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EXISTENCE RESULTS FOR A CLASS OF NONLINEAR DEGENERATE

(p, q)-BIHARMONIC OPERATORS IN WEIGHTED SOBOLEV SPACES

ALBO CARLOS CAVALHEIRO

Abstract. In this paper we are interested in the existence of solutions for Navier problem associated
with the degenerate nonlinear elliptic equation

∆
[
ω(x) |∆u|p−2∆u + v(x)|∆u|q−2∆u

]
−

n∑
j=1

Dj

[
ω(x)Aj(x, u,∇u)

]
= f0(x)−

n∑
j=1

Djfj(x), in Ω

in the setting of the weighted Sobolev spaces.

1. Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev space X =

W 2,p(Ω, ω)∩W 1,p
0 (Ω, ω) (see Definitions 2.3 and 2.4) for the Navier problem

(P )

Lu(x) = f0(x)−
n∑
j=1

Djfj(x), in Ω,

u(x) = ∆u(x) = 0, on ∂Ω,

where L is the partial differential operator

Lu(x) = ∆
[
ω(x) |∆u|p−2

∆u+ v(x) |∆u|q−2
∆u
]
−

n∑
j=1

Dj

[
ω(x)Aj(x, u(x),∇u(x))

]
where Dj = ∂/∂xj , Ω is a bounded open set in Rn, ω and v are two weight functions, ∆ is the usual
Laplacian operator, 2≤ q < p < ∞ and the functions Aj : Ω×R×Rn→R (j = 1, . . . , n) satisfying
the following conditions:

(H1) x 7→Aj(x, η, ξ) is measurable on Ω for all (η, ξ)∈R×Rn, (η, ξ) 7→Aj(x, η, ξ) is continuous on
R×Rn for almost all x∈Ω;

(H2) there exists a constant θ1 > 0 such that [A(x, η, ξ) − A(x, η′, ξ′)]. (ξ − ξ′)≥ θ1 |ξ − ξ′|p,
whenever ξ, ξ′∈Rn, ξ 6=ξ′, where A(x, η, ξ) = (A1(x, η, ξ), . . . ,An(x, η, ξ)) (where the dot denotes here
the Euclidean scalar product in Rn);

(H3) A(x, η, ξ).ξ≥λ1|ξ|p, where λ1 is a positive constant;

(H4) |A(x, η, ξ)| ≤K1(x) + h1(x)|η|p/p
′
+ h2(x)|ξ|p/p

′
, where K1, h1 and h2 are positive functions

with h1 and h2∈L∞(Ω), and K1∈Lp
′
(Ω, ω) (with 1/p+ 1/p ′ = 1).

Let Ω be an open set in Rn. By the symbol W(Ω) we denote the set of all measurable a.e. in
Ω positive and finite functions ω = ω(x), x∈Ω. Elements of W(Ω) will be called weight functions.
Every weight ω gives rise to a measure on the measurable subsets of Rn through integration. This

measure will be denoted by µω. Thus, µω(E) =

∫
E

ω(x) dx for measurable sets E⊂Rn.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of solutions for elliptic and
parabolic partial differential equations. In the particular case for p = q = 2 and ω = v≡ 1, we have
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the equation

∆2u−
n∑
j=1

DjAj(x, u,∇u) = f,

where ∆2u is the biharmonic operator. If p = q, ω = v≡ 1 and A(x, η, ξ) = |ξ|p−2
ξ, we have the

equation

∆(|∆|p−2
∆u)− div(|∇u|p−2∇u) = f.

Biharmonic equations appear in the study of mathematical model in several real-life processes as,
among others, radar imaging (see [1]) or incompressible flows (see [17]).

For degenerate partial differential equations, i.e., equations with various types of singularities in the
coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [4], [5], [6], [3] and [9]). In
various applications, we can meet the boundary value problems for elliptic equations whose ellipticity
is disturbed in the sense that there appear some degeneration or singularity appears. There are several
very concrete problems from practice which lead to such differential equations, e.g., from glaceology,
non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics,
climatology, petroleum extraction and reaction-diffusion problems (see some examples of applications
of degenerate elliptic equations in [2] and [8]).

A class of weights, which is particularly well understood, is the class of Ap-weights (or Muckenhoupt
class) that was introduced by B. Muckenhoupt (see [18]). These classes have found many useful
applications in harmonic analysis (see [20]). Another reason for studying Ap-weights is the fact that
powers of distance to submanifolds of Rn often belong to Ap (see [15]). There are, in fact, many
interesting examples of weights (see [14] for p-admissible weights).

In the non-degenerate case (i.e., with ω(x) ≡ 1), for all f ∈Lp(Ω), the Poisson equation associated
with the Dirichlet problem {

−∆u = f(x) in Ω,

u(x) = 0 on ∂Ω,

is uniquely solvable in W 2,p(Ω)∩W 1,p
0 (Ω) (see [13]), and the nonlinear Dirichlet problem{
−∆pu = f(x) in Ω,

u(x) = 0 on ∂Ω,

is uniquely solvable in W 1,p
0 (Ω) (see [7]), where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator. In

the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [19]
and the references therein), and the degenerated p-Laplacian was studied in [9].

The following theorem will be proved in Section 3.

Theorem 1.1. Let 2≤ q < p <∞ and assume (H1)− (H4). If

(H5) ω ∈Ap, v ∈W(Ω) and
v

ω
∈Lr(Ω, ω), where r = p/(p− q);

(H6) fj/ω ∈Lp
′
(Ω, ω) (j = 0, 1, . . . , n).

Then the problem (P ) has a unique solution u∈X = W 2,p(Ω, ω)∩W 1,p
0 (Ω, ω). Moreover, we have

‖u‖X≤
1

γp ′/p

(
CΩ‖f0/ω‖Lp ′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)

)p ′/p

,

where γ = min {λ1, 1} and CΩ is the constant in Theorem 2.2.

2. Definitions and Basic Results

Let ω be a locally integrable nonnegative function in Rn and assume that 0 < ω < ∞ almost
everywhere. We say that ω belongs to the Muckenhoupt class Ap, 1 < p < ∞, or that ω is an
Ap-weight, if there is a constant C = Cp,ω such that(

1

|B|

∫
B

ω dx

)(
1

|B|

∫
B

ω1/(1−p) dx

)p−1

≤C,
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for all balls B⊂Rn, where |.| denotes the n-dimensional Lebesgue measure in Rn. If 1 < q≤ p, then
Aq ⊂Ap (see [12], [14] or [20] for more information about Ap-weights). The weight ω satisfies the
doubling condition if there exists a positive constant C such that

µ(B(x; 2r))≤C µ(B(x; r)),

for every ball B = B(x; r)⊂Rn, where µ(B) =
∫
B
ω(x) dx. If ω∈Ap, then µ is doubling (see [14],

Corollary 15.7).
As an example of Ap-weight, the function ω(x) = |x|α, x∈Rn, is in Ap if and only if −n < α <

n(p− 1) (see [20], Corollary 4.4, Chapter IX, Corollary 4.4).
If ω∈Ap, then (

|E|
|B|

)p
≤C µ(E)

µ(B)
,

whenever B is a ball in Rn and E is a measurable subset of B (for a strong doubling property see 15.5
in [14]). Therefore, if µ(E) = 0, then |E| = 0. The measure µ and the Lebesgue measure | · | are
mutually absolutely continuous, i.e., they have the same zero sets (µ(E) = 0 if and only if |E| = 0);
so, there is no need to specify the measure when using the ubiquitous expression almost everywhere
and almost every, both abbreviated a.e. .

Definition 2.1. Let ω be a weight, and let Ω⊂Rn be open. For 0 < p < ∞ we define Lp(Ω, ω) as
the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =

(∫
Ω

|f |pω dx
)1/p

<∞.

If ω ∈Ap, 1 < p <∞, then ω−1/(p−1) is locally integrable and we have Lp(Ω, ω)⊂L1
loc(Ω) for every

open set Ω (see [21, Remark 1.2.4]). It thus makes sense to talk about weak derivatives of functions
in Lp(Ω, ω).

Definition 2.2. Let Ω⊂Rn be a bounded open set, 1 < p <∞, k be a nonnegative integer and ω ∈Ap.
We shall denote by W k,p(Ω, ω) the weighted Sobolev spaces, the set of all functions u∈Lp(Ω, ω) with
weak derivatives Dαu∈Lp(Ω, ω), 1≤ |α| ≤ k. The norm in the space W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =

(∫
Ω

|u|p ω dx+
∑

1≤|α|≤ k

∫
Ω

|Dαu|p ω dx
)1/p

. (2.1)

If ω ∈Ap, then W 1,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm (2.1) (see [21, Theorem
2.1.4]). The spaces W 1,p(Ω, ω) are Banach spaces.

The space W 1,p
0 (Ω, ω) is the closure of C∞0 (Ω) with respect to the norm (2.1). Equipped with

this norm, W 1,p
0 (Ω, ω) is a reflexive Banach space (see [16] for more information about the spaces

W 1,p(Ω, ω)). The dual of the space W 1,p
0 (Ω, ω) is the space

[W 1,p
0 (Ω, ω)]∗ = {T = f0 − div(F ), F = (f1, . . . , fn) :

fj
ω
∈Lp

′
(Ω, ω), j = 0, 1, . . . , n}.

It is evident that a weight function ω which satisfies 0 < c1≤ω(x)≤ c2 for x∈Ω (where c1 and c2 are

constants), gives nothing new (the space W1,p
0 (Ω, ω) is then identical with the classical Sobolev space

W1,p
0 (Ω)). Consequently, we shall be interested above all in such weight functions ω which either

vanish somewhere in Ω̄, or increase at infinity (or both).
In this paper we use the following results.

Theorem 2.1. Let ω ∈Ap, 1 < p <∞, and let Ω be a bounded open set in Rn. If um→u in Lp(Ω, ω)
then there exist a subsequence {umk

} and a function Φ∈Lp(Ω, ω) such that
(i) umk

(x)→u(x), mk→∞ a.e. on Ω;
(ii) |umk

(x)| ≤Φ(x) a.e. on Ω.

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [11]. �
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Theorem 2.2 (The weighted Sobolev inequality). Let Ω be an open bounded set in Rn and ω∈Ap
(1 < p < ∞). There exist the constants CΩ and δ positive such that for all u∈W 1,p

0 (Ω, ω) and all k
satisfying 1≤ k≤n/(n− 1) + δ,

‖u‖Lkp(Ω,ω)≤CΩ‖ |∇u| ‖Lp(Ω,ω). (2.2)

Proof. It suffices to prove the inequality for the functions u∈C∞0 (Ω) (see [10, Theorem 1.3]). To

extend the estimates (2.2) to arbitrary u∈W 1,p
0 (Ω, ω), we let {um} be a sequence of C∞0 (Ω) functions

tending to u in W 1,p
0 (Ω, ω). Applying the estimates (2.2) to differences um1 − um2 , we see that {um}

will be a Cauchy sequence in Lkp(Ω, ω). Consequently, the limit function u will lie in the desired
spaces and satisfy (2.2). �

Lemma 2.3. Let 1 < p <∞.
(a) There exists a constant αp > 0 such that∣∣∣ |x|p−2

x− |y|p−2
y
∣∣∣≤αp |x− y|(|x|+ |y|)p−2,

for all x, y ∈Rn.
(b) There exist two positive constants βp, γp such that for every x, y ∈Rn,

βp (|x|+ |y|)p−2|x− y|2≤ (|x|p−2
x− |y|p−2

y).(x− y)≤ γp (|x|+ |y|)p−2|x− y|2.

Proof. See [7], Proposition 17.2 and Proposition 17.3. �

Remark 2.4. If 2≤ q < p <∞ and
v

ω
∈Lr(Ω, ω) (where r = p/(p− q)), then there exists a constant

Cp,q = ‖v/ω‖1/qLr(Ω,ω) such that

‖u‖Lq(Ω,v)≤Cp,q‖u‖Lp(Ω,ω).

In fact, by Hölder’s inequality (1/r + q/p = (p− q)/p+ q/p = 1),

‖u‖qLq(Ω,v) =

∫
Ω

|u|q v dx =

∫
Ω

|u|q v
ω
ω dx

≤
(∫

Ω

|u|pω dx
)q/p(∫

Ω

(
v/ω

)r
ω dx

)1/r

=‖u‖qLp(Ω,ω)‖v/ω‖Lr(Ω,ω).

Hence, ‖u‖Lq(Ω,v)≤Cp,q‖u‖Lp(Ω,ω), with Cp,q = ‖v/ω‖1/qLr(Ω,ω).

Definition 2.3. We denote by X = W 2,p(Ω, ω)∩W 1,p
0 (Ω, ω) with the norm

‖u‖X =

(∫
Ω

|∇u|p ω dx+

∫
Ω

|∆u|p ω dx
)1/p

.

Definition 2.4. We say that an element u∈X = W 2,p(Ω, ω)∩W 1,p
0 (Ω, , ω) is a (weak) solution of

problem (P) if∫
Ω

|∆u|p−2
∆u∆ϕω dx+

∫
Ω

|∆u|q−2
∆u∆ϕv dx+

n∑
j=1

∫
Ω

Aj(x, u,∇u)Djϕω dx

=

∫
Ω

f0 ϕdx+

n∑
j=1

∫
Ω

fj Djϕdx,

for all ϕ∈X.
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3. Proof of Theorem 1.1

The basic idea is to reduce problem (P) to an operator equation Au = T and apply the theorem
below.

Theorem 3.1. Let A : X→X∗ be a monotone, coercive and hemicontinuous operator on the real,
separable, reflexive Banach space X. Then the following assertions hold:

(a) for each T ∈X∗, the equation Au = T has a solution u∈X;
(b) if the operator A is strictly monotone, then the equation Au = T is uniquely solvable in X.

Proof. See Theorem 26. A in [23]. �

To prove Theorem 1.1, we define B,B1, B2, B3 : X ×X→R and T : X→R by

B(u, ϕ) = B1(u, ϕ) +B2(u, ϕ) +B3(u, ϕ),

B1(u, ϕ) =

n∑
j=1

∫
Ω

Aj(x, u,∇u)Djϕω dx =

∫
Ω

A(x, u,∇u) · ∇ϕω dx

B2(u, ϕ) =

∫
Ω

|∆u|p−2
∆u∆ϕω dx

B3(u, ϕ) =

∫
Ω

|∆u|q−2
∆u∆ϕv dx

T (ϕ) =

∫
Ω

f0 ϕdx+

n∑
j=1

∫
Ω

fj Djϕdx.

Then u∈X is a (weak) solution to problem (P) if

B(u, ϕ) = B1(u, ϕ) +B2(u, ϕ) +B3(u, ϕ) = T (ϕ),

for all ϕ∈X.
Step 1. For j = 1, . . . , n, we define the operator Fj : X→Lp ′

(Ω, ω) as

(Fju)(x) = Aj(x, u(x),∇u(x)).

We now show that the operator Fj is bounded and continuous.
(i) Using (H4), we obtain

‖Fju‖p
′

Lp ′ (Ω,ω)
=

∫
Ω

|Fju(x)|p
′
ω dx

=

∫
Ω

|Aj(x, u,∇u)|p
′
ω dx

≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p ′

ω dx

≤Cp
∫
Ω

[
(Kp ′

1 + hp
′

1 |u|
p

+ hp
′

2 |∇u|
p
)ω

]
dx

=Cp

[ ∫
Ω

Kp ′

1 ω dx+

∫
Ω

hp
′

1 |u|
p
ω dx+

∫
Ω

hp
′

2 |∇u|
p
ω dx

]
, (3.1)

where the constant Cp depends only on p.
We have, by Theorem 2.2 (with k = 1),∫

Ω

hp
′

1 |u|
p
ω dx≤‖h1‖p

′

L∞(Ω)

∫
Ω

|u|p ω dx
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≤CpΩ ‖h1‖p
′

L∞(Ω)

∫
Ω

|∇u|p ω dx

≤CpΩ ‖h1‖p
′

L∞(Ω) ‖u‖
p
X ,

and

∫
Ω

hp
′

2 |∇u|
p
ω dx≤‖h2‖p

′

L∞(Ω)

∫
Ω

|∇u|p ω dx≤‖h2‖p
′

L∞(Ω)‖u‖
p
X . Therefore, in (3.1) we obtain

‖Fju‖Lp ′ (Ω,ω) ≤ C1/p ′

p

(
‖K‖Lp ′ (Ω,ω) + (C

p/p ′

Ω ‖h1‖L∞(Ω) + ‖h2‖L∞(Ω)) ‖u‖
p/p ′

X

)
.

(ii) Let um→u in X as m→∞. We need to show that Fjum→Fju in Lp
′
(Ω, ω). We will apply the

Lebesgue Dominated Convergence Theorem. If um→u in X, then |∇um|→ |∇u| in Lp(Ω, ω). Using
Theorem 2.1, there exist a subsequence {umk

} and a function Φ1 such that

Djumk
(x)→Dju(x), a.e. in Ω,

|∇umk
(x)|≤Φ1(x), a.e. in Ω.

By Theorem 2.2, we obtain

‖umk
‖Lp(Ω,ω)≤CΩ ‖ |∇umk

| ‖Lp(Ω,ω)≤CΩ ‖Φ1‖Lp(Ω,ω).

Next, applying (H4), we obtain

‖Fjumk
− Fju‖p

′

Lp ′ (Ω,ω)
=

∫
Ω

|Fjumk
(x)− Fju(x)|p

′
ω dx

=

∫
Ω

|Aj(x, umk
,∇umk

)−Aj(x, u,∇u)|p
′
ω dx

≤Cp
∫
Ω

(
|Aj(x, umk

,∇umk
)|p

′
+ |Aj(x, u,∇u)|p

′)
ω dx

≤Cp

[∫
Ω

(
K1 + h1|umk

|p/p
′
+ h2|∇umk

|p/p
′)p ′

ω dx

+

∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p ′

ω dx

]

≤Cp
[ ∫

Ω

Kp ′

1 ω dx+ ‖h1‖p
′

L∞(Ω)

∫
Ω

|umk
|p ω dx+ ‖h2‖p

′

L∞(Ω)

∫
Ω

|∇umk
|p ω dx

+

∫
Ω

Kp ′

1 ω dx+ ‖h1‖p
′

L∞(Ω)

∫
Ω

|u|p ω dx+ ‖h2‖p
′

L∞(Ω)

∫
Ω

|∇u|p ω dx
]

≤2Cp

[ ∫
Ω

Kp ′

1 ω dx+ CpΩ‖h1‖p
′

L∞(Ω)

∫
Ω

Φp1 ω dx+ ‖h2‖p
′

L∞(Ω)

∫
Ω

Φp1 ω dx

]

=2Cp

[
‖K1‖p

′

Lp ′ (Ω,ω)
+
(
CpΩ‖h1‖p

′

L∞(Ω) + ‖h2‖p
′

L∞(Ω)

)
‖Φ1‖pLp(Ω,ω)

]
.

By condition (H1), we have

Fjumk
(x) = Aj(x, umk

(x),∇umk
(x))→Aj(x, u(x),∇u(x)) = Fju(x),

as mk → +∞. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain

‖Fjumk
− Fju‖Lp ′ (Ω,ω)→ 0,

that is,

Fjumk
→Fju in Lp

′
(Ω, ω).
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We conclude from the Convergence Principle in Banach spaces (see [22, Proposition 10.13]) that

Fjum→Fju in Lp
′
(Ω, ω). (3.2)

Step 2. We define the operator G1 : X→Lp
′
(Ω, ω) by

(G1u)(x) = |∆u(x)|p−2
∆u(x).

This operator is continuous and bounded. In fact,
(i) we have

‖G1u‖p
′

Lp ′ (Ω,ω)
=

∫
Ω

∣∣ |∆u|p−2
∆u
∣∣p ′

ω dx

=

∫
Ω

|∆u|(p−1) p ′
ω dx

=

∫
Ω

|∆u|p ω dx

≤‖u‖pX .

Hence, ‖G1u‖Lp ′ (Ω,ω)≤‖u‖
p−1
X .

(ii) If um→u in X, then ∆um→∆u in Lp(Ω, ω). By Theorem 2.1, there exist a subsequence {umk
}

and a function Φ2 ∈Lp(Ω, ω) such that

∆umk
(x)→∆u(x), a.e. in Ω, (3.3)

|∆umk
(x)| ≤Φ2(x), a.e. in Ω. (3.4)

Hence, using Lemma 2.3 (a), θ =
p

p ′
= p− 1 and θ ′ =

(p− 2)

(p− 1)
, we obtain (since 2≤ q < p <∞),

‖G1umk
−G1u‖p

′

Lp ′ (Ω,ω)
=

∫
Ω

|G1umk
−G1u|p

′
ω dx

=

∫
Ω

∣∣∣∣ |∆umk
|p−2

∆umk
− |∆u|p−2

∆u

∣∣∣∣p ′

ω dx

≤
∫
Ω

[
αp |∆umk

−∆u| ( |∆umk
|+ |∆u|)(p−2)

]p ′

ω dx

≤αp
′

p

∫
Ω

|∆umk
−∆u|p

′
(2 Φ2)(p−2) p ′

ω dx

≤ 2(p−2)p ′
αp

′

p

(∫
Ω

|∆umk
−∆u|p

′θ
ω dx

)1/θ(∫
Ω

Φ
(p−2)p ′θ ′

2 ω dx

)1/θ ′

≤αp
′

p 2(p−2)p ′
(∫

Ω

|∆umk
−∆u|p ω dx

)p ′/p(∫
Ω

Φp2 ω dx

)(p−2)/(p−1)

≤αp
′

p 2(p−2) p ′
‖umk

− u‖p
′

X ‖Φ2‖(p−2)p ′

Lp(Ω,ω),

since (p− 2)p ′θ ′ = (p− 2)
p

(p− 1)

(p− 1)

(p− 2)
= p if p 6= 2. Then

‖G1umk
−G1u‖Lp ′ (Ω,ω)≤ 2(p−2)αp ‖Φ2‖p−2

Lp(Ω,ω)‖umk
− u‖X .

Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain (as mk →∞)

‖G1umk
−G1u‖Lp ′ (Ω,ω)→ 0,
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that is, G1umk
→G1u in Lp

′
(Ω, ω). By the Convergence Principle in Banach spaces, we have

G1um→G1u in Lp
′
(Ω, ω). (3.5)

Step 3. We define the operator G2 : X→Ls(Ω, ω), where s = p/(q − 1), by

(G2u)(x) = |∆u(x)|q−2
∆u(x).

We also have that the operator G2 is continuous and bounded. In fact,
(i) we have

‖G2u‖sLs(Ω,ω) =

∫
Ω

∣∣|∆u|q−2
∆u
∣∣s ω dx

=

∫
Ω

|∆u|(q−1) s
ω dx

=

∫
Ω

|∆u|p ω dx

≤‖u‖pX ,

and ‖G2u‖Ls(Ω,ω)≤‖u‖
q−1
X .

(ii) If um→u in X, then ∆um→∆u in Lp(Ω, ω). If 2 < q < p < ∞, by (3.3), (3.4) and Lemma
2.3(a), we have

‖G2umk
−G2u‖sLs(Ω,ω) =

∫
Ω

∣∣∣|∆umk
|q−2

∆umk
− |∆u|q−2

∆u
∣∣∣sω dx

≤
∫
Ω

[
αq|∆umk

−∆u|
(
|∆umk

|+ |∆u|
)q−2]s

ω dx

=αsq

∫
Ω

|∆umk
−∆u|s

(
|∆umk

|+ |∆u|
)(q−2)s

ω dx

≤ 2(q−2)sαsq

∫
Ω

|∆umk
−∆u|s Φ

(q−2)s
2 ω dx. (3.6)

For δ = q − 1 and δ ′ = (q − 1)/(q − 2), in (3.6) we have

‖G2umk
−G2u‖sLs(Ω,ω)

≤ 2(q−2)sαsq

∫
Ω

|∆umk
−∆u|s Φ

(q−2)s
2 ω dx

≤ 2(q−2)sαsq

(∫
Ω

|∆umk
−∆u|s δω dx

)1/δ(∫
Ω

Φ
(q−2)s δ ′

2 ω dx

)1/δ ′

= 2(q−2)sαsq

(∫
Ω

|∆umk
−∆u|p ω dx

)1/(q−1)(∫
Ω

Φp2 ω dx

)1/δ ′

≤ 2(q−2)s αsq ‖umk
− u‖p/(q−1)

X ‖Φ2‖p/δ
′

Lp(Ω,ω).

Hence, ‖G2umk
−G2u‖Ls(Ω,ω ≤ 2(q−2) αq ‖umk

− u‖X ‖Φ2‖(q−2)
Lp(Ω,ω).

In the case 2 = q < p <∞, we have (G2u)(x) = ∆u(x) and s = p. Hence,

‖G2u‖Lp(Ω,ω)≤‖u‖X ,
‖G2umk

−G2u‖Lp(Ω,ω)≤‖umk
− u‖X .
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Therefore, for 2≤ q < p < ∞, by the Lebesgue Dominated Convergence Theorem, we obtain (as
mk →∞)

‖G2umk
−G2u‖Ls(Ω,ω)→ 0,

that is, G2umk
→G2u in Ls(Ω, ω). By the Convergence Principle in Banach spaces, we have

G2um→G2u in Ls(Ω, ω). (3.7)

Step 4. Since
fj
ω
∈Lp

′
(Ω, ω) (j = 0, 1, . . . , n), therefore T ∈ [W 1,p

0 (Ω, ω)]∗⊂X∗. Moreover, by

Theorem 2.2, we have

|T (ϕ)|≤
∫
Ω

|f0||ϕ| dx+

n∑
j=1

∫
Ω

|fj ||Djϕ| dx

=

∫
Ω

|f0|
ω
|ϕ|ω dx+

n∑
j=1

∫
Ω

|fj |
ω
|Djϕ|ω dx

≤‖f0/ω‖Lp ′ (Ω,ω)‖ϕ‖Lp(Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)‖Djϕ‖Lp(Ω,ω)

≤CΩ ‖f0/ω‖Lp ′ (Ω,ω)‖ |∇ϕ| ‖Lp(Ω,ω) +

( n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)

)
‖ |∇ϕ| ‖Lp(Ω,ω)

≤
(
CΩ ‖f0/ω‖Lp ′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)

)
‖ϕ‖X .

Moreover, we also have

|B(u, ϕ)|≤|B1(u, ϕ)|+ |B2(u, ϕ)|+ |B3(u, ϕ)|

≤
n∑
j=1

∫
Ω

|Aj(x, u,∇u)||Djϕ|ω dx+

∫
Ω

|∆u|p−2 |∆u| |∆ϕ|ω dx

+

∫
Ω

|∆u|q−2|∆u||∆ϕ| v dx. (3.8)

In (3.8), by (H4), we have∫
Ω

|A(x, u,∇u)| |∇ϕ|ω dx≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′)
|∇ϕ|ω dx

≤‖K1‖Lp ′ (Ω,ω)‖ |∇ϕ| ‖Lp(Ω,ω) + ‖h1‖L∞(Ω)‖u‖
p/p ′

Lp(Ω,ω)‖ |∇ϕ| ‖Lp(Ω,ω)

+ ‖h2‖L∞(Ω)‖ |∇u| ‖
p/p ′

Lp(Ω,ω)‖ |∇ϕ| ‖Lp(Ω,ω)

≤
(
‖K1‖Lp ′ (Ω,ω) + (C

p/p ′

Ω ‖h1‖L∞(Ω) + ‖h2‖L∞(Ω))‖u‖
p/p ′

X

)
‖ϕ‖X ,

and ∫
Ω

|∆u|p−2 |∆u| |∆ϕ|ω dx =

∫
Ω

|∆u|p−1 |∆ϕ|ω dx

≤
(∫

Ω

|∆u|p ω dx
)1/p ′(∫

Ω

|∆ϕ|p ω dx
)1/p

≤‖u‖p/p
′

X ‖ϕ‖X ,
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and since s = p/(q − 1), r = p/(p − q) and
1

s
+

1

r
+

1

p
= 1, by the generalized Hölder inequality, we

obtain ∫
Ω

|∆u|q−2 |∆u| |∆ϕ| v dx =

∫
Ω

|∆u|q−1 |∆ϕ| v
ω
ω dx

≤
(∫

Ω

|∆u|(q−1)s
ω dx

)1/s(∫
Ω

|∆ϕ|p ω dx
)1/p(∫

Ω

( v
ω

)r
ω dx

)1/r

=

(∫
Ω

|∆u|p ω dx
)(q−1)/p(∫

Ω

|∆ϕ|p ω dx
)1/p(∫

Ω

( v
ω

)r
ω dx

)1/r

≤‖u‖(q−1)
X ‖ϕ‖X ‖v/ω‖Lr(Ω,ω).

Hence, in (3.8), for all u, ϕ∈X, we obtain

|B(u, ϕ)|

≤
[
‖K1‖Lp ′ (Ω,ω) + C

p/p ′

Ω ‖h1‖L∞(Ω)‖u‖
p/p ′

X + ‖h2‖L∞(Ω,ω)‖u‖
p/p ′

X + ‖u‖p/p
′

X

+ ‖v/ω‖Lr(Ω,ω) ‖u‖
q−1
X

]
‖ϕ‖X .

Since B(u, .) is linear, for each u∈X, there exists a linear and continuous functional on X denoted by
Au such that 〈Au,ϕ〉 = B(u, ϕ), for all u, ϕ∈X (here 〈f, x〉 denotes the value of the linear functional
f at the point x). Moreover,

‖Au‖∗≤‖K1‖Lp ′ (Ω,ω) + C
p/p ′

Ω ‖h1‖L∞(Ω)‖u‖
p/p ′

X + ‖h2‖L∞(Ω,ω)‖u‖
p/p ′

X + ‖u‖p/p
′

X

+‖v/ω‖Lr(Ω,ω)‖u‖
q−1
X ,

where ‖Au‖∗ = sup{|〈Au,ϕ〉| = |B(u, ϕ)| : ϕ∈ X, ‖ϕ‖X = 1} is the norm of the operator Au.
Hence, we obtain the operator

A :X→X∗

u 7→Au.

Consequently, problem (P) is equivalent to the operator equation

Au = T, u∈X.
Step 5. Using condition (H2) and Lemma 2.3 (b), we have

〈Au1 −Au2, u1 − u2〉 = B(u1, u1 − u2)−B(u2, u1 − u2)

=

∫
Ω

A(x, u1,∇u1) · ∇(u1 − u2)ω dx+

∫
Ω

|∆u1|p−2
∆u1 ∆(u1 − u2)ω dx

+

∫
Ω

|∆u1|q−2
∆u1 ∆(u1 − u2) v dx

−
∫
Ω

A(x, u2,∇u2) · ∇(u1 − u2)ω dx−
∫
Ω

|∆u2|p−2
∆u2 ∆(u1 − u2)ω dx

−
∫
Ω

|∆u2|q−2
∆u2 ∆(u1 − u2) v dx

=

∫
Ω

(
A(x, u1,∇u1)−A(x, u2,∇u2)

)
· ∇(u1 − u2)ω dx

+

∫
Ω

(|∆u1|p−2
∆u1 − |∆u2|p−2

∆u2) ∆(u1 − u2)ω dx
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+

∫
Ω

(|∆u1|q−2
∆u1 − |∆u2|q−2

∆u2) ∆(u1 − u2) v dx

≥θ1

∫
Ω

|∇(u1 − u2)|p ω dx+ βp

∫
Ω

(|∆u1|+ |∆u2|)p−2 |∆u1 −∆u2|2 ω dx

+βq

∫
Ω

(|∆u1|+ |∆u2|)q−2 |∆u1 −∆u2|2 v dx

≥θ1

∫
Ω

|∇(u1 − u2)|p ω dx+ βp

∫
Ω

(|∆u1 −∆u2|)p−2 |∆u1 −∆u2|2 ω dx

+βq

∫
Ω

(|∆u1 −∆u2|)q−2 |∆u1 −∆u2|2 v dx

=θ1

∫
Ω

|∇(u1 − u2)|p ω dx+ βp

∫
Ω

|∆u1 −∆u2|p ω dx

+βq

∫
Ω

|∆u1 −∆u2|q v dx

≥θ1

∫
Ω

|∇(u1 − u2)|p ω dx+ βp

∫
Ω

|∆u1 −∆u2|p ω dx

≥θ ‖u1 − u2‖pX ,

where θ = min {θ1, βp}. Therefore, the operator A is strongly monotone, and this implies that A is
strictly monotone. Moreover, from (H3), we obtain

〈Au, u〉 = B(u, u) = B1(u, u) +B2(u, u) +B3(u, u)

=

∫
Ω

A(x, u,∇u) · ∇uω dx+

∫
Ω

|∆u|p−2
∆u∆uω dx +

∫
Ω

|∆u|q−2
∆u∆u v dx

≥
∫
Ω

λ1|∇u|p ω dx+

∫
Ω

|∆u|p ω dx+

∫
Ω

|∆u|q v dx

≥
∫
Ω

λ1|∇u|p ω dx+

∫
Ω

|∆u|p ω dx

≥γ ‖u‖pX ,

where γ = min {λ1, 1}. Hence, since 2≤ q < p <∞, we have

〈Au, u〉
‖u‖X

→+∞, as ‖u‖X→+∞,

that is, A is coercive.
Step 6. We need to show that the operator A is continuous.
Let um→u in X as m→∞. We have

|B1(um, ϕ)−B1(u, ϕ)|≤
n∑
j=1

∫
Ω

|Aj(x, um,∇um)−Aj(x, u,∇u)||Djϕ|ω dx

=

n∑
j=1

∫
Ω

|Fjum − Fju||Djϕ|ω dx

≤
n∑
j=1

‖Fjum − Fju‖Lp ′ (Ω,ω)‖Djϕ‖Lp(Ω,ω)
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≤
( n∑
j=1

‖Fjum − Fju‖Lp ′ (Ω,ω)

)
‖ϕ‖X ,

and

|B2(um, ϕ)−B2(u, ϕ)|

=

∣∣∣∣ ∫
Ω

|∆um|p−2
∆um ∆ϕω dx−

∫
Ω

|∆u|p−2
∆u∆ϕω dx

∣∣∣∣
≤
∫
Ω

∣∣∣∣ |∆um|p−2
∆um − |∆u|p−2

∆u

∣∣∣∣ |∆ϕ|ω dx
=

∫
Ω

|G1um −G1u| |∆ϕ|ω dx

≤‖G1um −G1u‖Lp ′ (Ω,ω) ‖ϕ‖X ,

and since
1

s
+

1

r
+

1

p
= 1 (remember that s = p/(q − 1) (see Step 3) and r = p/(p− q), by (H5)),

|B3(um, ϕ)−B3(u, ϕ)|

=

∣∣∣∣ ∫
Ω

|∆um|q−2
∆um ∆ϕv dx−

∫
Ω

|∆u|q−2
∆u∆ϕv dx

∣∣∣∣
≤
∫
Ω

∣∣∣∣ |∆um|q−2
∆um − |∆u|q−2

∆u

∣∣∣∣ |∆ϕ| v dx
=

∫
Ω

|G2um −G2u| |∆ϕ|
v

ω
ω dx

≤
(∫

Ω

|G2um −G2u|s ω dx
)1/s(∫

Ω

|∆ϕ|p ω dx
)1/p(∫

Ω

( v
ω

)r
ω dx

)1/r

≤‖G2um −G2u‖Ls(Ω,ω) ‖ϕ‖X ‖v/ω‖Lr(Ω,ω),

for all ϕ∈X. Hence,

|B(um, ϕ)−B(u, ϕ)|
≤ |B1(um, ϕ)−B1(u, ϕ)|+ |B2(um, ϕ)−B2(u, ϕ)|+ |B3(um, ϕ)−B3(u, ϕ)|

≤
[ n∑
j=1

‖Fjum − Fju‖Lp ′ (Ω,ω) + ‖G1um −G1u‖Lp ′ (Ω,ω)

+ ‖G2um −G2u‖Ls(Ω,ω)‖v/ω‖Lr(Ω,ω)

]
‖ϕ‖X .

Then we obtain

‖Aum −Au‖∗≤
n∑
j=1

‖Fjum − Fju‖Lp ′ (Ω,ω) + ‖G1um −G1u‖Lp ′ (Ω,ω)

+ ‖G2um −G2u‖Ls(Ω,ω)‖v/ω‖Lr(Ω,ω).

Therefore, using (3.2), (3.5) and (3.7), we have ‖Aum −Au‖∗→ 0 as m → +∞, that is, A is
continuous and this implies that A is hemicontinuous.

Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution u∈X and it is
the unique solution for problem (P).

Step 7. In particular, by setting ϕ = u in Definition 2.4, we have

B(u, u) = B1(u, u) +B2(u, u) +B3(u, u) = T (u). (3.9)
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Hence, using (H3) and γ = min {λ1, 1}, we obtain

B1(u, u) +B2(u, u) +B3(u, u)

=

∫
Ω

A(x, u,∇u) · ∇uω dx+

∫
Ω

|∆u|p−2
∆u∆uω dx+

∫
Ω

|∆u|q−2
∆u∆u v dx

≥
∫
Ω

λ1 |∇u|p +

∫
Ω

|∆u|p ω dx+

∫
Ω

|∆u|q v dx

≥λ1

∫
Ω

|∇u|p +

∫
Ω

|∆u|p ω dx

≥ γ‖u‖pX

and

T (u) =

∫
Ω

f0 u dx+

n∑
j=1

∫
Ω

fj Dju dx

≤‖f0/ω‖Lp ′ (Ω,ω)‖u‖Lp(Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω)‖Dju‖Lp(Ω,ω)

≤CΩ ‖f0/ω‖Lp ′ (Ω,ω)‖ |∇u| ‖Lp(Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω)‖ |∇u| ‖Lp(Ω,ω)

≤
(
CΩ ‖f0/ω‖Lp ′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω)

)
‖u‖X .

Therefore, in (3.9),

γ ‖u‖pX ≤
(
CΩ ‖f0/ω‖Lp ′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)

)
‖u‖X ,

and we obtain

‖u‖X ≤
1

γp ′/p

(
CΩ ‖f0/ω‖Lp ′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp ′ (Ω,ω)

)p ′/p

.

Example. Let Ω = {(x, y)∈R2 : x2 + y2 < 1}, the weight functions ω(x, y) = (x2 + y2)−1/2 and
v(x, y) = (x2 + y2)−1/3 (ω ∈A4, v ∈A3, p = 4 and q = 3), and the function

A : Ω××R2→R2

A((x, y), η, ξ) = h2(x, y) |ξ| ξ,

where h(x, y) = 2 e(x2+y2). Let us consider the partial differential operator

Lu(x, y) = ∆
[
ω(x, y) |∆u|2 ∆u+ v(x, y) |∆u|∆u

]
− div ((x2 + y2)−1/2A((x, y), u,∇u)).

Therefore, by Theorem 1.1, the problem

(P )

Lu(x) =
cos(xy)

(x2 + y2)
− ∂

∂x

(
sin(xy)

(x2 + y2)

)
− ∂

∂y

(
sin(xy)

(x2 + y2)

)
, in Ω

u(x) = 0, on ∂Ω

has a unique solution u∈X = W 2,4(Ω, ω)∩W 1,4
0 (Ω, ω).
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Corollary 3.2. Under the assumptions of Theorem 1.1 with 2 ≤ q < p < ∞, if u1, u2 ∈ X are
solutions of

(P1)

Lu1 = f0 −
n∑
j=1

Djfj in Ω,

u1(x) = ∆u1(x) = 0 on ∂Ω,

and

(P2)

Lu2 = g0 −
n∑
j=1

Djgj in Ω,

u2(x) = ∆u2(x) = 0 on ∂Ω,

then

‖u1 − u2‖X ≤
1

α1/(p−1)

(
CΩ

∥∥∥∥f0 − g0

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fj − gjω

∥∥∥∥
Lp ′ (Ω,ω)

)1/(p−1)

,

where α is a positive constant and CΩ is the constant in Theorem 2.2.

Proof. If u1 and u2 are the solutions of (P1) and (P2), then for all ϕ∈X, we have∫
Ω

|∆u1|p−2
∆u1 ∆ϕω dx+

∫
Ω

|∆u1|q−2
∆u1 ∆ϕv dx+

∫
Ω

A(x, u1,∇u1) · ∇ϕω dx

−
(∫

Ω

|∆u2|p−2
∆u2 ∆ϕω dx+

∫
Ω

|∆u2|q−2
∆u2 ∆ϕv dx+

∫
Ω

A(x, u2,∇u2) · ∇ϕω dx
)

=

∫
Ω

(f0 − g0)ϕdx+

n∑
j=1

∫
Ω

(fj − gj)Djϕdx. (3.10)

In particular, for ϕ = u1 − u2, we obtain in (3.10):
(i) By Lemma 2.3 (b) and since 2≤ q < p < ∞, there exist two positive constants βp and βq such

that ∫
Ω

(
|∆u1|p−2

∆u1 − |∆u2|p−2
∆u2

)
∆(u1 − u2)ω dx

≥βp
∫
Ω

(
|∆u1|+ |∆u2|

)p−2

|∆u1 −∆u2|2 ω dx

≥βp
∫
Ω

|∆u1 −∆u2|p−2|∆u1 −∆u2|2 ω dx = βp

∫
Ω

|∆(u1 − u2)|p ω dx,

and, analogously,∫
Ω

(
|∆u1|q−2

∆u1 − |∆u2|q−2
∆u2

)
∆(u1 − u2) v dx≥βq

∫
Ω

|∆(u1 − u2)|q v dx≥ 0.

(ii) By condition (H2)∫
Ω

(
A(x, u1,∇u1)−A(x, u2,∇u2)

)
.∇(u1 − u2)ω dx≥ θ1

∫
Ω

|∇u1 −∇u2|p ω dx.

(iii) By condition (H6) and Theorem 2.2, we also have∣∣∣∣ ∫
Ω

(f0 − g0) (u1 − u2) dx+

n∑
j=1

∫
Ω

(fj − gj)Dj(u1 − u2) dx

∣∣∣∣
≤CΩ

∥∥∥∥f0 − g0

ω

∥∥∥∥
Lp ′ (Ω,ω)

‖∇(u1 − u2)‖Lp(Ω,ω) +

( n∑
j=1

∥∥∥∥fj − gjω

∥∥∥∥
Lp ′ (Ω,ω)

)
‖∇(u1 − u2)‖Lp(Ω,ω)
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≤
(
CΩ

∥∥∥∥f0 − g0

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fj − gjω

∥∥∥∥
Lp ′ (Ω,ω)

)
‖u1 − u2‖X .

Hence, with α = min{βp, θ1}, we obtain

α ‖u1 − u2‖pX ≤βp
∫
Ω

|∆(u1 − u2)|p ω dx+ θ1

∫
Ω

|∇u1 −∇u2)|p ω dx

≤
(
CΩ

∥∥∥∥f0 − g0

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fj − gjω

∥∥∥∥
Lp ′ (Ω,ω)

)
‖u1 − u2‖X .

Therefore, since 2≤ q < p <∞,

‖u1 − u2‖X ≤
1

α1/(p−1)

(
CΩ

∥∥∥∥f0 − g0

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fj − gjω

∥∥∥∥
Lp ′ (Ω,ω)

)1/(p−1)

. �

Corollary 3.3. Assume 2≤ q < p <∞. Let the assumptions of Theorem 1.1 be fulfilled, and let {f0m}

and {fjm} (j = 1, . . . , n) be sequences of functions satisfying
f0m

ω
→ f0

ω
in Lp

′
(Ω, ω) and

fjm
ω
→ fj

ω
in Lp

′
(Ω, ω) as m→∞. If um ∈X is a solution of the problem

(Pm)

Lum(x) = f0m(x)−
n∑
j=1

Djfjm in Ω,

um(x) = ∆um(x) = 0 on ∂Ω,

then um→u in X and u is a solution of problem (P ).

Proof. By Corollary 3.2, we have

‖um − uk‖X ≤
1

α1/(p−1)

(
CΩ

∥∥∥∥f0m − f0k

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fjm − fjkω

∥∥∥∥
Lp ′ (Ω,ω)

)1/(p−1)

.

Therefore {um} is a Cauchy sequence in X. Hence, there is u∈X such that um→u in X. We find
that u is a solution of problem (P ). In fact, since um is a solution of (Pm), for all ϕ∈X we have∫

Ω

|∆u|p−2
∆u∆ϕω dx+

∫
Ω

|∆u|q−2
∆u∆ϕv dx+

∫
Ω

A(x, u,∇u) · ∇ϕω dx

=

∫
Ω

(
|∆u|p−2

∆u− |∆um|p−2
∆um

)
∆ϕω dx+

∫
Ω

(
|∆u|q−2

∆u− |∆um|q−2
∆um

)
∆ϕv dx

+

∫
Ω

(
A(x, u,∇u)−A(x, um,∇um)

)
· ∇ϕω dx

+

∫
Ω

|∆um|p−2
∆um ∆ϕω dx+

∫
Ω

|∆um|q−2
∆um ∆ϕv dx+

∫
Ω

A(x, um,∇um) · ∇ϕω dx

= I1 + I2 + I3 +

∫
Ω

f0mϕdx+

n∑
j=1

∫
Ω

fjmDjϕdx

= I1 + I2 + I3 +

∫
Ω

f0 ϕdx+

n∑
j=1

∫
Ω

fjDjϕdx

+

∫
Ω

(f0m − f0)ϕdx+

n∑
j=1

∫
Ω

(fjm − fj)Djϕdx, (3.11)
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where

I1 =

∫
Ω

(
|∆u|p−2

∆u− |∆um|p−2
∆um

)
∆ϕω dx,

I2 =

∫
Ω

(
|∆u|q−2

∆u− |∆um|q−2
∆um

)
∆ϕv dx,

I3 =

∫
Ω

(
A(x, u,∇u)−A(x, um,∇um)

)
· ∇ϕω dx.

We find that:
(1) by Lemma 2.3(a), there exists αp > 0 such that

|I1|≤
∫
Ω

∣∣|∆u|p−2
∆u− |∆um|p−2

∆um
∣∣ |∆ϕ|ω dx

≤αp
∫
Ω

|∆u−∆um| (|∆u|+ |∆um|)p−2 |∆ϕ|ω dx.

Let δ = p/(p− 2). Since
1

p
+

1

p
+

1

δ
= 1, by the Generalized Hölder inequality we obtain

|I1|≤αp
(∫

Ω

|∆u−∆um|p ω dx
)1/p(∫

Ω

|∆ϕ|p ω dx
)1/p(∫

Ω

(|∆u|+ |∆um|)(p−2)δ ω dx

)1/δ

≤αp‖u− um‖X ‖ϕ‖X‖|∆u|+ |∆um|‖
(p−2)
Lp(Ω,ω).

Now, since um→u in X, there exists a constant M > 0 such that ‖um‖X ≤M . Hence,

‖|∆u|+ |∆um|‖Lp(Ω,ω)≤‖u‖X + ‖um‖X ≤ 2M. (3.12)

Therefore,

|I1|≤αp (2M)p−2 ‖u− um‖X ‖ϕ‖X
=C1 ‖u− um‖X ‖ϕ‖X ,

where C1 = αp(2M)p−2.
(2) By Lemma 2.3 (a) there exists a positive constant αq such that

|I2|≤
∫
Ω

∣∣|∆u|q−2
∆u− |∆um|q−2

∆um
∣∣ |∆ϕ| v dx

≤αq
∫
Ω

|∆u−∆um| (|∆u|+ |∆um|)q−2 |∆ϕ| v dx.

Let ε = q/(q − 2) (if 2 < q < p <∞). Since
1

q
+

1

q
+

1

ε
= 1, by the Generalized Hölder inequality,

we obtain

|I2|≤αq
(∫

Ω

|∆u−∆um|q v dx
)1/q(∫

Ω

|∆ϕ|q v dx
)1/q(∫

Ω

(|∆u|+ |∆um|)(q−2)ε v dx

)1/ε

= αq ‖∆u−∆um‖Lq(Ω,v) ‖∆ϕ‖Lq(Ω,v)‖|∆u|+ |∆um|‖
q−2
Lq(Ω,v).

Now, by Remark 2.4 and (3.12), we have

|I2|≤αq Cp,q‖∆u−∆um‖Lp(Ω,ω) Cp,q‖∆ϕ‖Lp(Ω,ω)C
q−2
p,q ‖|∆u|+ |∆um|‖

q−2
Lp(Ω,ω)

≤αq Cqp,q‖u− um‖X‖ϕ‖X (2M)q−2

=C2 ‖u− um‖X ‖ϕ‖X ,
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where C2 = (2M)q−2αq C
q
p,q.

In case q = 2, we have I2 =

∫
Ω

( ∆u−∆um) ∆ϕv dx, and by Remark 2.4, we obtain

|I2| ≤‖∆u−∆um‖L2(Ω,v)‖∆ϕ‖L2(Ω,v)

≤C2
p,2‖∆u−∆um‖Lp(Ω,ω)‖∆ϕ‖Lp(Ω,ω)

≤C2
p,2‖u− um‖X‖ϕ‖X .

By Step 1 (Theorem 1.1), we also have

|I3|≤
n∑
j=1

∫
Ω

|Aj(x, u,∇u)−Aj(x, um,∇um)| |Djϕ|ω dx

=

n∑
j=1

∫
Ω

|Fj(u)− Fj(um)||Djϕ|ω dx

≤
( n∑
j=1

‖Fj(u)− Fj(um)‖Lp ′ (Ω,ω)

)
‖∇ϕ‖Lp(Ω,ω)

≤
( n∑
j=1

‖Fj(u)− Fj(um)‖Lp ′ (Ω,ω)

)
‖ϕ‖X .

Therefore, we have I1, I2, I3,→ 0 as m→∞.
(3) We also have ∣∣∣∣ ∫

Ω

(f0m − f0)ϕdx+

n∑
j=1

∫
Ω

(fjm − fj)Djϕdx

∣∣∣∣
(
CΩ

∥∥∥∥f0m − f0

ω

∥∥∥∥
Lp ′ (Ω,ω)

+

n∑
j=1

∥∥∥∥fjm − fjω

∥∥∥∥
Lp ′ (Ω,ω)

)
‖ϕ‖X→ 0,

as m→∞.
Therefore, in (3.11), as m→∞, we obtain∫

Ω

|∆u|p−2
∆u∆ϕω dx+

∫
Ω

|∆u|q−2
∆u∆ϕv dx

+

∫
Ω

A(x, u,∇u) · ∇ϕω dx

=

∫
Ω

f0 ϕdx+

n∑
j=1

∫
Ω

fjjDjϕdx,

i.e., u is a solution of problem (P). �
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