au - |Aum\p72Aum> Apwdr + / (\Au\qﬁAu - |Aum|q72Aum> Apvdx
Q )

+/ (A(m,u, Vu) — A(x,um,Vum)) -Vowdx

Q

—|—/\Aum|p_2AumAapwdaz—|—/|Aum|q_2AumAapvdx+/.A(a:,um,Vum)-Vgpwdm

—11+12+13+/f0m¢dx+2/fm Djpda

Jlﬂ

:11+12+13+/fo<pdx Z/ijjwdo:

/(me fo) <pdx+Z/fgm fi)Djpdx, (3.11)

Q =1q
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where

I = / (\Au|p_2Au - |Aum|p_2Aum) Apwdz,
Q

I, = / (\Au|q *Au— | Auyy, |7 2Aum)A<pvdx
Q

Iy = / (A(:r,u, V) —A(a:,um,vum)) Vowdz.
)

We find that:

(1) by Lemma 2.3(a), there exists a, > 0 such that

|Il|§/ ‘|Au|p72Au - |Aum|p72Aum| |Ap|wdx
)

a / A — At (|Au] + [ )P2 | A w da.

1 1 1
Let 6 =p/(p—2). Since — + — + 5= 1, by the Generalized Holder inequality we obtain
p P
1/p 1/p 1/68
L|<a </ |[Au — Aum|pwdm> </ |A<p|pwdx> (/(|Au| + |Aum)(p2)5wdx)
Q

2)
<apllu—=um|x el llAuf + IAumlllfp Q)

Now, since u,—u in X, there exists a constant M > 0 such that ||u,,|| y <M. Hence,
IAu] + [Aum|l| Lo () < llullx + l[umllx <2M. (3.12)
Therefore,
(L[ <ap 2M)P72 lu— umllx [l x
=C1 [lu = um| x [l x>
where C1 = v, (2M)P~2

(2) By Lemma 2.3 (a) there exists a positive constant «, such that

|12|§/||AU|Q*2AU— | At |77 Ay | | A v de
<a, /|Au— At (|D01] + [ D )72 | Ap| v da.

1 1 1
Let e =¢q/(¢—2) (if 2 < ¢ < p < ). Since — + — + — = 1, by the Generalized Holder inequality,
qa 4q £

we obtain

1/q 1/q 1/e
|I2|< ay </|Au—Aum|qum) (/|Agp|qux) (/(|Au|+|Aum)(q_2)5vdx)
Q o) Q

= aq [|[Au — AUWHL‘I(Q v) HASO”Lq(Q v)|HAU\ + |Aum|||Lq(Q v)*
Now, by Remark 2.4 and (3.12), we have
2
[2|<aq CpqllAu — AumHLP(Q w) Ch, q”ASOHLp(Q w)cq *l[1Au] + |Aum|”m(ﬂ,w)
<ag Cp gllu —um| x el (2M)*

=Cs [lu —um| x ¥l
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where Cy = (2M )7~ 20, C2
In case g = 2, we have I, = /( Au — Auy,) Apvdr, and by Remark 2.4, we obtain

Q
2| <[[Au = Aupl| 120 ) |1 AC] L2 (0,0)

SCI%BHAU - AUm”LP(Q,w) HA(IDHLP(Q’W)
<Cpollu—umlxlelx-
By Step 1 (Theorem 1.1), we also have

|]3\<Z/\A (2,14, V) — A (2, i, V)| | Dol w da

J1Q

=3 [ 15w ~ Fytem)1Dl 0

=1q

(ZHF Fyum)lr o wQuwupm .

(ZHF Fywm)lr o, w>)||sa||x

Therefore, we have I, Is, I3, — 0 as m— oco.
(3) We also have

’/(me_fO wdfC—FZ/ (fim — fj)Djpdx
!

J1Q

fom — fo

w

fjm _fj

w

£y
L' (Qw) =1

)||<P||x—>0,

< ‘ P/ (Qw)
as m— oo.
Therefore, in (3.11), as m— co, we obtain

/|Au|p72AuA<pwdfc—|—/|Au\q72AuAg0vdx
)

+ /A(m,u,Vu) -Vowdzx

/fogodx—l—Z/fJ]ngodx

Jlg

i.e., u is a solution of problem (P). O
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